Pressurized Liquid Extraction (PLE) as an Innovative Green Technology for the Effective Enrichment of Galician Algae Extracts with High Quality Fatty Acids and Antimicrobial and Antioxidant Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Comparison of Macroalgae Lipid Content
2.2. Comparison of Antioxidant and Antibacterial Activities of Ethanolic PLE Macroalgae Extracts
2.3. Effect of PLE on the Lipid Composition of F. vesiculosus Extract
3. Material and Methods
3.1. Sample Collection and Preparation
3.2. Chemicals
3.3. Lipid Extraction
3.4. Pressurized Liquid Extraction (PLE)
3.5. Fatty Acid Analysis (by GC-MS)
3.6. Antioxidant Activity
3.7. Antibacterial Activity
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Shanura Fernando, I.; Kim, M.; Son, K.T.; Jeong, Y.; Jeon, Y.-J. Antioxidant activity of marine algal polyphenolic compounds: A mechanistic approach. J. Med. Food 2016, 19, 615–628. [Google Scholar] [CrossRef] [PubMed]
- Andrade, P.; Barbosa, M.; Matos, R.; Loes, G.; Vinholes, J.; Mouga, T.; Valentao, P. Valuable compounds in macroalge extracts. Food Chem. 2013, 138, 1819–1828. [Google Scholar] [CrossRef] [PubMed]
- Otero, P.; Alfonso, A.; Alfonso, C.; Vieytes, M.R.; Louzao, M.C.; Botana, A.M.; Botana, L.M. New protocol to obtain spirolides from Alexandrium ostenfeldii cultures with high recovery and purity. Biomed. Chromatogr. 2010, 24, 878–886. [Google Scholar] [PubMed]
- Garson, J. Biosynthethic studies on marine natural products. Nat. Prod. Rep. 1989, 6, 143–170. [Google Scholar] [CrossRef]
- Montero, L.; Sánchez-Camargo, A.; Ibáñez, E.; Gibert-López, B. Phenolic compounds from edible algae: Bioactivity and health benefits. Curr. Med. Chem. 2017, 24. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhang, K.; Chen, L.; Ding, M.; Zhao, M.; Chen, S. Selection of Schizochytrium limacinum mutants based on butanol tolerance. Electron. J. Biotechnol. 2017, 30, 58–63. [Google Scholar] [CrossRef]
- Narayan, B.; Miyashita, K.; Hosakawa, M. Physiological effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)—A review. Food Rev. Int. 2006, 22, 291–307. [Google Scholar] [CrossRef]
- Kadam, S.; Tiwari, B.; O´Donnell, C. Application of novel extraction technologies for bioactives from marine algae. J. Agric. Food Chem. 2013, 61, 4667–4675. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Sloane-Stanley, G. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [PubMed]
- Bligh, E.; Dyer, W. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-A.; Jung, J.-Y.; Kim, K.; Lee, J.-S.; Kwon, J.-H.; Kim, S.; Yang, J.-W.; Park, J.-Y. Acid-catalyzed hot-water extraction of docosahexaenoic acid (DHA)-rich lipids from Aurantiochytrium sp. KRS101. Bioresour. Technol. 2014, 161, 469–472. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Oh, Y.K.; Lee, J.S.; Lee, K.; Jeong, M.J.; Choi, S.A. Acid-catalyzed hot-water extraction of lipids from Chlorella vulgaris. Bioresour Technol. 2014, 153, 408–412. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-Y.; Choi, S.-A.; Jeong, M.-J.; Nam, B.; Oh, Y.-K.; Lee, J.-S. Changes in fatty acid composition of Chlorella vulgaris by hypochlorous acid. Bioresour. Technol. 2014, 162, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Otero, P.; Saha, S.K.; Mc Gushin, J.; Moane, S.; Barron, J.; Murray, P. Identification of optimun fatty acid extraction methods for two different microalgae Phaeodactylum tricornutum and Haematococcus pluvialis for food and biodiesel applications. Anal. Bioanal. Chem. 2017, 409, 4659–4667. [Google Scholar] [CrossRef] [PubMed]
- European Commision. Directive 2009/32/EC of the European Parliament and of the Council of 23 April 2009 on the Approximation of the Laws of the Member States on Extraction Solvents Used in the Production of Foodstuffs and Food Ingredients; Official Journal of the European Union: Brussels, Belgum, 2009. [Google Scholar]
