Investigation of the Anti-Prostate Cancer Properties of Marine-Derived Compounds
Abstract
:1. Introduction
2. Molecular Targets for Anti-Prostate Cancer Compounds
3. Bioactive Products with Potential for Prostate Cancer Treatment
3.1. Marine Bacteria
3.2. Marine Fungi
3.3. Marine Sponges
3.4. Marine Algae
3.4.1. Cyanobacteria
3.4.2. Chlorophytes
3.4.3. Rhodophyta
3.4.4. Phaeophyta
3.5. Marine Diatoms
3.6. Marine Diatom Metabolites
3.7. Holothurians
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Kiuru, P.; D’Auria, M.V.; Muller, C.D.; Tammela, P.; Vuorela, H.; Yli-Kauhaluoma, J. Exploring marine resources for bioactive compounds. Planta Med. 2014, 80, 1234–1246. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.; Mentel, M.; van Hellemond, J.J.; Henze, K.; Woehle, C.; Gould, S.B.; Yu, R.Y.; van der Giezen, M.; Tielens, A.G.; Martin, W.F. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol. Mol. Biol. Rev. 2012, 76, 444–495. [Google Scholar] [CrossRef] [PubMed]
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [PubMed]
- Mao, Q.Q.; Lin, Y.W.; Chen, H.; Yang, K.; Kong, D.B.; Jiang, H. Monitoring of prostate cancer growth and metastasis using a PSA luciferase report plasmid in a mouse model. Asian. Pac. J. Trop. Biomed. 2014, 7, 879–883. [Google Scholar] [CrossRef]
- Lonergan, P.E.; Tindall, D.J. Androgen receptor signaling in prostate cancer development and progression. J. Carcinog. 2011, 10, 20. [Google Scholar] [PubMed]
- Wilson, J.D. The role of androgens in male gender role behavior. Endocr. Rev. 1999, 20, 726–737. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, S.; Srinidhi, S.; Vishwanatha, J.K. Oncogenic activation in prostate cancer progression and metastasis: Molecular insights and future challenges. J. Carcinog. 2012, 11, 4. [Google Scholar] [CrossRef] [PubMed]
- Wieduwilt, M.J.; Moasser, M.M. The epidermal growth factor receptor family: biology driving targeted therapeutics. Cell Mol. Life Sci. 2008, 65, 1566–1584. [Google Scholar] [CrossRef] [PubMed]
- Katz, M.; Amit, I.; Yarden, Y. Regulation of MAPKs by growth factors and receptor tyrosine kinases. Biochim. Biophys. Acta 2007, 1773, 1161–1176. [Google Scholar] [CrossRef] [PubMed]
- Rodier, F.; Campisi, J.; Bhaumik, D. Two faces of p53: aging and tumor suppression. Nucleic Acids Res. 2007, 35, 7475–7484. [Google Scholar] [CrossRef] [PubMed]
- Rowlands, M.A.; Gunnell, D.; Harris, R.; Vatten, L.J.; Holly, J.M.; Martin, R.M. Circulating insulin-like growth factor peptides and prostate cancer risk: A systematic review and meta-analysis. Int. J. Cancer 2009, 124, 2416–2429. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Lin, X.; Alvarez, E.; Manorek, G.; Howell, S.B. Tight junction proteins claudin-3 and claudin-4 control tumor growth and metastases. Neoplasia 2009, 14, 974–985. [Google Scholar] [CrossRef]
- Vezza, R.; Rokach, J.; FitzGerald, G.A. Prostaglandin F2α receptor-dependent regulation of prostaglandin transport. Mol. Pharmacol. 2001, 59, 1506–1513. [Google Scholar] [CrossRef] [PubMed]
- Suárez, Y.; González, L.; Cuadrado, A.; Berciano, M.; Lafarga, M.; Muñoz, A. Kahalalide F, a new marine-derived compound, induces oncosis in human prostate and breast cancer cells. Mol. Cancer Ther. 2003, 2, 863–872. [Google Scholar] [PubMed]
- Rademaker-Lakhai, J.M.; Horenblas, S.; Meinhardt, W.; Stokvis, E.; de Reijke, T.M.; Jimeno, J.M.; Lopez-Lazaro, L.; Martin, J.A.L.; Beijnen, J.H.; Schellens, J.H. Phase I clinical and pharmacokinetic study of kahalalide F in patients with advanced androgen refractory prostate cancer. Clin. Cancer Res. 2005, 11, 1854–1862. [Google Scholar] [PubMed]
- Kim, Y.S.; Kim, S.K.; Park, S.J. Apoptotic effect of demethoxyfumitremorgin C from marine fungus Aspergillus fumigatus on PC3 human prostate cancer cells. Chem.-Biol. Interact. 2017, 269, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, S.; Ding, W.; Wang, P.; Yang, X.; Xu, J. Methylthio-aspochalasins from a marine-derived fungus aspergillus sp. Mar. Drugs 2014, 12, 5124–5131. [Google Scholar] [CrossRef] [PubMed]
