Suboptimal Temperature Acclimation Affects Kennedy Pathway Gene Expression, Lipidome and Metabolite Profile of Nannochloropsis salina during PUFA Enriched TAG Synthesis
Abstract
:1. Introduction
2. Results
2.1. Culture Acclimation and Cell Number
2.2. PAM Fluorometery
2.3. Dissolved Oxygen Measurements
2.4. Elemental Analysis
2.5. Fatty Acid Methyl Ester (FAME) Analysis
2.6. Gene Expression Analysis of Four Kennedy Pathway Genes
2.7. Lipid Composition
2.8. Metabolite Analysis
3. Materials and Methods
3.1. Culturing of Nannochloropsis salina
3.2. OD Measurements
3.3. PAM Fluorometery
3.4. Dissolved Oxygen Measurements
3.5. Elemental Carbon to Nitrogen Ratio Analysis
3.6. FAME Analysis
3.7. Lipidomics
3.8. Gene Expression Analysis of Four Kennedy Pathway Genes
3.9. Metabolomics
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ueshima, H.; Stamler, J.; Elliott, P.; Chan, Q.; Brown, I.J.; Carnethon, M.R.; Daviglus, M.L.; He, K.; Moag-Stahlberg, A.; Rodriguez, B.L. Food omega-3 fatty acid intake of individuals (total, linolenic acid, long-chain) and their blood pressure INTERMAP study. Hypertension 2007, 50, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Parker, G.; Gibson, N.A.; Brotchie, H.; Heruc, G.; Rees, A.-M.; Hadzi-Pavlovic, D.; Psychol, M. Omega-3 fatty acids and mood disorders. Am. J. Psychiatry 2006, 163, 969–978. [Google Scholar] [CrossRef] [PubMed]
- Gebauer, S.K.; Psota, T.L.; Harris, W.S.; Kris-Etherton, P.M. n-3 fatty acid dietary recommendations and food sources to achieve essentiality and cardiovascular benefits. Am. J. Clin. Nutr. 2006, 83, 1526S–1535S. [Google Scholar] [CrossRef] [PubMed]
- Doughman, S.D.; Krupanidhi, S.; Sanjeevi, C.B. Omega-3 fatty acids for nutrition and medicine: Considering microalgae oil as a vegetarian source of EPA and DHA. Curr. Diabetes Rev. 2007, 3, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Kidd, P.M. Omega-3 DHA and EPA for cognition, behavior, and mood: Clinical findings and structural-functional synergies with cell membrane phospholipids. Altern. Med. Rev. 2007, 12, 207–227. [Google Scholar] [PubMed]
- Adarme-Vega, T.C.; Lim, D.K.; Timmins, M.; Vernen, F.; Li, Y.; Schenk, P.M. Microalgal biofactories: A promising approach towards sustainable omega-3 fatty acid production. Microb. Cell Fact. 2012, 11, 96. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Beardall, J.; Heraud, P. Effects of nitrogen source and UV radiation on the growth, chlorophyll fluorescence and fatty acid composition of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillariophyceae). J. Photochem. Photobiol. B Biol. 2006, 82, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Ryckebosch, E.; Bruneel, C.; Termote-Verhalle, R.; Goiris, K.; Muylaert, K.; Foubert, I. Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chem. 2014, 160, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Subhash, G.V.; Rohit, M.; Devi, M.P.; Swamy, Y.; Mohan, S.V. Temperature induced stress influence on biodiesel productivity during mixotrophic microalgae cultivation with wastewater. Bioresour. Technol. 2014, 169, 789–793. [Google Scholar] [CrossRef] [PubMed]