- Cheung, P. Temperature and pressure effects on supercritical carbon dioxide extraction of n-3 fatty acids from red seaweed. Food Chem. 1999, 65, 399–403. [Google Scholar] [CrossRef]
- Kumari, P.; Reddy, C.; Jha, B. Comparative evaluation and selection of a method for lipid and fatty acid extracion from macroalgae. Anal. Biochem. 2011, 415, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, E.; Pardal, M.; Salgueiro-González, N.; Muniategui-Lorenzo, S.; Alpendurada, M. A single-step pesticide extraction and clean-up multi-residue analytical method by selective pressurized liquid extraction followed by on-line solid phase extraction and ultra-high-performance liquid chromatography-tandem mass spectrometry for complex matrices. J. Chromatogr. A 2016, 1452, 10–17. [Google Scholar] [PubMed]
- Shang, Y.; Kim, S.M.; Lee, W.; Um, B. Pressurized liquid method for fucoxanthin extraction from Eisenia bicyclis (Kjellman) Setchell. J. Biosci. Bioeng. 2011, 111, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Koo, S.; Cha, K.; Song, D.; Chung, D.; Pan, C. Optimization of pressurized liquid extraction of zeaxanthin from Chlorella ellipsoidea. J. Appl. Phycol. 2011, 24, 725–730. [Google Scholar] [CrossRef]
- Herrero, M.; Jaime, L.; Martín-Álvarez, P.; Cifuentes, A.; Ibanez, E. Optimization of the extraction of antioxidants from Dunaliella salina microalga by presurized liquids. J. Agric. Food Chem. 2006, 54, 5597–5603. [Google Scholar] [CrossRef] [PubMed]
- Plaza, M.; Santoyo, S.; Jaime, L.; García-Blairsy, G.; Herrero, M.; Señoráns, F.; Ibazez, E. Screening for bioactive compounds from algae. J. Pharm. Biomed. Anal. 2010, 51, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Anaëlle, T.; Serrano Leon, E.; Laurent, V.; Ibanez, E.; Mendiola, J.; Stéphane, C.; Nelly, K.; La Barre, S.; Luc, M.; Stiger-Pouvreau, V. Green improved processes to extract bioactive phenolic compounds from brown macroalgae using Sargassum muticum as model. Talanta 2013, 104, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M.; Stengel, D. Intra-thallus differentiation of fatty acid and pigment profiles in some temperate fucales and laminariales. J. Phycol. 2015, 51, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Agatonovic-Kustrin, S.; Morton, D.; Ristivojevic, P. Assessment of antioxidant activity in Victorian marine algal extracts using high performance thin-layer chromatography and multivariate analysis. J. Chromatogr. A 2016, 1468, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Pinteus, S.; Silva, J.; Alves, C.; Horta, A.; Fino, N.; Rodrigues, A.; Mendes, S.; Pedrosa, R. Cytoprotective effect of seaweeds with high antioxidant activity from the Peniche coast (Portugal). Food Chem. 2017, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Tenorio-Rodriguez, P.; Murillo-Álvarez, J.; Campa-Cordova, Á.; Angulo, C. Antioxidant screening and phenolic content of ethanol extracts of selected Baja California macroalgae. J. Food Sci. Technol. 2017, 54, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Kosanic, M.; Rankovic, B.; Stanojkovic, T. Biological activities of two macroalgae from Adriatic coast of Montenegro. Saudi J. Biol. Sci. 2015, 22, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, A.; Jouini, M.; Amor, H.; Mzoughi, Z.; Dridi, M.; Said, R.; Bouraoui, A. Phytochemical Analysis and Evaluation of the Antioxidant, Anti-inflammatory, and Antinociceptive Potential of Phlorotannin-Rich Fractions from Three Mediterranean Brown Seaweeds. Mar. Biotechnol. 2018, 20, 60–74. [Google Scholar] [CrossRef] [PubMed]
- Kellogg, J.; Lila, M. Chemical and in vitro assessment of Alaskan coastal vegetation antioxidant capacity. J. Agric. Food Chem. 2013, 61, 11025–11032. [Google Scholar] [CrossRef] [PubMed]
