Overview on the Application of Modern Methods for the Extraction of Bioactive Compounds from Marine Macroalgae
Abstract
:1. Introduction
2. Novel Extraction Techniques of Bioactive Compounds from Marine Macroalgae
2.1. Supercritical Fluid Extraction (SFE)
2.2. Ultrasound-Assisted Extraction (UAE)
2.3. Subcritical Water Extraction (SWE)
2.4. Microwave-Assisted Extraction (MAE)
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Pal, A.; Kamthania, M.C.; Kumar, A. Bioactive compounds and properties of seaweeds—A review. OALibJ 2014, 1, 1–17. [Google Scholar] [CrossRef]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed extracts as biostimulants of plant growth and development. J. Plant. Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Abdel-Raouf, N.; Al-Enazi, N.M.; Al-Homaidan, A.A.; Ibraheem, I.B.M.; Al-Othman, M.R.; Hatamleh, A.A. Antibacterial β-amyrin isolated from Laurencia microcladia. Arab. J. Chem. 2015, 8, 32–37. [Google Scholar] [CrossRef]
- Wang, H.M.D.; Li, X.C.; Lee, D.J.; Chang, J.S. Potential biomedical applications of marine algae. Bioresour. Technol. 2017, 244, 1407–1415. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, M.; Valentao, P.; Andrade, P. Bioactive compounds from macroalgae in the new millenium: implications for neurodegenerative diseases. Mar. Drugs 2014, 12, 4934–4972. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.; Sousa, S.; Silva, A.; Amorim, M.; Pereira, L.; Rocha-Santos, T.A.P.; Gomes, A.M.P.; Duarte, A.C.; Freitas, A.C. Impact of enzyme- and ultrasound-assisted extraction methods on biological properties of red, brown and green seaweeds from the central west coast of portugal. J. Agr. Food Chem. 2015, 63, 3177–3188. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.X.; Wijesekara, I.; Li, Y.; Kim, S.K. Phlorotannins as bioactive agents from brown algae. Process. Biochem. 2011, 46, 2219–2224. [Google Scholar] [CrossRef]
- Montero, L.; Sanchez-Camargo, A.P.; Garcia-Canas, V.; Tanniou, A.; Stiger-Pouvreau, V.; Russo, M.; Rastrelli, L.; Cifuentes, A.; Herrero, M.; Ibanez, E. Anti-proliferative and chemical characterization by comprehensive two-dimensional liquid chromatography coupled to mass spectrometry of phlorotannins from the brown macroalga Sargassum muticum collected on North-Atlantic coasts. J. Chromatogr. A 2016, 1428, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Thomas, N.V.; Kim, S.K. Potential pharmacological applications of polyphenolic derivatives from marine brown algae. Environ. Toxicol. Pharmacol. 2011, 32, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Ruperez, P.; Saura-Calixto, F. Dietary fibre and physicochemical properties of edible spanish seaweeds. Eur. Food Res. Technol. 2001, 212, 349–354. [Google Scholar] [CrossRef]
- Saravana, P.S.; Cho, Y.J.; Park, Y.B.; Woo, H.C. Structural, antioxidants and emulsifying activities of fucoidan from Saccharina japonica using pressurized liquid extraction. Carbohydr. Polym. 2016, 153, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Shan, X.; Liu, X.; Hao, J.; Cai, C.; Fan, F.; Dun, Y.; Zhao, X.; Liu, X.; Li, C.; Yu, G. In vitro and in vivo hypoglycemic effects of brown algal fucoidans. Int. J. Biol. Macromol. 2016, 82, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Santoyo, S.; Plaza, M.; Jaime, L.; Ibanez, E.; Reglero, G.; Senorans, J. Pressurized liquids as an alternative green process to extract antiviral agents from the edible seaweed Himanthalia elongata. J. Appl. Phycol. 2011, 23, 909–917. [Google Scholar] [CrossRef]