- Lamers, P.P.; Janssen, M.; De Vos, R.C.; Bino, R.J.; Wijffels, R.H. Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga. J. Biotechnol. 2012, 162, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Stephens, E.; Ross, I.L.; Mussgnug, J.H.; Wagner, L.D.; Borowitzka, M.A.; Posten, C.; Kruse, O.; Hankamer, B. Future prospects of microalgal biofuel production systems. Trends Plant Sci. 2010, 15, 554–564. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.S.; Mehmood, M.A.; Rashid, U.; Ibrahim, M.; Saqib, A.; Tabassum, M.R. Waste-water treatment coupled with biodiesel production using microalgae: A bio-refinery approach. Pak. J. Life Soc. Sci. 2013, 11, 179–189. [Google Scholar]
- Hu, Q.; Sommerfeld, M.; Jarvis, E.; Ghirardi, M.; Posewitz, M.; Seibert, M.; Darzins, A. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J. 2008, 54, 621–639. [Google Scholar] [CrossRef] [PubMed]
- Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Guschina, I.A.; Harwood, J.L. Lipids and lipid metabolism in eukaryotic algae. Prog. Lipid Res. 2006, 45, 160–186. [Google Scholar] [CrossRef] [PubMed]
- Katiyar, R.; Gurjar, B.; Biswas, S.; Pruthi, V.; Kumar, N.; Kumar, P. Microalgae: An emerging source of energy based bio-products and a solution for environmental issues. Renew. Sustain. Energy Rev. 2017, 72, 1083–1093. [Google Scholar] [CrossRef] [Green Version]
- Behrendt, D.; Schreiber, C.; Pfaff, C.; Müller, A.; Grobbelaar, J.; Nedbal, L. Algae as a Potential Source of Biokerosene and Diesel–Opportunities and Challenges. In Biokerosene; Springer: Berlin/Heidelberg, Germany, 2018; pp. 303–324. [Google Scholar]
- Warren, G.J. Cold stress: Manipulating freezing tolerance in plants. Curr. Biol. 1998, 8, R514–R516. [Google Scholar] [CrossRef]
- Los, D.; Mironov, K. Membrane properties and cold stress responses in cyanobacteria and plants. FEBS J. 2013, 280, 224. [Google Scholar]
- Falcone, D.L.; Ogas, J.P.; Somerville, C.R. Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. BMC Plant Biol. 2004, 4, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaikh, S.R.; Kinnun, J.J.; Leng, X.; Williams, J.A.; Wassall, S.R. How polyunsaturated fatty acids modify molecular organization in membranes: Insight from NMR studies of model systems. Biochim. Biophys. Acta Biomembr. 2015, 1848, 211–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, J.W.; Tevatia, R.; Demirel, Y.; DiRusso, C.C.; Black, P.N. Induction of oil accumulation by heat stress is metabolically distinct from N stress in the green microalgae Coccomyxa subellipsoidea C169. PLoS ONE 2018, 13, e0204505. [Google Scholar] [CrossRef] [PubMed]
- Conte, M.; Lupette, J.; Seddiki, K.; Meï, C.; Dolch, L.J.; Gros, V.; Barette, C.; Rébeillé, F.; Jouhet, J.; Marechal, E. Screening for biologically annotated drugs that trigger triacylglycerol accumulation in the diatom Phaeodactylum. Plant Physiol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Wase, N.; Tu, B.; Allen, J.W.; Black, P.N.; DiRusso, C.C. Identification and metabolite profiling of chemical activators of lipid accumulation in green algae. Plant Physiol. 2017, 174, 2146–2165. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, E.P. Biosynthesis of complex lipids. Fed. Proc. 1961, 20, 934–940. [Google Scholar] [PubMed]
