Identification and Antifungal Activity of Compounds from the Mangrove Endophytic Fungus Aspergillus clavatus R7
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. General Experimental Procetures
3.2. Fungal Material and Fermentation
3.3. Extraction and Isolation
3.4. Computational Analyses
3.5. Antifungal Activity Assay
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munroa, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2017, 34, 235–294. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.M.M.; Taha, T.M.; Abo-Dahab, N.F.; Hassan, F.S.M. Process optimization of l-glutaminase production; a tumour inhibitor from marine endophytic isolate Aspergillus sp. ALAA-2000. J. Microb. Biochem. Technol. 2016, 8, 256–267. [Google Scholar] [CrossRef]
- Gao, S.; Li, X.; Williams, K.; Proksch, P.; Ji, N.; Wang, B. Rhizovarins A–F, indole-diterpenes from the mangrove-derived endophytic fungus Mucor irregularis QEN-189. J. Nat. Prod. 2016, 79, 2066–2074. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huang, Y.; Fang, M.; Zhang, Y.; Zheng, Z.; Zhao, Y.; Su, W. Brefeldin A, a cytotoxin produced by Paecilomyces sp. and Aspergillus clavatus isolated from Taxus mairei and Torreya grandis. FEMS Immunol. Med. Microbiol. 2002, 34, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Bawin, T.; Seye, F.; Boukraa, S.; Zimmer, J.; Raharimalala, F.N.; Ndiaye, M.; Compere, P.; Delvigne, F.; Francis, F. Histopathological effects of Aspergillus clavatus (Ascomycota: Trichocomaceae.) on larvae of the southern house mosquito, Culex quinquefasciatus (Diptera: Culicidae). Fungal Biol. 2016, 120, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zheng, B.; Lao, J.; Mao, L.; Chen, S.; Kubicek, C.P.; Lin, F. Clavatol and patulin formation as the antagonistic principle of Aspergillus clavatonanicus, an endophytic fungus of Taxus mairei. Appl. Microbiol. Biotechnol. 2008, 78, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Losada, L.; Ajayi, O.; Frisvad, J.C.; Yu, J.J.; Nierman, W.C. Effect of competition on the production and activity of secondary metabolites in Aspergillus species. Med. Mycol. 2009, 47, S88–S96. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Bai, G.; Liu, Y.; Wang, H.; Li, Y.; Yin, W.; Wang, Y.; Lu, F. Cytotoxic metabolites produced by the endophytic fungus Aspergillus clavatus. Chem. Lett. 2015, 44, 1148–1149. [Google Scholar] [CrossRef]
- Liu, J.Y.; Song, Y.C.; Zhang, Z.; Wang, L.; Guo, Z.J.; Zou, W.X.; Tan, R.X. Aspergillus fumigatus CY018, an endophytic fungus in Cynodon dactylon as a versatile producer of new and bioactive metabolites. J. Biotechnol. 2004, 114, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Zhang, S.; Gong, B.; Li, C.; Wang, X. Isolation and inhibitory activity of endophytic fungi from the semi-mangrove plant Myoporum bontioides A. Gray. Guangdong Agric. Sci. 2014, 41, 74–78. [Google Scholar]