- Huheihel, M.; Ishanu, V.; Tal, J.; Arad, S. Activity of Porphyridium sp. Polysaccharide against herpes simplex in vitro and in vivo. J. Biochem. Bioph. Meth. 2002, 20, 189–200. [Google Scholar] [CrossRef]
- Ye, H.; Wang, K.; Zhou, C.; Liu, J.; Zeng, X. Purification, antitumor and antioxidant activities in vitro of polysaccharides from the brown seaweed Sargassum pallidum. Food Chem. 2008, 111, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Vaquero, M.; Rajauria, G.; O’Doherty, J.; Torres, S. Polysaccharides from macroalgae: Recent advances, innovative technologies and challenges in extraction and purification. Food Res. Int. 2017, 99, 1011–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christaki, E.; Bonos, E.; Giannenas, I.; Florou-Paneri, P. Functional properties of carotenoids originating from algae. J. Sci. Food Agric. 2012, 93, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Hosokawa, M.; Wanezaki, S.; Miyauchi, K.; Kurihara, H.; Kohno, H.; Kawabata, J.; Odashima, S.; Takahashi, K. Apoptosis-inducing effect of fucoxanthin on human leukemia cell line HL-60. Food Sci. Technol. Res. 1999, 5, 243. [Google Scholar] [CrossRef]
- Heffernan, N.; Smyth, T.J.; FitzGerald, R.J.; Villa-Soler, A.; Mendiola, J.; Ibanez, E.; Brunton, N.P. Comparison of extraction methods for selected carotenoids from macroalgae and the assessment of their seasonal/spatial variation. Innov. Food Sci. Emerg. Technol. 2016, 37, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Fabrowska, J.; Ibanez, E.; Leska, B.; Herrero, M. Supercritical fluid extraction as a tool to valorize underexploited freshwater green algae. Algal Res. 2016, 19, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Sivagnanam, S.P.; Yin, S.; Choi, J.H.; Park, Y.B.; Woo, H.C.; Chun, B.S. Biological properties of fucoxanthin in oil recovered from two brown seaweeds using supercritical CO2 extraction. Mar. Drugs 2015, 13, 3422–3442. [Google Scholar] [CrossRef] [PubMed]
- Dawczynski, C.; Schubert, R.; Jahreis, G. Amino acids, fatty acids and dietary fibre in edible seaweed products. Food Chem. 2007, 103, 891–899. [Google Scholar] [CrossRef]
- Silva, G.; Pereira, R.B.; Valentao, P.; Andrade, P.B.; Sousa, C. Distinct fatty acid profile of ten brown macroalgae. Rev. Bras. Farmacogn. Braz. J. Pharmacogn. 2013, 23, 608–613. [Google Scholar] [CrossRef]
- Andrade, P.B.; Barbosa, M.; Matos, R.P.; Lopes, G.; Vinholes, J.; Mouga, T.; Valentao, P. Valuable compounds in macroalgae extracts. Food Chem. 2013, 138, 1819–1828. [Google Scholar] [CrossRef] [PubMed]
- Duarte, K.; Justino, C.I.L.; Pereira, R.; Freitas, A.C.; Gomes, A.M.; Duarte, A.C.; Rocha-Santos, T.A.P. Green analytical methodologies for the discovery of bioactive compounds from marine sources. Trends Environ. Anal. Chem. 2014, 3, 43–52. [Google Scholar] [CrossRef]
- Wang, L.; Weller, C.L. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol. 2006, 17, 300–312. [Google Scholar] [CrossRef]
- Michalak, I.; Chojnacka, K. Algal extracts: Technology and advances. Eng. Life Sci. 2014, 14, 1–32. [Google Scholar] [CrossRef]
- Kadam, S.U.; Tiwari, B.K.; O’Donnell, C.P. Application of novel extraction technologies for extraction of bioactives from marine algae. J. Agric. Food Chem. 2013, 61, 4667–4675. [Google Scholar] [CrossRef] [PubMed]