- Murphy, D.J. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog. Lipid Res. 2001, 40, 325–438. [Google Scholar] [CrossRef]
- Wang, Z.T.; Ullrich, N.; Joo, S.; Waffenschmidt, S.; Goodenough, U. Algal lipid bodies: Stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot. Cell 2009, 8, 1856–1868. [Google Scholar] [CrossRef] [PubMed]
- Ngangkham, M.; Ratha, S.K.; Prasanna, R.; Saxena, A.K.; Dhar, D.W.; Sarika, C.; Prasad, R.B.N. Biochemical modulation of growth, lipid quality and productivity in mixotrophic cultures of Chlorella sorokiniana. SpringerPlus 2012, 1, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheets, J.P.; Ge, X.; Park, S.Y.; Li, Y. Effect of outdoor conditions on Nannochloropsis salina cultivation in artificial seawater using nutrients from anaerobic digestion effluent. Bioresour. Technol. 2014, 152, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Shinozaki, K.; Yamaguchi-Shinozaki, K.; Seki, M. Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol. 2003, 6, 410–417. [Google Scholar] [CrossRef]
- Nakashima, K.; Yamaguchi-Shinozaki, K. Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiol. Plant. 2006, 126, 62–71. [Google Scholar] [CrossRef] [Green Version]
- Lichtenthaler, H.; Buschmann, C.; Knapp, M. How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio R Fd of leaves with the PAM fluorometer. Photosynthetica 2005, 43, 379–393. [Google Scholar] [CrossRef]
- Maxwell, D.P.; Falk, S.; Trick, C.G.; Huner, N.P. Growth at low temperature mimics high-light acclimation in Chlorella vulgaris. Plant Physiol. 1994, 105, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Garcia, H.E.; Gordon, L.I. Oxygen solubility in seawater: Better fitting equations. Limnol. Oceanogr. 1992, 37, 1307–1312. [Google Scholar] [CrossRef] [Green Version]
- Ugwu, C.; Aoyagi, H.; Uchiyama, H. Influence of irradiance, dissolved oxygen concentration, and temperature on the growth of Chlorella sorokiniana. Photosynthetica 2007, 45, 309–311. [Google Scholar] [CrossRef]
- Edmundson, S.J.; Huesemann, M.H. The dark side of algae cultivation: Characterizing night biomass loss in three photosynthetic algae, Chlorella sorokiniana, Nannochloropsis salina and Picochlorum sp. Algal Res. 2015, 12, 470–476. [Google Scholar] [CrossRef]
- Mühlroth, A.; Li, K.; Røkke, G.; Winge, P.; Olsen, Y.; Hohmann-Marriott, M.F.; Vadstein, O.; Bones, A.M. Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista. Mar. Drugs 2013, 11, 4662–4697. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; He, B.; Sun, Z.; Chen, Y.-F. Chemically enhanced lipid production from microalgae under low sub-optimal temperature. Algal Res. 2016, 16, 20–27. [Google Scholar] [CrossRef]
- Van Wagenen, J.; Miller, T.W.; Hobbs, S.; Hook, P.; Crowe, B.; Huesemann, M. Effects of light and temperature on fatty acid production in Nannochloropsis salina. Energies 2012, 5, 731–740. [Google Scholar] [CrossRef]
- Khozin-Goldberg, I.; Didi-Cohen, S.; Shayakhmetova, I.; Cohen, Z. Biosynthesis of eicosapentaenoic acid (EPA) in the freshwater eustigmatophyte Monodus subterraneus (Eustigmatophyceae). J. Phycol. 2002, 38, 745–756. [Google Scholar] [CrossRef]
