Anti-Acanthamoeba Activity of Brominated Sesquiterpenes from Laurencia johnstonii
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation and Identification of Natural Brominated Sesquiterpenes
2.2. Derivatization of Laurinterol (1) and Isolaurinterol (2)
2.3. Antiparasitic Effect Against Acanthamoeba Castellanii Neff Strain
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Biological Material
3.3. Extraction and Isolation
3.3.1. Laurinterol (1)
3.3.2. Isolaurinterol (2)
3.3.3. Aplysin (3)
3.3.4. α-Bromocuparane (4)
3.3.5. α-Isobromocuparane (5)
3.4. Transformaction of Natural Sesquiterpenes 1 and 2
3.4.1. 8-Bromoaplysin (6)
3.4.2. 3α-Bromojohnstane (7)
3.4.3. 8,10-Dibromoisoaplysin (8)
3.4.4. 8,10-Dibromoaplysinol (9)
3.5. Cell Culture
3.6. Anti-Acanthamoeba Activity
3.7. Cytotoxicity Test
3.8. Statical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marciano-Cabral, F.; Cabral, G. Acanthamoeba spp. as agents of disease in humans. Clin. Microbiol. Rev. 2003, 16, 273–307. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, R.; Khan, N.A. Biology and pathogenesis of Acanthamoeba. Parasite. Vectors 2012, 5, 6. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-Morales, J.; Martín-Navarro, C.M.; López-Arencibia, A.; Arnalich-Montiel, F.; Piñero, J.E.; Valladares, B. Acanthamoeba keratitis: An emerging disease gathering importance worldwide? Trends Parasitol. 2013, 29, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Stothard, D.R.; Schroeder-Diedrich, J.M.; Awwad, M.H.; Gast, R.J.; Ledee, D.R.; Rodriguez-Zaragoza, S.; Dean, C.L.; Fuerst, P.A.; Byers, T.J. he Evolutionary History of the Genus Acanthamoeba and the Identification of Eight New 18S rRNA Gene Sequence Types. J. Eukaryot. Microbiol. 1998, 45, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-Morales, J.; Khan, N.A.; Walochnik, J. An update on Acanthamoeba keratitis: Diagnosis, pathogenesis and treatment. Parasite 2015, 22, 10. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.A. Acanthamoeba: Biology and increasing importance in human health. FEMS Microbiol. Rev. 2006, 30, 564–595. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, R.; Aqeel, Y.; Khan, N.A. The development of drugs against Acanthamoeba infections. Antimicrob. Agents Chemother. 2016, 60, 6441–6450. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-Morales, J.; Kliescikova, J.; Martinez-Carretero, E.; De Pablos, L.M.; Profotova, B.; Nohynkova, E.; Osuna, A.; Valladares, B. Glycogen phosphorylase in Acanthamoeba spp.: Determining the role of the enzyme during the encystment process using RNA interference. Eukaryot. Cell 2008, 7, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Kayser, O.; Kiderlen, A.F.; Croft, S.L. Natural products as antiparasitic drugs. Parasitol. Res. 2003, 90 (Suppl. 2), 55–62. [Google Scholar] [CrossRef]