- Grosso, C.; Valentao, P.; Ferreres, F.; Andrade, P.B. Alternative and efficient extraction methods for marine-derived compounds. Mar. Drugs 2015, 13, 3182–3230. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; Cifuentes, A.; Ibanez, E. Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae. A review. Food Chem. 2006, 98, 136–148. [Google Scholar] [CrossRef]
- Mishra, V.K.; Temelli, F.; Ooraikul, B. Extraction and purification of ω-3 fatty acids with an emphasis on supercritical fluid extraction-A review. Food Res. Int. 1993, 26, 217–226. [Google Scholar] [CrossRef]
- Duarte, K.; Justino, C.I.L.; Gomes, A.M.; Rocha-Santos, T.A.P.; Duarte, A.C. Green Analytical methodologies for preparation of extracts and analysis of bioactive compounds. Compr. Anal. Chem. 2014, 65, 59–78. [Google Scholar] [CrossRef]
- del Pilar Sanchez Camargo, A.; Ibanez, E.; Cifuentes, A.; Herrero, M. Bioactives obtained from plants, seaweeds, microalgae and food by-products using pressurized liquid extraction and supercritical fluid extraction. Compr. Anal. Chem. 2017, 76, 1–24. [Google Scholar] [CrossRef]
- Silva, R.P.F.F.; Rocha-Santos, T.A.P.; Duarte, A.C. Supercritical fluid extraction of bioactive compounds. Trends Anal. Chem. 2016, 76, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Tanniou, A.; Esteban Serrano, L.; Vandanjon, L.; Ibanez, E.; Mendiola, J.A.; Cerantola, S.; Kervarec, N.; La Barre, S.; Marchal, L.; Stiger-Pouvreau, V. Green improved processes to extract bioactive phenolic compounds from brown macroalgae using Sargassum muticum as model. Talanta 2013, 104, 44–52. [Google Scholar] [CrossRef]
- Ospina, M.; Casto-Vargas, H.I.; Parada-Alfonso, F. Antioxidant capacity of Colombian seaweeds: 1. Extracts obtained from Gracilaria mammillaris by means of supercritical fluid extraction. J. Supercrit. Fluids 2017, 128, 314–322. [Google Scholar] [CrossRef]
- Roh, M.K.; Uddin, M.S.; Chun, B.S. Extraction of Fucoxanthin and Polyphenol from Undaria pinnatifida Using Supercritical Carbon Dioxide with Co-Solvent. Biotechnol. Bioproc. Eng. 2008, 13, 724–729. [Google Scholar] [CrossRef]
- Saravana, P.S.; Tilahun, A.; Cho, Y.J.; Choi, J.H.; Park, Y.B.; Woo, H.C.; Chin, B.S. Influence of co-solvents on fucoxanthin and phlorotannin recovery from brown seaweed using supercritical CO2. J. Supercrit. Fluids 2017, 120, 295–303. [Google Scholar] [CrossRef]
- Crampon, C.; Boutin, O.; Badens, E. Supercritical Carbon Dioxide Extraction of Molecules of Interest from Microalgae and Seaweeds. Ind. Eng. Chem. Res. 2011, 50, 8941–8953. [Google Scholar] [CrossRef]
- Cheung, P.C.K. Temperature and pressure effects on supercritical carbon dioxide extraction of n-3 fatty acids from red seaweed. Food Chem. 1999, 65, 399–403. [Google Scholar] [CrossRef]
- Quitain, A.T.; Kai, T.; Sasaki, M.; Goto, M. Supercritical carbon dioxide extraction of fucoxanthin from Undaria pinnatifida. J. Agric. Food Chem. 2013, 61, 5792–5797. [Google Scholar] [CrossRef] [PubMed]
- Hattab, M.; Culioli, G.; Piovetti, L.; Chitour, S.E.; Valls, R. Comparison of various extraction methods for identification and determination of volatile metabolites from brown alga Dictyopteris membranacea. J. Chromatogr. A 2007, 1143, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Klejdus, B.; Lojkova, L.; Plaza, M.; Šnoblova, M.; Šterbova, D. Hyphenated technique for the extraction and determination of isoflavones in algae: Ultrasound-assisted supercritical fluid extraction followed by fast chromatography with tandem mass spectrometry. J. Chromatogr. A 2010, 1217, 7956–7965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalak, I.; Gorka, B.; Wieczorek, P.P.; Roj, E.; Lipok, J.; Leska, B.; Messyasz, B.; Wilk, R.; Schroeder, G.; Dobrzynska-Inger, A.; et al. Supercritical fluid extraction of algae enhances levels of biologically active compounds promoting plant growth. Eur. J. Phycol. 2016, 51, 1–10. [Google Scholar] [CrossRef]