- Parys, S.; Kehraus, S.; Krick, A.; Glombitza, K.-W.; Carmeli, S.; Klimo, K.; Gerhauser, C.; Konig, G. In vitro chemopreventive potential of fucophlorethols from brown alga Fucus vesiculosus L. by anti-oxidant activity and inhibition of selected cytochrome P450 enzymes. Phytochemistry 2010, 71, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Celenk, F.; Ozkaya, A.; Sukatar, A. Macroalgae of Izmir Gulf: Dictyotaceae exhibit high in vitro anti-cancer activity independent from their antioxidant capabilities. Cytotechnology 2016, 68, 2667–2676. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Meizoso, I.; Jaime, L.; Santoyo, S.; Cifuentes, A.; García-Blairsy, G.; Señoráns, F.; Ibanez, E. Pressurized fluid extraction of bioactive compounds from Phormidium species. J. Agric. Food Chem. 2008, 56, 3517–3523. [Google Scholar] [PubMed]
- Moubayed, N.; Al Houri, H.; Al Khulaifi, M.; Al Farraj, D. Antimicrobial, antioxidant properties and chemical composition of seaweeds collected from Saudi Arabia (Red Sea and Arabian Gulf). Saudi J. Biol. Sci. 2017, 24, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Dasagrandhi, C.; Kim, S.; Kim, B.; Eom, S.; Kim, Y. In vitro antibacterial activity of phlorotannins from edible brown algae, Eisenia bicyclis against streptomycin-resistant Listeria monocytogenes. Indian J. Microbiol. 2018, 58, 105–108. [Google Scholar] [PubMed]
- El Wahidi, M.; El Amraoui, B.; El Amraoui, M.; Bamhaouda, T. Screening of antimicrobial activity of macroalgae extracts from the Moroccan Atlantic Coast. Ann. Pharm. Fr. 2015, 73, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Rajauria, G.; Abu-Ghannm, N. Study of the microbial diversity and antimicrobial properties of Irish edible brown seaweeds. Int. J. Food Sci. Technol. 2010, 45, 482–489. [Google Scholar] [CrossRef]
- Shanmughapriya, S.; Manilal, A.; Sujith, S.; Selvin, J.; Kiran, G.; Natarajaseenivasan, K. Antimicrobial activity of seaweeds extracts against multiresistant pathogens. Ann. Microbiol. 2008, 58, 535–541. [Google Scholar] [CrossRef]
- Shannon, E.; Abu-Ghannm, N. Antibacterial derivatives of marine algae: An overview of pharmacological mechanisms and applications. Mar. Drugs 2016, 14. [Google Scholar] [CrossRef] [PubMed]
- Pérez, M.; Falqué, E.; Domínguez, H. Antimicrobial action of compounds from marine seaweed. Mar. Drugs 2016, 14, 52. [Google Scholar] [CrossRef] [PubMed]
- Castejón, N.; Luna, P.; Señoráns, F. Ultrasonic removal of mucilage for pressurized liquid extraction of omega-3 rich oil from chia seeds (Salvia hispanica L.). J. Agric. Food Chem. 2017, 65, 2572–2579. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.; Oliveira, V.; Aracava, K.; da Costa Rodrigues, C. Effects of the extraction conditions on the yield and compsition of rice bran oil extracted with ethanol—A response surface approach. Food Bioprod. Process 2012, 90, 22–31. [Google Scholar] [CrossRef]
- Sánchez-Camargo, A.; Pleite, N.; Mendiola, J.; Cifuentes, A.; Herrero, M.; Gilbert-López, B.; Ibanez, E. Development of green extraction processes for Nannochloropsis gaditana biomass valorization. Electrophoresis 2018. [Google Scholar] [CrossRef] [PubMed]
- Gilbert-López, B.; Barranco, A.; Herrero, M.; Cifuentes, A.; Ibáñez, E. Development of new green processes for the recovery of bioactives from Phaeodactylum tricornutum. Food Res. Int. 2017, 99, 1056–1065. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.; Frederich, M.; Megido, R.; Alabi, T.; Malik, P.; Uyttenbroeck, R.; Francis, F.; Blecker, C.; Haubruge, E. Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. J. Asia-Pac. Entomol. 2017, 20, 337–340. [Google Scholar] [CrossRef]
- Milicevic, D.; Varanic, D.; Masic, Z.; Parunovic, N.; Trbovic, D.; Nedeljkovic-Trailovic, J.; Petrovic, Z. The role of total fats, saturated/unsaturated fatty acis and chloesterol content in chicken meat as cardiovascular risk factors. Lipid Health Dis. 2014, 13, 42. [Google Scholar] [CrossRef] [PubMed]
- Fats and fatty acids in human nutrition. Report of an expert consultation. FAO Food Nutr. Pap. 2010, 91, 1–166.