- Young, R.M.; Pesce, E.R. Screening for antiparasitic marine natural products. In Marine Biomedicine from Beach to Bedside; CRC Press: Boca Raton, FL, USA, 2015; Chapter 9. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [PubMed]
- Blunt, J.W.; Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2018, 35, 8–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souto, M.L.; Manríquez, C.P.; Norte, M.; Leira, F.; Fernández, J.J. The inhibitory effects of squalene-derived triterpenes on protein phosphatase PP2A. Bioorg. Med. Chem. Lett. 2003, 13, 1261–1264. [Google Scholar] [CrossRef]
- Gutiérrez-Cepeda, A.; Fernández, J.J.; Norte, M.; López-Rodríguez, M.; Brito, I.; Muller, C.D.; Souto, M.L. Additional insights into the obtusallene family: components of Laurencia marilzae. J. Nat. Prod. 2016, 79, 1184–1188. [Google Scholar] [CrossRef] [PubMed]
- Morales-Amador, A.; de Vera, C.R.; Márquez-Fernández, O.; Daranas, A.H.; Padrón, J.M.; Fernández, J.J.; Souto, M.L.; Norte, M. Pinnatifidenyne-derived ethynyl oxirane acetogenins from Laurencia viridis. Mar. Drugs 2018, 16. [Google Scholar] [CrossRef] [PubMed]
- Harizani, M.; Ioannou, E.; Roussis, V. The Laurencia paradox: An endless source of chemodiversity. Prog. Chem. Org. Nat. Prod. 2016, 102, 91–252. [Google Scholar] [CrossRef] [PubMed]
- Sims, J.J.; Fenical, W.; Wing, R.M.; Radlick, P. Marine natural products III. Johnstonol, an unusual halogenated epoxide from the red alga Laurencia johnstonii. Tetrahedron Lett. 1972, 13, 195–198. [Google Scholar] [CrossRef]
- Faulkner, J.D.; Stallard, M.O.; Ireland, C. Prepacifenol epoxide, a halogenated sesquiterpene diepoxide. Tetrahedron Lett. 1974, 15, 3571–3574. [Google Scholar] [CrossRef]
- Yamamura, S.; Hirata, Y. Structures of aplysin and aplysinol, naturally ocurring bromo-compounds. Tetrahedron 1963, 19, 1485–1496. [Google Scholar] [CrossRef]
- Suzuki, T.; Suzuki, M.; Kuroswa, E. α-bromocuparene and α-isobromocuparene, new bromo compounds from Laurencia species. Tetrahedron 1975, 35, 3057–3058. [Google Scholar] [CrossRef]
- Irie, T.; Suzuki, M.; Kurosawa, E.; Masamune, T. Laurinterol and debromolaurinterol, constituents from Laurencia intermedia. Tetrahedron Lett. 1966, 17, 1837–1840. [Google Scholar] [CrossRef]
- Irie, T.; Suzuki, M.; Kurosawa, E.; Masamune, T. Laurinterol, debromolaurinterol and isolaurinterol, constituents of Laurencia intermedia Yamada. Tetrahedron 1970, 26, 3271–3277. [Google Scholar] [CrossRef]
- Wang, B.-G.; Gloer, J.B.; Ji, N.-Y.; Zhao, J.-C. Halogenated Organic Molecules of Rhodomelaceae Origin: Chemistry and Biology. Chem. Rev. 2013, 113, 3632–3685. [Google Scholar] [CrossRef] [PubMed]
- Gribble, G.W. Biological Activity of Recently Discovered Halogenated Marine Natural Products. Mar. Drugs 2015, 13, 4044–4136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cameron, A.F.; Ferguson, G.; Robertson, J.M. The crystal structure and absolute stereochemistry of Laurinterol. The absolute stereochemistry of aplysin. Chem. Commun. 1967, 271–272. [Google Scholar] [CrossRef]