- Punin Crespo, M.O.; Lage Yusty, M.A. Comparison of supercritical fluid extraction and Soxhlet extraction for the determination of aliphatic hydrocarbons in seaweed samples. Ecotoxicol. Environ. Saf. 2006, 64, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Florez-Fernandez, N.; Gonzalez Munoz, M.J. Ultrasound-assisted extraction of bioactive carbohydrates. In Water extraction of Bioactive Compounds; Dominguez Gonzalez, H., Gonzalez Munoz, M.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 317–331. ISBN 978-0-12-809380-1. [Google Scholar]
- Oh, S.H.; Ahn, J.; Kang, D.H.; Lee, H.Y. The effect of ultrasonificated extracts of spirulina maxima on the anticancer activity. Mar. Biotechnol. 2011, 13, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Dang, T.T.; Vuong, Q.V.; Schreider, M.J.; Bowyer, M.C.; Van Altena, I.A.; Scarlett, C.J. Optimisation of ultrasound-assisted extraction conditions for phenolic content and antioxidant activities of the alga Hormosira banksii using response surface methodology. J. Appl. Phycol. 2017, 29, 3161–3173. [Google Scholar] [CrossRef]
- Lee, S.H.; Kang, M.C.; Moon, S.H.; Jeon, B.T.; Jeon, Y.J. Potential use of ultrasound in antioxidant extraction from Ecklonia cava. Algae 2013, 28, 371–378. [Google Scholar] [CrossRef]
- Topuz, O.K.; Gokoglu, N.; Yerlikaya, P.; Ucak, I.; Gumus, B. Optimization of Antioxidant Activity and Phenolic Compound Extraction Conditions from Red Seaweed (Laurencia obtuse). J. Aquat. Food Prod. Technol. 2016, 25, 414–422. [Google Scholar] [CrossRef]
- Kadam, S.U.; Tiwari, B.K.; Smyth, T.J.; O’Donnell, C.P. Optimization of ultrasound assisted extraction of bioactive components from brown seaweed Ascophyllum nodosum using response surface methodology. Ultrason. Sonochem. 2015, 23, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Kadam, S.U.; O’Donnell, C.P.; Rai, D.K.; Hossain, M.B.; Burgess, C.M.; Walsh, D.; Tiwari, B.K. Laminarin from irish brown seaweeds ascophyllum nodosum and laminaria hyperborea: ultrasound assisted extraction, characterization and bioactivity. Mar. Drugs 2015, 13, 4270–4280. [Google Scholar] [CrossRef] [PubMed]
- Mittal, R.; Tavanandi, H.A.; Mantri, V.A.; Raghavarao, K.S.M.S. Ultrasound assisted methods for enhanced extraction of Phycobiliproteins from marine macro-algae, Gelidium pusillum (Rhodophyta). Ultrason. Sonochem. 2017, 38, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Guo, X.Y.; Zhang, D.N.; Wu, Y.; Wu, T.; Chen, Z.G. Ultrasound-assisted extraction and purification of taurine from the red algae Porphyra yezoensis. Ultrason. Sonochem. 2015, 24, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.; Ibanez, E. Pressurized hot water extraction and processing. In Enhancing Extraction Processes in the Food Industry; Lebovka, N., Vorobiev, E., Chemat, F., Eds.; Taylor & Francis Group, LLC: Abingdon, UK, 2011; pp. 223–254. ISBN 9781138199330. [Google Scholar]
- Zakaria, S.M.; Kamal, S.M.M. Subcritical Water Extraction of Bioactive Compounds from Plants and Algae: Applications in Pharmaceutical and Food Ingredients. Food Eng. Rev. 2016, 8, 23–34. [Google Scholar] [CrossRef]