- Miller, L.; Berger, T. Bacteria identification by gas chromatography of whole cell fatty acids. Hewlett Packard Appl. Note 1985, 228, 241. [Google Scholar]
- Saha, S.; Uma, L.; Subramanian, G. Nitrogen stress induced changes in the marine cyanobacterium Oscillatoria willei BDU 130511. FEMS Microbiol. Ecol. 2003, 45, 263–272. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Lebens. Wiss. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
FA (C:U) | RT (min) | F. vesiculosus | C. baccata | H. elongata | D. dichotoma | U. lactuca | U. intestinalis | |
---|---|---|---|---|---|---|---|---|
FA content (mg/g algae) | FA 14:0 | 9.802 | 11.09 ± 0.19 | 5.13 ± 0.12 | 1.72 ± 0.04 | 3.01 ± 0.37 | 1.78 ± 0.22 | 1.96 ± 0.23 |
FA 15:0 | 10.774 | 0.31 ± 0.03 | N.D | 0.17 ± 0.03 | N.D | 0.18 ± 0.02 | 0.08 ± 0.00 | |
FA 16:1 | 11.789 | 0.98 ± 0.22 | 2.19 ± 0.04 | 0.56 ± 0.01 | 1.16 ± 0.05 | 0.16 ± 0.00 | 0.16 ± 0.00 | |
FA 16:0 | 12.078 | 9.64 ± 0.30 | 6.80 ± 0.29 | 5.85 ± 0.14 | 4.40 ± 0.64 | 6.09 ± 0.29 | 6.02 ± 0.22 | |
FA 18:3 | 14.900 | 0.08 ± 0.00 | N.D | 0.04 ± 0.04 | N.D | 0.09 ± 0.01 | N.D | |
FA 18:2 | 15.304 | 0.34 ± 0.04 | 0.16 ± 0.02 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.05 ± 0.01 | 0.06 ± 0.00 | |
FA 18:1 | 15.507 | 13.15 ± 1.03 | 3.09 ± 0.34 | 0.49 ± 0.09 | 1.09±0.05 | 0.47 ± 0.02 | 0.23 ± 0.01 | |
FA 18:0 | 16.041 | 1.56 ± 0.13 | 1.65 ± 0.16 | 1.80 ± 0.04 | 1.28 ± 0.07 | 1.68 ± 0.11 | 2.11 ± 0.08 | |
FA 20:4 | 20.549 | 1.30 ± 0.12 | 0.62 ± 0.01 | N.D | N.D | N.D | N.D | |
FA 20:5 | 20.806 | 0.36 ± 0.08 | 0.24 ± 0.01 | N.D | 0.15 ± 0.03 | N.D | N.D | |
FA total (mg/g algae) | 38.83 | 19.87 | 10.64 | 11.09 | 10.46 | 10.63 | ||
Lipid content by Folch (%) | 6.6% | 6.7% | 6.0% | 5.7% | 4.8% | 4.6% |
Antioxidant Capacity | |
---|---|
DPPH (IC50; μg/mL) | |
F. vesiculosus | 7.17 ± 0.01 |
D. dichotoma | >100 |
C. baccata | 28.49 ± 3.80 |
H. elongata | 64.89 ± 6.64 |
U. intestinalis | >100 |
U. lactuca | >100 |
Fucus vesiculosus | |||||
---|---|---|---|---|---|
Extraction Temp. | Yield (%) PLE | ||||
Hexane | Ethyl Acetate | Acetone | Ethanol | Ethanol:Water 50:50 | |
80 °C | 2.79 ± 0.12 | 4.72 ± 0.11 | 9.01 ± 1.24 | 8.85 ± 1.51 | 34.85 ± 3.11 |
120 °C | 3.72 ± 0.24 | 5.59 ± 0.21 | 10.73 ± 0.23 | 11.98 ± 1.18 | 41.49 ± 1.47 |
160 °C | 4.49 ± 1.54 | 7.03 ± 1.79 | 12.90 ± 1.21 | 12.89 ± 0.68 | 57.19 ± 2.38 |
Fucus vesiculosus | |||||
---|---|---|---|---|---|
FA | FA Quantity (mg/g PLE) | ||||
Hexane | Ethyl Acetate | Acetone | Ethanol | Ethanol:Water 50:50 | |