- Erickson, K.L. Constituents of Laurencia. In Marine Natural Products, Chemical and Biological Perspectives; Scheuer, P.J., Ed.; Academic Press: New York, NY, USA, 1983; Volume V, pp. 131–257. ISBN 978-0-12-624005-4. in reference to the original publication: Caccamese, S.; Rinehart, K. L. New compounds and activities from Laurencia species. In Drusgs and Food from the Sea. Myth or Reality? Kaul, P.N.; Sindermann, C.J., Eds.; University of Oklahoma: Norman, Oklahoma, 1978, pp. 187–197. [Google Scholar]
- Guo, Y.; Wang, H.; Mao, S.; Zhang, X. Extraction method of laurane-type sesquiterpenoids or their derivatives from seaweed of Laurencia and its application as antiobesity agent. Faming Zhuanli Shenqing CN101628855 A, 20 January 2010. [Google Scholar]
- Yamada, K.; Yazawa, H.; Hirata, Y. The synthesis of 2,3-dimethyl-3-(5-bromo-2-methoxy-4-methylphenyl)-cyclohexene, a potentially useful intermediate for the syntheses of aplysin and related sesquiterpenes. Bull. Chem. Soc. Jpn. 1972, 45, 587–590. [Google Scholar] [CrossRef]
- Srikrishna, A.; Sundarababu, G. Radical cyclization strategies to terpenoids; syntheses of (±)-β-cuparenone, (±)-laurene and epilaurenes. Tetrahedron 1991, 47, 481–496. [Google Scholar] [CrossRef]
- Yu, X.Q.; He, W.F.; Liu, D.Q.; Feng, M.T.; Fang, Y.; Wang, B.; Feng, L.H.; Guo, Y.W.; Mao, S.C. A seco-laurane sesquiterpene and related laurane derivatives from the red alga Laurencia okamurai Yamada. Phytochemistry 2014, 103, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Kurata, K.; Kurosawa, E. The structure of isoaplysin, a brominated rearranged cuparane-type sesquiterpenoid from the red alga Laurencia okamurai Yamada. Bull. Chem. Soc. Jpn. 1986, 59, 3981–3982. [Google Scholar] [CrossRef]
- Martín-Navarro, C.M.; Lorenzo-Morales, J.; Cabrera-Serra, M.G.; Rancel, F.; Coronado-Álvarez, N.M.; Piñero, J.E.; Valladares, B. The potential pathogencity of chlorhexidine-sensitve Acanthamoeba strains isolates from contact lens from asyntomatic individuals in Tenerife, Canary Islands, Spain. J. Med. Microbiol. 2008, 57, 1399–1404. [Google Scholar] [CrossRef] [PubMed]
- McBride, J.; Ingram, P.R.; Henríquez, F.L. Development of colorimetric microtiter plate assay for assesment of antiicrobials against Acanthamoeba. J. Clin. Microbiol. 2005, 43, 629–634. [Google Scholar] [CrossRef] [PubMed]
Position | Aplysin (3) | 6 | ||
---|---|---|---|---|
δC, Type | δH (J in Hz) | δC, Type | δH (J in Hz) | |
1 | 54.3, C | 56.0, C | ||
2 | 99.8, C | 100.5, C | ||
3 | 46.0, CH | 1.75, ddd (12.8, 6.9, 6.5) | 46.4, CH | 1.79, ddd (13.3, 6.5, 6.5) |
4 | 31.1, CH2 | 1.62, m | 31.3, CH2 | 1.65, m |
1.15, m | 1.15, m | |||
5 | 42.5, CH2 | 1.85, dd (6.4, 12.1) | 42.7, CH2 | 1.86, dd (12.1, 6.2) |
1.58, d (6.2) | 1.64, ddd (12.1, 6.2, 6.2) | |||