- Kaye, Y.; Grundman, O.; Leu, S.; Zarka, A.; Zorin, B.; Didi-Cohen, S.; Khozin-Goldberg, I.; Boussiba, S. Metabolic engineering toward enhanced LC-PUFA biosynthesis in Nannochloropsis oceanica: Overexpression of endogenous Δ12 desaturase driven by stress-inducible promoter leads to enhanced deposition of polyunsaturated fatty acids in TAG. Algal Res. 2015, 11, 387–398. [Google Scholar] [CrossRef]
- Murakami, H.; Nobusawa, T.; Hori, K.; Shimojima, M.; Ohta, H. Betaine Lipid Is Crucial for Adapting to Low Temperature and Phosphate Deficiency in Nannochloropsis. Plant Physiol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Guihéneuf, F.; Stengel, D.B. LC-PUFA-enriched oil production by microalgae: Accumulation of lipid and triacylglycerols containing n-3 LC-PUFA is triggered by nitrogen limitation and inorganic carbon availability in the marine haptophyte Pavlova lutheri. Mar. Drugs 2013, 11, 4246–4266. [Google Scholar] [CrossRef] [PubMed]
- Mus, F.; Toussaint, J.-P.; Cooksey, K.E.; Fields, M.W.; Gerlach, R.; Peyton, B.M.; Carlson, R.P. Physiological and molecular analysis of carbon source supplementation and pH stress-induced lipid accumulation in the marine diatom Phaeodactylum tricornutum. Appl. Microbiol. Biotechnol. 2013, 97, 3625–3642. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Gerde, J.A.; Lee, S.-L.; Wang, T.; Harrata, K.A. Microalgae lipid characterization. J. Agric. Food Chem. 2015, 63, 1773–1787. [Google Scholar] [CrossRef] [PubMed]
- Guy, C.; Kaplan, F.; Kopka, J.; Selbig, J.; Hincha, D.K. Metabolomics of temperature stress. Physiol. Plant. 2008, 132, 220–235. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.S.; Tuteja, N. Polyamines and abiotic stress tolerance in plants. Plant Signal. Behav. 2010, 5, 26–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, K.; Dey, A.; Gupta, B. Plant polyamines in abiotic stress responses. Acta Physiol. Plant. 2013, 35, 2015–2036. [Google Scholar] [CrossRef]
- Alcázar, R.; Altabella, T.; Marco, F.; Bortolotti, C.; Reymond, M.; Koncz, C.; Carrasco, P.; Tiburcio, A.F. Polyamines: Molecules with regulatory functions in plant abiotic stress tolerance. Planta 2010, 231, 1237–1249. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, T.M.; Nesi, A.N.; Araújo, W.L.; Braun, H.-P. Amino acid catabolism in plants. Mol. Plant 2015, 8, 1563–1579. [Google Scholar] [CrossRef] [PubMed]
- Giglione, C.; Vallon, O.; Meinnel, T. Control of protein life-span by N-terminal methionine excision. EMBO J. 2003, 22, 13–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, E.; Frank, L. Metabolism of proline and the hydroxyprolines. Annu. Rev. Biochem. 1980, 49, 1005–1061. [Google Scholar] [CrossRef] [PubMed]
- Yano, R.; Nakamura, M.; Yoneyama, T.; Nishida, I. Starch-related α-glucan/water dikinase is involved in the cold-induced development of freezing tolerance in Arabidopsis. Plant Physiol. 2005, 138, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Rushworth, G.F.; Megson, I.L. Existing and potential therapeutic uses for N-acetylcysteine: The need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol. Ther. 2014, 141, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Nahar, K.; Hasanuzzaman, M.; Alam, M.M.; Fujita, M. Exogenous glutathione confers high temperature stress tolerance in mung bean (Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system. Environ. Exp. Bot. 2015, 112, 44–54. [Google Scholar] [CrossRef]