FA 14:0 | 150.51 ± 9.83 | 227.31 ± 9.43 | 247.35 ± 5.07 | 211.62 ± 5.19 | 29.36 ± 0.52 |
FA 15:0 | 2.53 ± 0.15 | 3.8 ± 0.42 | 2.97 ± 0.25 | 2.91 ± 0.11 | 0.12 ± 0.00 |
FA 16:1 | 10.67 ± 0.27 | 14.21 ± 0.60 | 14.78 ± 0.56 | 13.33 ± 0.5 | 1.89 ± 0.05 |
FA 16:0 | 91.37 ± 8.55 | 150.37 ± 6.01 | 167.51 ± 7.42 | 159.16 ± 14.68 | 84.98 ± 2.04 |
FA 18:3 | 0.16 ± 0.27 | 0.71 ± 0.12 | 0.39 ± 0.01 | 0.46 ± 0.07 | N.D |
FA 18:2 | 3.76 ± 0.32 | 6.18 ± 0.17 | 3.58 ± 0.02 | 3.47 ± 0.64 | 0.45 ± 0.02 |
FA 18:1 | 131.52 ± 10.54 | 234.44 ± 6.62 | 123.19 ± 28.83 | 126.11 ± 8.48 | 18.33 ± 0.32 |
FA 18:0 | 12.22 ± 1.46 | 19.75 ± 0.77 | 16.91 ± 1.21 | 16.92 ± 1.62 | 16.43 ± 0.22 |
FA 20:4 | 15.65 ± 1.49 | 23.38 ± 0.82 | 11.41 ± 0.01 | 13.02 ± 2.29 | 2.92 ± 0.04 |
FA 20:5 | 6.63 ± 0.66 | 11.37 ± 0.39 | 6.94 ± 0.47 | 7.68 ± 0.58 | 1.75 ± 0.02 |
FA 20:3 | 1.10 ± 0.10 | 1.68 ± 0.30 | 0.87 ± 0.05 | 0.91 ± 0.97 | N.D |
Total FA | 426.12 | 693.20 | 595.90 | 554.42 | 156.23 |
Total ω-3 | 6.63 | 11.37 | 6.94 | 7.68 | 1.75 |
Total ω-6 | 19.57 | 30.27 | 15.38 | 17.43 | 3.37 |
ratio ω-6/ω-3 | 2.95 | 2.665 | 2.215 | 2.208 | 1.92 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otero, P.; Quintana, S.E.; Reglero, G.; Fornari, T.; García-Risco, M.R. Pressurized Liquid Extraction (PLE) as an Innovative Green Technology for the Effective Enrichment of Galician Algae Extracts with High Quality Fatty Acids and Antimicrobial and Antioxidant Properties. Mar. Drugs 2018, 16, 156. https://doi.org/10.3390/md16050156
Otero P, Quintana SE, Reglero G, Fornari T, García-Risco MR. Pressurized Liquid Extraction (PLE) as an Innovative Green Technology for the Effective Enrichment of Galician Algae Extracts with High Quality Fatty Acids and Antimicrobial and Antioxidant Properties. Marine Drugs. 2018; 16(5):156. https://doi.org/10.3390/md16050156
Chicago/Turabian StyleOtero, Paz, Somaris E. Quintana, Guillermo Reglero, Tiziana Fornari, and Mónica R. García-Risco. 2018. "Pressurized Liquid Extraction (PLE) as an Innovative Green Technology for the Effective Enrichment of Galician Algae Extracts with High Quality Fatty Acids and Antimicrobial and Antioxidant Properties" Marine Drugs 16, no. 5: 156. https://doi.org/10.3390/md16050156
APA StyleOtero, P., Quintana, S. E., Reglero, G., Fornari, T., & García-Risco, M. R. (2018). Pressurized Liquid Extraction (PLE) as an Innovative Green Technology for the Effective Enrichment of Galician Algae Extracts with High Quality Fatty Acids and Antimicrobial and Antioxidant Properties. Marine Drugs, 16(5), 156. https://doi.org/10.3390/md16050156