- Fayad, S.; Nehme, R.; Tannoury, M.; Lesellier, E.; Pichon, C.; Morin, P. Macroalga Padina pavonica water extracts obtained by pressurized liquid extraction and microwave-assisted extraction inhibit hyaluronidase activity as shown by capillary electophoresis. J. Chromatogr. A 2017, 1497, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Saravana, P.S.; Chun, B.S. Seaweed polysaccharide isolation using subcritical water hydrolysis. In Seaweed Polysaccharides: Isolation, Biological and Biomedical Applications; Venkatesan, J., Anil, S., Kim, S.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 47–73. ISBN 978-0-12-809816-5. [Google Scholar]
- Li, Z.; Wang, B.; Zhang, Q.; Qu, Y.; Xu, H.; Li, G. Preparation and antioxidant property of extract and semipurified fractions of Caulerpa racemosa. J. Appl. Phycol. 2012, 24, 1527–1536. [Google Scholar] [CrossRef]
- Lopez, A.; Rico, M.; Rivero, A.; Suarez de Tangil, M. The effects of solvents on the phenolic contents and antioxidant activity of Stypocaulon scoparium algae extracts. Food Chem. 2011, 125, 1104–1109. [Google Scholar] [CrossRef]
- Wang, T.; Jonsdottir, R.; Olafsdottir, G. Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem. 2009, 116, 240–248. [Google Scholar] [CrossRef]
- Wijeskara, I.; Yoon, N.Y.; Kim, S.K. Phlorotannins from Ecklonia cava (Phaeophyceae): Biological activities and potential health benefits. Biofactors 2010, 36, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Heffernan, N.; Smyth, T.J.; FitzGerald, R.J.; Villa-Soler, A.; Brunton, N. Antioxidant activity and phenolic content of pressurized liquid and solid-liquid extracts from four Irish origin macroalgae. Int. J. Food Sci. Technol. 2014, 49, 1765–1772. [Google Scholar] [CrossRef]
- Castro-Puyana, M.; Herrero, M.; Mendiola, J.A.; Ibanez, E. Subcritical water extraction of bioactive components from algae. In Functional Ingredients from Algae for Foods and Nutraceuticals; Dominguez, H., Ed.; Woodhead Publishing: Sawston, UK, 2013; pp. 534–560. ISBN 978-0-85709-512-1. [Google Scholar] [Green Version]
- Tierney, M.S.; Smyth, T.J.; Hayes, M.; Soler-Vila, A.; Croft, A.K.; Brunton, N. Influence of pressurized liquid extraction and solid-liquid extraction methods on the phenolic content and antioxidant activities of Irish macroalgae. Int. J. Food Sci. Technol. 2013, 48, 860–869. [Google Scholar] [CrossRef]
- Vo Dinh, T.; Saravana, P.S.; Woo, H.C.; Chun, B.S. Ionic liquid-assisted subcritical water enhances the extraction of phenolics from brown seaweed and its antioxidant activity. Sep. Purif. Technol. 2018, 196, 287–299. [Google Scholar] [CrossRef]
- Plaza, M.; Amigo-Benavent, M.; Castillo, M.D.; Ibanez, E.; Herrero, M. Neoformation of antioxidants in glycation model systems treated under subcritical water extraction conditions. Food Res. Int. 2010, 43, 1123–1129. [Google Scholar] [CrossRef] [Green Version]
- Plaza, M.; Amigo-Benavent, M.; Castillo, M.D.; Ibanez, E.; Herrero, M. Facts about the formation of new antioxidants in natural samples after subcritical water extraction. Food Res. Int. 2010, 43, 2341–2348. [Google Scholar] [CrossRef] [Green Version]
- Saravana, P.S.; Choi, J.H.; Park, Y.B.; Woo, H.C.; Chun, B.S. Evaluation of the chemical composition of brown seaweed (Saccharina japonica) hydrolysate by pressurized hot water extraction. Algal Res. 2016, 13, 246–254. [Google Scholar] [CrossRef]