6 | 136.2, C | 136.2, C | ||
7 | 158.1, C | 156.0 1, C | ||
8 | 110.8, CH | 6.59, s | 105.1, C | |
9 | 136.9, C | 136.0, C | ||
10 | 113.9, C | 114.1, C | ||
11 | 126.5, CH | 7.14, s | 125.4, CH | 7.11, s |
12 | 13.0, CH3 | 1.10, d (6.8) | 13.3, CH3 | 1.14, d (6.8) |
13 | 23.1, CH3 | 1.30, s | 20.4, CH3 | 1.34, s |
14 | 23.3, CH3 | 1.29, s | 23.2, CH3 | 1.32, s |
15 | 29.9, CH3 | 2.30, s | 23.5, CH3 | 2.49, s |
Position | 3α-Bromojohnstane (7) | |
---|---|---|
δC, Type | δH (J in Hz) | |
1 | 48.1, C | |
2 | 92.3, C | |
3 | 47.6, CH2 | β: 2.42 dd (3.6, 12.9) |
α: 1.99 dd (12.6, 12.9) | ||
4 | 45.8, CH | 3.84 dddd (3.6, 3.6, 12.3, 12.6) |
5 | 34.2, CH2 | β: 2.18 dddd (3.2, 3.5, 3.6, 12.9) |
α: 1.76 dddd (3.5, 12.3, 12.3, 12.6) | ||
6 | 32.8, CH2 | β: 1.54 ddd (3.5, 12.3, 12.9) |
α: 2.18 ddd (3.2, 3.5, 12.9) | ||
7 | 136.3, C | |
8 | 155.3, C | |
9 | 107.6, C | |
10 | 136.6, C | |
11 | 115.5, C | |
12 | 124.6, CH | 7.14 s |
13 | 19.7, CH3 | 1.54 s |
14 | 26.7, CH3 | 1.04 s |
15 | 23.3, CH3 | 2.53 s |
Sample | IC50 (µg/mL) | IC50 (µM) | CC50 (µg/mL) |
---|---|---|---|
Crude extract | 125.14 ± 4.5 | n/d | |
1 | >100 | 23.65 ± 2.3 | |
2 | >100 | 7.25 ± 0.7 | |
3 | >100 | 323.69 ± 12.0 | |
4 | 90.674 ± 1.529 | 322.41 ± 5.44 | 33.04 ± 4.2 |
5 | 64.251 ± 3.492 | 228.46 ± 12.42 | 85.34 ± 10.9 |
6 | 24.559 ± 1.105 | 65.64 ± 2.95 | 32.880 ± 3.125 |
7 | 18.804 ± 0.198 | 41.51 ± 0.44 | 62.341 ± 2.589 |
8 | 22.818 ± 1.896 | 50.37 ± 4.19 | 70.365 ± 3.245 |
9 | 29.937 ± 2.918 | 76.74 ± 7.48 | 74.931 ± 2.769 |
Chlorhexidine * | 1.526 ± 0.45 | 3.02 ± 0.89 | 6.64 ± 0.35 |
Voriconazole * | 0.33 ± 0.1 | 0.94 ± 0.29 | 2.64 ± 0.27 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Davis, S.; Sifaoui, I.; Reyes-Batlle, M.; Viveros-Valdez, E.; Piñero, J.E.; Lorenzo-Morales, J.; Fernández, J.J.; Díaz-Marrero, A.R. Anti-Acanthamoeba Activity of Brominated Sesquiterpenes from Laurencia johnstonii. Mar. Drugs 2018, 16, 443. https://doi.org/10.3390/md16110443
García-Davis S, Sifaoui I, Reyes-Batlle M, Viveros-Valdez E, Piñero JE, Lorenzo-Morales J, Fernández JJ, Díaz-Marrero AR. Anti-Acanthamoeba Activity of Brominated Sesquiterpenes from Laurencia johnstonii. Marine Drugs. 2018; 16(11):443. https://doi.org/10.3390/md16110443
Chicago/Turabian StyleGarcía-Davis, Sara, Ines Sifaoui, María Reyes-Batlle, Ezequiel Viveros-Valdez, José E. Piñero, Jacob Lorenzo-Morales, José J. Fernández, and Ana R. Díaz-Marrero. 2018. "Anti-Acanthamoeba Activity of Brominated Sesquiterpenes from Laurencia johnstonii" Marine Drugs 16, no. 11: 443. https://doi.org/10.3390/md16110443
APA StyleGarcía-Davis, S., Sifaoui, I., Reyes-Batlle, M., Viveros-Valdez, E., Piñero, J. E., Lorenzo-Morales, J., Fernández, J. J., & Díaz-Marrero, A. R. (2018). Anti-Acanthamoeba Activity of Brominated Sesquiterpenes from Laurencia johnstonii. Marine Drugs, 16(11), 443. https://doi.org/10.3390/md16110443