- Dyshlovoy, S.A.; Otte, K.; Tabakmakher, K.M.; Hauschild, J.; Makarieva, T.N.; Shubina, LK.; Fedorov, S.N.; Bokemeyer, C.; Stonik, V.A.; von Amsberg, G. Synthesis and anticancer activity of the derivatives of marine compound rhizochalin in castration resistant prostate cancer. Oncotarget 2018, 9, 16962–16973. [Google Scholar] [CrossRef] [PubMed]
- Dyshlovoy, S.A.; Otte, K.; Alsdorf, W.H.; Hauschild, J.; Lange, T.; Venz, S.; Schumacher, U.; Schröder-Schwarz, J.; Makarieva, T.N.; Guzii, A.G.; et al. Marine compound rhizochalinin shows high in vitro and in vivo efficacy in castration resistant prostate cancer. Oncotarget 2016, 7, 69703. [Google Scholar] [CrossRef] [PubMed]
- Sayed, K.A.; Khanfar, M.A.; Shallal, H.M.; Muralidharan, A.; Awate, B.; Youssef, D.T.; Liu, Y.; Zhou, Y.D.; Nagle, D.G.; Shah, G. Latrunculin A and its C-17-O-carbamates inhibit prostate tumor cell invasion and HIF-1 activation in breast tumor cells. J. Nat. Prod. 2008, 71, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.; Kim, G.D.; Jeon, J.E.; Shin, J.; Lee, S.K. Antimetastatic effect of halichondramide, a trisoxazole macrolide from the marine sponge Chondrosia corticata, on human prostate cancer cells via modulation of epithelial-to-mesenchymal transition. Mar. Drugs 2013, 11, 2472–2485. [Google Scholar] [CrossRef] [PubMed]
- Schneiders, U.M.; Schyschka, L.; Rudy, A.; Vollmar, A.M. BH3-only proteins Mcl-1 and Bim as well as endonuclease G are targeted in spongistatin 1–induced apoptosis in breast cancer cells. Mol. Cancer Ther. 2009, 8, 2914–2925. [Google Scholar] [CrossRef] [PubMed]
- Arai, M.; Kawachi, T.; Setiawan, A.; Kobayashi, M. Hypoxia-selective growth inhibition of cancer cells by furospinosulin-1, a furanosesterterpene isolated from an Indonesian marine sponge. Chem. Med. Chem. 2010, 5, 1919–1926. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Fishback, J.A.; Zhou, Y.D.; Nagle, D.G. Sodwanone and yardenone triterpenes from a South African species of the marine sponge Axinella inhibit hypoxia-inducible factor-1 (HIF-1) activation in both breast and prostate tumor cells. J. Nat. Prod. 2006, 69, 1715–1720. [Google Scholar] [CrossRef] [PubMed]
- Meimetis, L.G.; Williams, D.E.; Mawji, N.R.; Banuelos, C.A.; Lal, A.A.; Park, J.J.; Tien, A.H.; Fernandez, J.G.; de Voogd, N.J.; Sadar, M.D.; et al. Niphatenones, glycerol ethers from the sponge Niphates digitalis block androgen receptor transcriptional activity in prostate cancer cells: structure elucidation, synthesis, and biological activity. J. Med. Chem. 2012, 55, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Gordaliza, M. Terpenyl-purines from the sea. Mar. Drugs 2009, 7, 833–849. [Google Scholar] [CrossRef] [PubMed]
- Drew, L.; Fine, R.L.; Do, T.N.; Douglas, G.P.; Petrylak, D.P. The novel antimicrotubule agent cryptophycin 52 (LY355703) induces apoptosis via multiple pathways in human prostate cancer cells. Clin. Cancer. Res. 2002, 8, 3922–3932. [Google Scholar] [PubMed]
- Tripathi, A.; Puddick, J.; Prinsep, M.R.; Rottmann, M.; Chan, K.P.; Chen, D.Y.K.; Tan, L.T. Lagunamide C, a cytotoxic cyclodepsipeptide from the marine cyanobacterium Lyngbya majuscula. Phytochemistry 2011, 72, 2369–2375. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Costa-Rodrigues, J.; Fernandes, M.H.; Barros, P.; Vasconcelos, V.; Martins, R. Marine cyanobacteria compounds with anticancer properties: A review on the implication of apoptosis. Mar. Drugs 2012, 10, 2181–2207. [Google Scholar] [CrossRef] [PubMed]