- Rodriguez Seoane, P.; Florez-Fernandez, N.; Conde Pineiro, E.; Dominguez Gonzales, H. Chapter 6—Microwave-Assisted Water Extraction. In Water Extraction of Bioactive Compounds; Dominguez Gonzalez, H., Gonzalez Munoz, M.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 163–198. ISBN 978-0-12-809380-1. [Google Scholar]
- Perez, L.; Conde, E.; Dominguez, H. Microwave hydrodiffusion and gravity processing of Sargassum muticum. Process. Biochem. 2014, 49, 981–988. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Allen, J.D.; Kanitkar, A.; Boldor, D. Oil extraction from Scenedesmus obliquus using a continuous microwave system—Design, optimization and quality characterization. Bioresour. Technol. 2011, 102, 3396–3403. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, M.; Yuen, A.K.I.; Zhang, R.; Wright, J.T.; Taylor, R.B.; Maschmeyer, T.; de Nys, R. A comparative assessment of microwave assisted (MAE) and conventional solid-liquid (SLE) techniques for the extraction of phloroglucinol from brown seaweed. Algal Res. 2017, 23, 28–36. [Google Scholar] [CrossRef]
- Ren, B.; Chen, C.; Li, C.; Fu, X.; You, L.; Liu, R.H. Optimization of microwave-assisted extraction of Sargassum thunbergii polysaccharides and its antioxidant and hypoglycemic activities. Carbohydr. Polym. 2017, 173, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Lou, H.Y.; Wang, B.; Yu, C.G.; Xu, Y.F. Optimization of Microwave-assisted Extraction of Polyphenols from Enteromorpha prolifera by Orthogonal Test. Chin. Herb. Med. 2010, 2, 321–325. [Google Scholar]
- Zhang, R.; Yuen, A.K.I.; Magnusson, M.; Wright, J.T.; de Nys, R.; Masters, A.F.; Maschmeyer, T. A comparative assessment of activity and structure of phlorotannins from the brown seaweed Carpophyllum flexuosum. Algal Res. 2018, 29, 130–141. [Google Scholar] [CrossRef]
- Rodriguez-Jasso, R.M.; Mussatto, S.I.; Pastrana, L.; Aguilar, C.N.; Teixeira, J.A. Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydr. Polym. 2011, 86, 1137–1144. [Google Scholar] [CrossRef] [Green Version]
- Quitain, A.T.; Kai, T.; Sasaki, M.; Goto, M. Microwave-Hydrothermal Extraction and Degradation of Fucoidan from Supercritical Carbon Dioxide Deoiled Undaria pinnatifida. Ind. Eng. Chem. Res. 52, 7940–7946. [CrossRef]
- You, S.; Yang, C.; Lee, H.; Lee, B.Y. Molecular characteristics of partially hydrolyzed fucoidans from sporophyll of Undaria Pinnatifida and their in vitro anticancer activity. Food Chem. 2010, 119, 554–559. [Google Scholar] [CrossRef]
- Yuan, Y.; Macquarrie, D. Microwave assisted extraction of sulfated polysaccharides (fucoidan) from Ascophyllum nodosum and its antioxidant activity. Carbohydr. Polym. 2015, 129, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Xu, X.; Jing, C.; Zou, P.; Zhang, C.; Li, Y. Microwave assisted hydrothermal extraction of polysaccharides from Ulva prolifera: Functional properties and bioactivities. Carbohydr. Polym. 2018, 181, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Tsubaki, S.; Oono, K.; Hiraoka, M.; Onda, A.; Mitani, T. Microwave-assisted hydrothermal extraction of sulfated polysaccharides from Ulva spp. and Monostroma latissimum. Food Chem. 2016, 210, 311–316. [Google Scholar] [CrossRef] [PubMed]
Macroalgae Species | Extraction Parameters | Bioactive Compounds | Bioactivity | Ref. | |||
---|---|---|---|---|---|---|---|
Pressure [MPa] | Temp. [°C] | Time [min] | Co-Solvent [%] | ||||
Hypnea charoides | 24.1–37.9 | 40–50 | 120 | - | Fatty acids (ω-3) | - | [41] |