- Domergue, F.; Spiekermann, P.; Lerchl, J.; Beckmann, C.; Kilian, O.; Kroth, P.G.; Boland, W.; Zähringer, U.; Heinz, E. New insight into Phaeodactylum tricornutum fatty acid metabolism. Cloning and functional characterization of plastidial and microsomal Δ12-fatty acid desaturases. Plant Physiol. 2003, 131, 1648–1660. [Google Scholar] [CrossRef] [PubMed]
- Kerkhoven, E.J.; Kim, Y.-M.; Wei, S.; Nicora, C.D.; Fillmore, T.L.; Purvine, S.O.; Webb-Robertson, B.-J.; Smith, R.D.; Baker, S.E.; Metz, T.O. Leucine biosynthesis is involved in regulating high lipid accumulation in Yarrowia lipolytica. mBio 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Guillard, R.R.; Sieracki, M.S. Counting cells in cultures with the light microscope. Algal Cult. Tech. 2005, 239–252. [Google Scholar]
- Greimel, K.J.; Perz, V.; Koren, K.; Feola, R.; Temel, A.; Sohar, C.; Acero, E.H.; Klimant, I.; Guebitz, G.M. Banning toxic heavy-metal catalysts from paints: Enzymatic cross-linking of alkyd resins. Green Chem. 2013, 15, 381–388. [Google Scholar] [CrossRef]
- Bhadra, A.K.; Sahu, B.; Rout, S.P. Evaluation of the water quality index in river Brahmani, Odisha in the light of National Sanitation foundation (NSF) standards. Asian J. Res. Chem. 2014, 7, 586–592. [Google Scholar]
- Laurens, L.; Olstad, J.; Templeton, D.W. Total Protein Content Determination of Microalgal Biomass by Elemental Nitrogen Analysis and a Dedicated Nitrogen-to-Protein Conversion Factor. Methods Mol. Biol. 2018, 10. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane-Stanley, G. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [PubMed]
- Holguin, F.O.; Schaub, T. Characterization of microalgal lipid feedstock by direct-infusion FT-ICR mass spectrometry. Algal Res. 2013, 2, 43–50. [Google Scholar] [CrossRef]
- Willette, S.; Gill, S.S.; Dungan, B.; Schaub, T.M.; Jarvis, J.M.; Hilaire, R.S.; Holguin, F.O. Alterations in lipidome and metabolome profiles of Nannochloropsis salina in response to reduced culture temperature during sinusoidal temperature and light. Algal Res. 2018, 32, 79–92. [Google Scholar] [CrossRef]
- Cao, S.; Zhang, X.; Ye, N.; Fan, X.; Mou, S.; Xu, D.; Liang, C.; Wang, Y.; Wang, W. Evaluation of putative internal reference genes for gene expression normalization in Nannochloropsis sp. by quantitative real-time RT-PCR. Biochem. Biophys. Res. Commun. 2012, 424, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.Y.; Fiehn, O. High quality metabolomic data for Chlamydomonas reinhardtii. Plant Methods 2008, 4, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kind, T.; Wohlgemuth, G.; Lee, D.Y.; Lu, Y.; Palazoglu, M.; Shahbaz, S.; Fiehn, O. FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem. 2009, 81, 10038–10048. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Klukas, C.; Junker, B.H.; Schreiber, F. The VANTED software system for transcriptomics, proteomics and metabolomics analysis. J. Pestic. Sci. 2006, 31, 289–292. [Google Scholar] [CrossRef] [Green Version]
Optical Density Measurements (750 nm) | ||||||||
---|---|---|---|---|---|---|---|---|
Temp/H | 25 °C | Post-Hoc | 15 °C | Post-Hoc | 10 °C | Post-Hoc | 5 °C | Post-Hoc |