- Gantar, M.; Dhandayuthapani, S.; Rathinavelu, A. Phycocyanin induces apoptosis and enhances the effect of topotecan on prostate cell line LNCaP. J. Med. Food. 2012, 15, 1091–1095. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.L.W.; McHenry, P.; Jeffrey, R.; Schweitzer, D.; Helquist, P.; Tenniswood, M. Effects of Iejimalide B, a marine macrolide, on growth and apoptosis in prostate cancer cell lines. J. Cell. Biochem. 2008, 105, 998–1007. [Google Scholar] [CrossRef] [PubMed]
- Kubanek, J.; Prusak, A.C.; Snell, T.W.; Giese, R.A.; Fairchild, C.R.; Aalbersberg, W.; Hay, M.E. Bromophycolides C− I from the Fijian Red Alga Callophycus s erratus. J. Nat. Prod. 2006, 69, 731–735. [Google Scholar] [CrossRef] [PubMed]
- Farooqi, A.A.; Butt, G.; Razzaq, Z. Algae extracts and methyl jasmonate anti-cancer activities in prostate cancer: choreographers of ‘the dance macabre’. Cancer Cell Int. 2012, 12, 50. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.L. A preliminary investigation of the enzymatic inhibition of 5α-reductase and growth of prostatic carcinoma cell line LNCap-FGC by natural astaxanthin and saw palmetto lipid extract in vitro. J. Herb. Pharmacother. 2005, 5, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Boo, H.J.; Hong, J.Y.; Kim, S.C.; Kang, J.I.; Kim, M.K.; Kim, E.J.; Hyun, J.W.; Koh, Y.S.; Yoo, E.S.; Kwon, J.M.; et al. The anticancer effect of fucoidan in PC-3 prostate cancer cells. Mar. Drugs 2013, 11, 2982–2999. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.Y.; Lin, T.Y.; Hwang, P.A.; Tseng, L.M.; Chen, R.H.; Tsao, S.M.; Hsu, J. Fucoidan induces changes in the epithelial to mesenchymal transition and decreases metastasis by enhancing ubiquitin-dependent TGFβ receptor degradation in breast cancer. Carcinogenesis 2012, 34, 874–884. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.J. Fucoxanthin and its metabolite fucoxanthinol in cancer prevention and treatment. Mar. Drugs 2015, 13, 4784–4798. [Google Scholar] [CrossRef] [PubMed]
- Satomi, Y. Fucoxanthin induces GADD45A expression and G1 arrest with SAPK/JNK activation in LNCap human prostate cancer cells. Anticancer Res. 2012, 32, 807–813. [Google Scholar] [PubMed]
- Asai, A.; Sugawara, T.; Ono, H.; Nagao, A. Biotransformation of fucoxanthinol into amarouciaxanthin A in mice and HepG2 cells: formation and cytotoxicity of fucoxanthin metabolites. Drug Metab. Dispos. 2004, 32, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Hassan, H.M.; Khanfar, M.A.; Elnagar, A.Y.; Mohammed, R.; Shaala, L.A.; Youssef, D.T.; Hifnawy, M.S.; El Sayed, K.A. Pachycladins A-E, prostate cancer invasion and migration inhibitory eunicellin-based diterpenoids from the Red Sea soft coral Cladiella pachyclados. J. Nat. Prod. 2010, 73, 848–853. [Google Scholar] [CrossRef] [PubMed]
- Bhujanga, R.C.; Babu, D.C.; Bharadwaj, T.V.; Srikanth, D.; Vardhan, K.S.; Raju, T.V.; Bunce, R.A.; Venkateswarlu, Y. Isolation, structural assignment and synthesis of (SE)-2-methyloctyl 3-(4-methoxyphenyl) propenoate from the marine soft coral Sarcophyton ehrenbergi. Nat. Prod. Res. 2015, 29, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Dyshlovoy, S.A.; Menchinskaya, E.S.; Venz, S.; Rast, S.; Amann, K.; Hauschild, J.; Alsdorf, W. The marine triterpene glycoside frondoside A exhibits activity in vitro and in vivo in prostate cancer. Int. J. Cancer 2016, 138, 2450–2465. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Collin, P.; Madden, T.; Chan, D.; Sweeney-Gotsch, B.; McConkey, D.; Newman, R.A. Inhibition of proliferation of PC3 cells by the branched-chain fatty acid, 12-methyltetradecanoic acid, is associated with inhibition of 5-lipoxygenase. Prostate 2003, 55, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Lindequist, U. Marine-derived pharmaceuticals–challenges and opportunities. Biomol. Ther. 2016, 24, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Fang, L.K.; Liu, J.W.; Cheng, W.Q.; Yun, M. Effect of marine fungal metabolites from the south china sea on prostate cancer cell line du-145. J. Intern. Med. 2008, 35(10), 562–563. [Google Scholar]