Cladophora glomerata, Ulva flexuosa, Chara fragilis | 10–30 | 40–60 | 120 | EtOH [0–15] | Carotenoids, phenols | Antioxidant | [21] |
Dictyopteris membranacea | 9.1 and 10.4 | 40 | 30 | - | Volatile compounds | - | [43] |
Fucus serratus, Laminaria digitata | 15, 22.5 and 30 | 30, 40 and 50 | 60 and 105 | - | Carotenoids | - | [20] |
Sargassum muticum, Sargassum vulgare, Hypnea spinella, Porphyra sp., Undaria pinnatifida, Chondrus crispus, Halopytis incurvus | 10–40 | 35–75 | 10–60 | - | Isoflavones | - | [44] |
Cladophora glomerata, Ulva flexuosa subsp. pilifera, Ulva clathrata, Polysiphoniucoides | 50 | 40 | 300, 360, 810 | - | Polyphenols, cytokinins, auxins, microelements and macroelements | Plant growth stimulation | [45] |
Gracilaria mammillaris | 10,20 and 30 | 40, 50 and 60 | 240 | EtOH [2,5,8] | Polyphenols, carotenes | Antioxidant | [37] |
Undaria pinnatifida | 22.9 | 45 | 50 | - | Hydrocarbons | - | [46] |
Undaria pinnatifida | 20–40 | 25–60 | 180 | - | Fucoxanthin | - | [42] |
Undaria pinnatifida | 8–30 | 30–60 | 50 | EtOH [3] | Fucoxanthin, polyphenols | - | [38] |
Saccharina japonica (Laminaria japonica) | 20–30 | 45–55 | 240 | Sunflower oil, soybean oil, canola oil, EtOH and water [0.50–2.00] | Carotenoids, fucoxanthin, phlorotannins | Antioxidant | [39] |
Saccharina japonica, Sargassum horneri | 25 | 45 | 120 | EtOH | Fatty acids, fucoxanthin, polyphenols | Anti-oxidant, anti-microbial and antihyper-tensive | [22] |
Macroalgae Species | Ultrasound Operating Conditions | Bioactive Compounds | Bioactivity | Ref. | ||||
---|---|---|---|---|---|---|---|---|
Ultrasound Equipment; Frequency [kHz]; Power [W] | Sample Mass [g] | Solvent Volume [mL] | Temp. [°C] | Time [min] | ||||
Hormosira banksii | Ultrasonic bath; 50; 150–250 | 1 | 50 (70% ethanol) | 30, 40 and 50 | 20, 40 and 60 | Polyphenols | Antioxidant | [49] |
Ascophyllum nodosum | Ultrasound probe; 20; 750 | 4 | 40 (distilled water and 0.03 M HCl) | - | 10 | Polyphenols, fucose and uronic acid | - | [52] |
Ascophyllum nodosum, Laminaria hyperborea | Ultrasound probe; 20; 750 | 10 | 200 (distilled water and 0.03 M HCl) | - | 15 | Polyphenols, laminarin | Antioxidant | [53] |
Ecklonia cava | Ultrasonic bath; 40; 200 | 1 | 100 (water; 50% methanol; 100% methanol) | 30 | 360 and 720 | Polyphenols | Antioxidant | [50] |
Gelidium pusillum | Ultrasonic bath; - 41.97 | 10 | 100 (phosphate buffer 0.1 M) | 30, 35 and 40 | 2, 4, 6, 8 and 10 | Phycobili-proteins | - | [54] |
Sargassum muticum, Osmundea pinnatifida, Codium tomentosum | Ultrasonic bath; 50/60; 400 | 2 | 50 (deionized water) | 50 | 60 | Total phenolics, antioxidants, prebiotic compounds | Antioxidant, prebiotic, α-glucosidase inhibition | [7] |
Laurencia obtuse | Ultrasonic bath; 40; 250 | 1 | 10–30 (95% ethanol) | 30–50 | 30–60 | Phenolic compounds, antioxidants | Antioxidant | [51] |
Porphyra yezoensis | Ultrasonic bath; 20; 100, 200 and 300 | 10 | 200 (water) | 20, 40 and 60 | 15, 30 and 45 | Taurine | - | [55] |
Macroalgae Species | Ultrasound Operating Conditions | Bioactive Compounds | Bioactivity | Ref. | ||||
---|---|---|---|---|---|---|---|---|
Sample Mass [g] | Water Volume [mL] | Pressure [MPa] | Temp. [°C] | Time [min] | ||||
Sargassum muticum | 2 | - | 10.3 (1500 psi) | 50, 125 and 200 | 20 | Polyphenols, phlorotannins | Antioxidant | [34] |
Padina pavonica | 0.65 | - | 15 | 60 | 10 (2 cycles) | - | Anti-hyaluronidase | [58] |