0 | 0.46 ± 0.01 | A | 0.45 ± 0.01 | A | 0.44 ± 0.01 | A | 0.46 ± 0.01 | A |
24 | 0.51 ± 0.01 | A | 0.51 ± 0.00 | AB | 0.48 ± 0.03 | B | 0.49 ± 0.02 | AB |
48 | 0.53 ± 0.01 | A | 0.52 ± 0.02 | AB | 0.49 ± 0.02 | C | 0.47 ± 0.02 | BC |
72 | 0.57 ± 0.01 | A | 0.52 ± 0.02 | B | 0.50 ± 0.02 | B | 0.48 ± 0.02 | B |
96 | 0.60 ± 0.01 | A | 0.50 ± 0.01 | B | 0.51 ± 0.01 | B | 0.49 ± 0.02 | B |
Total Cell count (per mL) | ||||||||
0 | 6.1 × 109 ± 3.9 × 108 | A | 5.1 × 109 ± 2.5 × 108 | A | 4.8 × 109 ± 1.0 × 107 | A | 4.7 × 109 ± 2.4 × 108 | A |
24 | 7.3 × 109 ± 5.5 × 108 | A | 6.3 × 109 ± 2.7 × 108 | A | 5.6 × 109 ± 5.1 × 107 | A | 5.5 × 109 ± 1.3 × 108 | A |
48 | 9.3 × 109 ± 4.0 × 108 | A | 7.2 × 109 ± 2.4 × 108 | B | 6.9 × 109 ± 2.4 × 108 | B | 6.1 × 109 ± 6.8 × 107 | B |
72 | 1.1 × 1010 ± 4.3 × 108 | A | 9.5 × 109 ± 1.1 × 108 | A | 7.6 × 109 ± 9.3 × 107 | B | 7.3 × 109 ± 2.2 × 108 | B |
96 | 1.4 × 1010 ± 5.1 × 108 | A | 1.2 × 1010 ± 5.1 × 108 | B | 9.5 × 109 ± 1.4 × 108 | C | 7.8 × 109 ± 2.9 × 108 | C |
Photosynthetic Activity (Fv/Fm) | ||||||||
0 | 0.55 ± 0.02 | A | 0.55 ± 0.00 | A | 0.55 ± 0.01 | A | 0.54 ± 0.01 | A |
24 | 0.56 ± 0.00 | A | 0.55 ± 0.02 | AB | 0.55 ± 0.03 | AB | 0.48 ± 0.05 | B |
48 | 0.57 ± 0.01 | A | 0.54 ± 0.04 | B | 0.52 ± 0.05 | BC | 0.39 ± 0.10 | C |
72 | 0.57 ± 0.01 | A | 0.57 ± 0.01 | A | 0.56 ± 0.02 | A | 0.53 ± 0.02 | A |
96 | 0.56 ± 0.00 | A | 0.50 ± 0.01 | A | 0.39 ± 0.05 | B | 0.28 ± 0.07 | C |
ETR Values (µmol photons m−2·s−1) | ||||||||
0 | 17.00 ± 3.23 | A | 14.13 ± 3.13 | A | 16.20 ± 2.33 | A | 17.83 ± 3.52 | A |
24 | 19.00 ± 1.61 | A | 11.47 ± 3.58 | A | 9.27 ± 2.22 | B | 8.87 ± 3.72 | AB |
48 | 15.30 ± 4.38 | A | 11.13 ± 2.45 | A | 11.07 ± 3.41 | B | 7.90 ± 1.80 | AB |
72 | 20.47 ± 4.72 | A | 12.77 ± 1.44 | A | 11.10 ± 2.57 | AB | 6.50 ± 1.33 | B |
96 | 15.80 ± 6.06 | A | 8.70 ± 1.55 | A | 8.37 ± 1.73 | B | 5.50 ± 1.40 | B |
% Saturation of Oxygen | ||||||||
0 | 119.04 ± 3.41 | A | 86.37 ± 7.79 | B | 63.88 ± 4.86 | C | 70.76 ± 5.53 | C |
24 | 91.26 ± 3.66 | A | 88.99 ± 2.02 | A | 86.75 ± 4.68 | AB | 74.46 ± 5.34 | B |
48 | 89.51 ± 2.20 | A | 87.04 ± 3.71 | A | 86.44 ± 7.63 | A | 72.39 ± 6.72 | B |
72 | 96.43 ± 6.15 | A | 89.08 ± 2.01 | B | 88.38 ± 2.86 | B | 78.69 ± 2.28 | B |
96 | 93.29 ± 4.64 | A | 88.48 ± 2.39 | B | 89.50 ± 5.27 | AB | 69.85 ± 5.43 | C |
Growth Temperatures | ||||
---|---|---|---|---|
% Composition | 25 °C | 15 °C | 10 °C | 5 °C |
Carbon | 41.31 ± 0.76 | 44.07 ± 0.41 | 41.88 ± 0.38 | 40.86 ± 1.54 |
Nitrogen | 5.98 ± 0.06 | 6.59 ± 0.07 | 6.00 ± 0.06 | 5.87 ± 0.15 |
C/N | 6.91 ± 0.09 | 6.69 ± 0.68 | 6.98 ± 0.09 | 6.95 ± 0.15 |
* Total protein | 28.57 ± 0.30 | 31.49 ± 0.34 | 28.70 ± 0.29 | 28.05 ± 0.70 |
Growth Temperatures | ||||
---|---|---|---|---|
Fatty Acid (mg/g) | 25 °C | 15 °C | 10 °C | 5 °C |
C14:0 | 9.12 ± 0.59 | 7.62 ± 1.31 | 8.34 ± 0.38 | 9.80 ± 0.10 |
C14:1 | 2.03 ± 1.49 | 0.5 ± 0.19 | 1.90 ± 1.51 | 5.35 ± 0.10 |
C16:0 | 42.94 ± 3.55 | 33.42 ± 6.88 | 37.28 ± 3.07 | 43.71 ± 1.05 |
C16:1 | 43.4 ± 2.13 | 42.85 ± 4.80 | 45.66 ± 0.62 | 51.26 ± 0.76 |
C16:2 | 0.95 ± 0.10 | 0.83 ± 0.16 | 0.72 ± 0.09 | 0.92 ± 0.10 |
C16:3 | 0.14 ± 0.06 | 0.07 ± 0.05 | 0.13 ± 0.06 | 0.07 ± 0.05 |