- Hüttel, W.; Müller, M. Regio- and stereoselective Intermolecular oxidative phenol coupling in kotanin biosynthesis by Aspergillus niger. ChemBioChem 2007, 8, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Ju-ichi, M.; Takemura, Y.; Okano, M.; Fukamiya, N.; Hatano, K.; Asakawa, Y.; Hashimoto, T.; Ito, C.; Furukawa, H. The structures of claudimerines-A and -B, novel bicoumarins from Citrus hassaku. Chem. Pharm. Bull. 1996, 44, 11–14. [Google Scholar] [CrossRef]
- Mahibalan, S.; Rao, P.C.; Khan, R.; Basha, A.; Siddareddy, R.; Masubuti, H.; Fujimoto, Y.; Begum, A.S. Cytotoxic constituents of Oldenlandia umbellata and isolation of a new symmetrical coumarin dimer. Med. Chem. Res. 2016, 25, 466–472. [Google Scholar] [CrossRef]
- Fukuda, T.; Sudoh, Y.; Tsuchiya, Y.; Okuda, T.; Fujimori, F.; Igarashi, Y. Marianins A and B, prenylated phenylpropanoids from Mariannaea camptospora. J. Nat. Prod. 2011, 74, 1327–1330. [Google Scholar] [CrossRef] [PubMed]
- Ngadjui, T.B.; Ayafor, J.F.; Sondengam, B.L.; Connolly, J.D. Coumarins from Clausena anisata. Phytochemistry 1989, 28, 585–589. [Google Scholar] [CrossRef]
- Huang, M.; Li, J.; Liu, L.; Yin, S.; Wang, J.; Lin, Y. Phomopsichin A–D; four new chromone derivatives from mangrove endophytic fungus Phomopsis sp. 33#. Mar. Drugs 2016, 14, 215. [Google Scholar] [CrossRef]
- Xia, M.; Cui, C.; Li, C.; Wu, C.; Peng, J.; Li, D. Rare chromones from a fungal mutant of the marine-derived Penicillium purpurogenum G59. Mar. Drugs 2015, 13, 5219–5236. [Google Scholar] [CrossRef] [PubMed]
- Srebro-Hooper, M.; Autschbach, J. Calculating natural optical activity of molecules from first principles. Annu. Rev. Phys. Chem. 2017, 68, 399–420. [Google Scholar] [CrossRef] [PubMed]
- Pescitelli, G.; Bruhn, T. Good Computational Practice in the Assignment of Absolute Configurations by TDDFT Calculations of ECD Spectra. Chirality 2016, 28, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, H.; Nakamura, E.; Okuyama, E.; Ishibashi, M. Six immunosuppressive features from an ascomycete, Zopfiella longicaudata, found in a screening study monitored by immunomodulatory activity. Chem. Pharm. Bull. 2004, 52, 1005–1008. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ding, W.; Wang, R.; Du, Y.; Liu, H.; Kong, X.; Li, C. Identification and bioactivity of compounds from the mangrove endophytic fungus Alternaria sp. Mar. Drugs 2015, 13, 4492–4504. [Google Scholar] [CrossRef] [PubMed]
No. | 1 a | 2 b | ||
---|---|---|---|---|
δC | δH, Mult. (J in Hz) | δC | δH, Mult. (J in Hz) | |
1 | ||||
2 | 162.1, C | 7.61, s | 163.2, C | |
2-OH | ||||
3 | 88.6, CH | 5.7, s | 87.5, CH | 5.54, s |
4 | 169.5, C | 169.8, C | ||
5 | 137.9, C | 138.4, C | ||
6 | 119.6, CH | 6.92, d (2.4) | 116.3, CH | 6.64, d (2.4) |
7 | 155.5, C | 161.2, C | ||
8 | 105.4, CH | 7.05, d (2.4) | 99.4, CH | 6.68, d (2.4) |
9 | 57.2, CH3 | 3.94, s | 55.9, CH3 | 3.94, s |
10 | 23.5, CH3 | 2.56, s | 23.4, CH3 | 2.62, s |
4a | 109.4, C | 107.8, C | ||
8a | 156.4, C | 156.6, C | ||