Fucus serratus, Laminaria digitata, Gracilaria gracilis, Codium fragile | 2.5 | - | 10.3 (1500 psi) | 120 | 25 | Polyphenols | Antioxidant | [64] |
Cystoseira abies-marina, Porphyra spp., Sargassum vulgare, Sargassum muticum, Undaria pinnatifida, Halopitys incurvus | 1 | - | 10.3 (1500 psi) | 120 and 200 | 20 | Polyphenols, neo-antioxidants, amino acids | Antioxidant and anti-microbial | [69] |
Himanthalia elongata | 1 | - | 10.3 (1500 psi) | 100 | 20 | Poly-saccharides | Antiviral | [14] |
Saccharina japonica | 9.65 | 160 | 10 | 150 | 5 | Fucoidan | Antioxidant | [12] |
Saccharina japonica | 6 | 150 | 1.3–52 | 180–420 | 5 | Total organic carbon, minerals, amino acids, mono-saccharides | - | [70] |
Ascophyllum nodosum, Pelvetia canaliculata, Fucus spiralis, Ulva intestinalis | 2.5 | - | 10.3 (1500 psi) | 120 | - | Polyphenols | Antioxidant | [66] |
Saccharina japonica | 5 | 160 | 5 | 100–250 | 5 | Polyphenols | Antioxidant | [67] |
Macroalgae Species | Ultrasound Operating Conditions | Bioactive Compounds | Bioactivity | Ref. | |||
---|---|---|---|---|---|---|---|
Power [w]; Frequency [MHz] | Solvent | Temp. [°C] | Time [min] | ||||
Padina pavonica | 1000; 2450 | petroleum ether, ethanol, ethyl acetate and H2O | 40, 60, 80, 100 and 120 | 2 and 5 | - | Anti-hyaluronidase | [58] |
Caulerpa racemosa | 100–600; - | 20–100% ethanol | 20–70 | 5–60 | Polyphenols | Antioxidant | [60] |
Enteromorpha prolifera | 300–700; - | 10–60% ethanol | - | 5–40 (1–4 cycles) | Polyphenols | - | [76] |
Carpophyllum flexuosum | - | H2O, acetone, ethanol, propan-1-ol, ethyl acetate | 135, 160 and 185 | 1, 3, 5, 10, 15 and 20 | Phloroglucinol | - | [74] |
Undaria pinnatifida | 600; - | H2O | 110–120 | 5–120 | Fucoidan | - | [79] |
Sargassum thunbergii | 200–800; - | H2O | 10–90 | 10–50 | Poly-saccharides | Antioxidant and hypoglycemic | [75] |
Fucus vesiculosus | - | H2O | 122, 152 and 172 | 1, 16 and 31 | Poly-saccharides (fucoidan) | - | [78] |
Ulva meridionalis, Ulva ohnoi, Monostroma latissimum | 1000; 2450 | H2O | 100–180 | 10 | Poly-saccharides (ulvan and rhamnan sulfate) | - | [83] |
Ascophyllum nodosum | - | 0.1 M HCl | 90, 120 and 150 | 5, 15 and 30 | Fucoidan | Antioxidant | [81] |
Ulva prolifera | 500; 2450 | 0.1 M HCl | 90, 120 and 150 | 15 | Poly-saccharides | Antioxidant, anti-hyperlipidemic | [82] |
Carpophyllum flexuosum, Carpophyllum plumosum, Ecklonia radiata | - | H2O | 160 | 3 | Phlorotannins | Antioxidant | [77] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cikoš, A.-M.; Jokić, S.; Šubarić, D.; Jerković, I. Overview on the Application of Modern Methods for the Extraction of Bioactive Compounds from Marine Macroalgae. Mar. Drugs 2018, 16, 348. https://doi.org/10.3390/md16100348
Cikoš A-M, Jokić S, Šubarić D, Jerković I. Overview on the Application of Modern Methods for the Extraction of Bioactive Compounds from Marine Macroalgae. Marine Drugs. 2018; 16(10):348. https://doi.org/10.3390/md16100348
Chicago/Turabian StyleCikoš, Ana-Marija, Stela Jokić, Drago Šubarić, and Igor Jerković. 2018. "Overview on the Application of Modern Methods for the Extraction of Bioactive Compounds from Marine Macroalgae" Marine Drugs 16, no. 10: 348. https://doi.org/10.3390/md16100348
APA StyleCikoš, A. -M., Jokić, S., Šubarić, D., & Jerković, I. (2018). Overview on the Application of Modern Methods for the Extraction of Bioactive Compounds from Marine Macroalgae. Marine Drugs, 16(10), 348. https://doi.org/10.3390/md16100348