C18:0 | 5.93 ± 1.45 | 3.66 ± 2.30 | 4.16 ± 1.20 | 6.33 ± 1.09 |
C18:1n9t | 0.94 ± 0.34 | 0.93 ± 0.12 | 1.80 ± 0.25 | 1.06 ± 0.48 |
C18:1n9c | 1.95 ± 0.70 | 1.89 ± 0.23 | 3.59 ± 0.44 | 2.72 ± 0.86 |
C18:2n6t | 0.75 ± 0.07 | 0.65 ± 0.07 | 0.97 ± 0.12 | 0.87 ± 0.12 |
C18:2n6c | 0.11 ± 0.03 | 0.08 ± 0.02 | 0.08 ± 0.02 | 0.08 ± 0.02 |
C18:3n6 | 1.19 ± 0.13 | 0.99 ± 0.50 | 0.46 ± 0.46 | 2.14 ± 0.5 |
C18:3n3 | 0.07 ± 0.02 | 0.06 ± 0.02 | 0.08 ± 0.01 | 0.10 ± 0.01 |
C20:3n6 | 0.80 a ± 0.09 | 1.60 a ± 0.34 | 2.77 b ± 0.06 | 3.01 b ± 0.31 |
C20:4n6 | 0.00 ± 0.00 | 1.45 ± 1.45 | 5.46 ± 2.74 | 4.45 ± 4.45 |
C20:3n3 | 0.00 a ± 0.00 | 0.01 b ± 0.01 | 0.02 c ± 0.01 | 0.02 c ± 0.01 |
C20:5n3 | 77.45 ± 5.77 | 73.14 ± 12.71 | 75.9 ± 6.4 | 91.26 ± 3.81 |
% TFA (w/w) | 18.78 ± 1.43 | 16.98 ± 2.75 | 18.93 ± 1.17 | 22.32 ± 0.31 |
% EPA (w/w) | 7.74 ± 0.58 | 7.31 ± 1.27 | 7.59 ± 0.64 | 9.13 ± 0.38 |
∑ SFA | 57.98 ± 5.53 | 44.71 ± 10.44 | 49.78 ± 4.64 | 59.84 ± 1.98 |
∑ UFA | 129.78 ± 8.80 | 125.05 ± 17.13 | 139.54 ± 7.08 | 163.31 ± 4.02 |
∑ MUFA | 48.31 ± 2.90 | 46.18 ± 4.73 | 52.94 ± 2.78 | 60.38 ± 2.14 |
∑ PUFA | 81.46 ± 5.90 | 78.87 ± 12.51 | 86.59 ± 4.30 | 102.93 ± 1.90 |
∑ SFA/TFA | 0.31 a ± 0.01 | 0.26 b ± 0.02 | 0.26 b ± 0.01 | 0.27 b ± 0.01 |
∑ UFA/TFA | 0.69 a ± 0.01 | 0.74 b ± 0.02 | 0.74 b ± 0.01 | 0.73 b ± 0.01 |
∑ PUFA/TFA | 0.43 a ± 0.00 | 0.47 b ± 0.00 | 0.46 b ± 0.01 | 0.46 b ± 0.00 |
∑ PUFA/UFA | 0.63 ± 0.00 | 0.63 ± 0.01 | 0.62 ± 0.00 | 0.63 ± 0.00 |
∑ MUFA/PUFA | 1.17 ± 0.07 | 1.07 ± 0.10 | 1.32 ± 0.04 | 1.49 ± 0.13 |
Lipid Class | 25 °C | 15 °C | 10 °C | 5 °C |
---|---|---|---|---|
∑ MGTS | ||||
∑ DGTS | ||||
∑ DAG | ||||
∑ TAG | ||||
∑ MGDG | ||||
∑ DGDG | ||||
∑ SQDG | ||||
∑ PG |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gill, S.S.; Willette, S.; Dungan, B.; Jarvis, J.M.; Schaub, T.; VanLeeuwen, D.M.; St. Hilaire, R.; Holguin, F.O. Suboptimal Temperature Acclimation Affects Kennedy Pathway Gene Expression, Lipidome and Metabolite Profile of Nannochloropsis salina during PUFA Enriched TAG Synthesis. Mar. Drugs 2018, 16, 425. https://doi.org/10.3390/md16110425
Gill SS, Willette S, Dungan B, Jarvis JM, Schaub T, VanLeeuwen DM, St. Hilaire R, Holguin FO. Suboptimal Temperature Acclimation Affects Kennedy Pathway Gene Expression, Lipidome and Metabolite Profile of Nannochloropsis salina during PUFA Enriched TAG Synthesis. Marine Drugs. 2018; 16(11):425. https://doi.org/10.3390/md16110425
Chicago/Turabian StyleGill, Saba Shahid, Stephanie Willette, Barry Dungan, Jacqueline M. Jarvis, Tanner Schaub, Dawn M. VanLeeuwen, Rolston St. Hilaire, and F. Omar Holguin. 2018. "Suboptimal Temperature Acclimation Affects Kennedy Pathway Gene Expression, Lipidome and Metabolite Profile of Nannochloropsis salina during PUFA Enriched TAG Synthesis" Marine Drugs 16, no. 11: 425. https://doi.org/10.3390/md16110425
APA StyleGill, S. S., Willette, S., Dungan, B., Jarvis, J. M., Schaub, T., VanLeeuwen, D. M., St. Hilaire, R., & Holguin, F. O. (2018). Suboptimal Temperature Acclimation Affects Kennedy Pathway Gene Expression, Lipidome and Metabolite Profile of Nannochloropsis salina during PUFA Enriched TAG Synthesis. Marine Drugs, 16(11), 425. https://doi.org/10.3390/md16110425