1′ | 65.1, CH2 | 4.55, d (7.2) | ||
2′ | 162.1, C | 7.61, s | 118.8, CH | 5.47, t (7.2) |
3′ | 88.6, CH | 5.7, s | 139.1, C | |
4′ | 169.5, C | 25.8, CH3 | 1.82, s | |
5′ | 137.9, C | 18.2, CH3 | 1.77, s | |
6′ | 119.6, CH | 6.92, d (2.4) | ||
7′ | 155.5, C | |||
8′ | 105.4, CH | 7.05, d (2.4) | ||
9′ | 57.2, CH3 | 3.94, s | ||
10′ | 23.5, CH3 | 2.56, s | ||
4′a | 109.4, C | |||
8′a | 156.4, C |
No. | δC | δH, Mult. (J in Hz) |
---|---|---|
1 | ||
2 | 170.3, C | |
2-CH3 | 19.7, CH3 | 2.52, s |
3 | 108.9, CH | 6.37, s |
4 | 184.0, C | |
4a | 112.7, C | |
5 | 155.8, C | |
5-OH | 13.43, s | |
5a | 130.7, C | |
6 | 76.5, CH | 5.73, q (6.6) |
6-CH3 | 18.2, CH3 | 1.67, d (6.6) |
8 | 168.2, C | |
8a | 131.0, C | |
9 | 102.9, CH | 7.37, s |
9a | 157.2, C |
No. | δC | δH, Mult. (J in Hz) |
---|---|---|
1 | 34.1, CH2 | a1.82, m b2.02, m |
2 | 34.1, CH2 | a2.46, m b2.53, m |
3 | 199.5, C | |
4 | 123.0, CH | 5.75, s |
5 | 124.5, C | |
6 | 124.6, CH | 6.04, d (9.6) |
7 | 134.0, CH | 6.61, d (9.6) |
8 | 164.3, C | |
9 | 44.3, CH | 2.14, m |
10 | 36.7, C | |
11 | 19.0, CH2 | a1.60, m b1.71, m |
12 | 35.6, CH2 | a1.31, m b2.09, m |
13 | 44.0, C | |
14 | 155.7, C | |
15 | 25.2, CH2 | a2.39, m b2.48, m |
16 | 27.8, CH2 | a1.49, m b1.80, m |
7 | 55.9, CH | 1.29, m |
18 | 19.0, CH3 | 0.98, s |
19 | 16.6, CH3 | 1.00, s |
20 | 39.1, CH | 2.22, m |
21 | 21.0, CH3 | 1.08, d (6.6) |
22 | 133.7, CH) | 5.48, dd (8.2, 15.2) |
23 | 134.0, CH | 5.52, d (15.2) |
24 | 74.9, C | |
25 | 38.1, CH | 1.70, m |
26 | 17.6, CH3 | 0.91, d (3.1) |
27 | 17.2, CH3 | 0.90, d (3.2) |
28 | 25.4, CH3 | 1.23, s |
Compounds | F. oxysporum | C. musae | P. italicm |
---|---|---|---|
1 | 253.81 | 380.71 | 253.81 |
2 | 729.66 | 547.25 | >729.66 |
3 | 235.85 | 353.77 | 235.85 |
4 | 252.47 | 378.71 | 252.47 |
5 | 609.21 | 203.07 | 304.61 |
6 | 244.73 | 195.79 | 61.18 |
Triadimefon a | 340.43 | 272.39 | 170.24 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Xiong, P.; Zheng, W.; Zhu, X.; She, Z.; Ding, W.; Li, C. Identification and Antifungal Activity of Compounds from the Mangrove Endophytic Fungus Aspergillus clavatus R7. Mar. Drugs 2017, 15, 259. https://doi.org/10.3390/md15080259
Li W, Xiong P, Zheng W, Zhu X, She Z, Ding W, Li C. Identification and Antifungal Activity of Compounds from the Mangrove Endophytic Fungus Aspergillus clavatus R7. Marine Drugs. 2017; 15(8):259. https://doi.org/10.3390/md15080259
Chicago/Turabian StyleLi, Wensheng, Ping Xiong, Wenxu Zheng, Xinwei Zhu, Zhigang She, Weijia Ding, and Chunyuan Li. 2017. "Identification and Antifungal Activity of Compounds from the Mangrove Endophytic Fungus Aspergillus clavatus R7" Marine Drugs 15, no. 8: 259. https://doi.org/10.3390/md15080259
APA StyleLi, W., Xiong, P., Zheng, W., Zhu, X., She, Z., Ding, W., & Li, C. (2017). Identification and Antifungal Activity of Compounds from the Mangrove Endophytic Fungus Aspergillus clavatus R7. Marine Drugs, 15(8), 259. https://doi.org/10.3390/md15080259