- Rochfort, S.; Ford, J.; Ovenden, S.; Wan, S.S.; George, S.; Wildman, H.; Tait, R.M.; Meurer-Grimes, B.; Cox, S.; Coates, J.; et al. A novel aspochalasin with HIV-1 integrase inhibitory activity from Aspergillus flavipes. J. Antibiot. (Tokyo) 2005, 58, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hu, Z.; Huang, H.; Zheng, Z.; Xu, Q. Aspochalasin U, a moderate TNF-alpha inhibitor from Aspergillus sp. J. Antibiot. (Tokyo) 2012, 65, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Choo, S.J.; Yun, B.S.; Ryoo, I.J.; Kim, Y.H.; Bae, K.H.; Yoo, I.D. Aspochalasin I, a melanogenesis inhibitor from Aspergillus sp. J. Microbiol. Biotechnol. 2009, 19, 368–371. [Google Scholar] [CrossRef] [PubMed]
- Dyshlovoy, S.A.; Otte, K.; Venz, S.; Hauschild, J.; Junker, H.; Makarieva, T.N.; Balabanov, S.; Alsdorf, W.H.; Madanchi, R.; Honecker, F.; et al. Proteomic-based investigations on the mode of action of the marine anticancer compound rhizochalinin. Proteomics 2017, 17, 170048. [Google Scholar] [CrossRef] [PubMed]
- Sima, P.; Vetvicka, V. Bioactive substances with anti-neoplastic efficacy from marine invertebrates: Porifera and Coelenterata. World. J. Clin. Oncol. 2011, 2, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Ko, L.J.; Prives, C. p53: puzzle and paradigm. Genes Dev. 1996, 10, 1054–1072. [Google Scholar] [CrossRef] [PubMed]
- Scanlon, C.S.; Van Tubergen, E.A.; Inglehart, R.C.; D’Silva, N.J. Biomarkers of epithelial-mesenchymal transition in squamous cell carcinoma. J. Dent. Res. 2013, 92, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Kalimuthu, S.; Venkatesan, J.; Kim, S.K. Marine derived bioactive compounds for breast and prostate cancer treatment: A review. Curr. Bioact. Compd. 2014, 10, 62–74. [Google Scholar] [CrossRef]
- Ambati, R.R.; Phang, S.M.; Ravi, S.; Aswathanarayana, R.G. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications—a review. Mar. Drugs 2014, 12, 128–152. [Google Scholar] [CrossRef] [PubMed]
- Sithranga, B.N.; Kathiresan, K. Anticancer drugs from marine flora: an overview. J. Oncol. 2010, 2010, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Mayer, A.M.S.; Hamann, M.T. Marine pharmacology in 1999: compounds with antibacterial, anticoagulant, antifungal, anthelmintic, anti-inflammatory, antiplatelet, antiprotozoal and antiviral activities affecting the cardiovascular, endocrine, immune and nervous systems, and other miscellaneous mechanisms of action. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2002, 132, 315–339. [Google Scholar] [PubMed]
- Peng, J.; Yuan, J.P.; Wu, C.F.; Wang, J.H. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Mar. Drugs 2011, 9, 1806–1828. [Google Scholar] [CrossRef] [PubMed]
- Strand, A.; Herstad, O.; Liaaen-Jensen, S. Fucoxanthin metabolites in egg yolks of laying hens1. Comp. Biochem. Phys. A. 1998, 119, 963–974. [Google Scholar] [CrossRef]
- Aminin, D.; Menchinskaya, E.; Pisliagin, E.; Silchenko, A.S.; Avilov, S.A.; Kalinin, V.I. Anticancer activity of sea cucumber triterpene glycosides. Mar. Drugs 2015, 13, 1202–1223. [Google Scholar] [CrossRef] [PubMed]
Source Group | Compounds | Structure | Biological Activity on Prostate Cancer | References |
---|---|---|---|---|
Bacteria | Kahalalide F | Cytotoxicity (IC50: 0.07 μM in PC-3 cells; 0.28 μM in DU-145 cells) 50% of PSA decline for ≥4 weeks at 80 μg/kg/day in clinical trial | [14] [15] | |
Marine fungi | Demethoxyfumitremorgin C | Inhibition of proliferation (50% inhibition at 100 μM in PC-3 cells) | [16] | |
Apochalasin V | Cytotoxicity (IC50: 30.4 μM in PC-3 cells) | [17] | ||
Marine sponges | Rhizochalin | Cytotoxicity (IC50: 16.55 μM in PC-3 cells, IC50: 10.75 μM in DU-145 cells, IC50: 7.88 μM in LNCaP cells, IC50: 7.37 μM in 22Rv1 cells, IC50: 5.81 μM in VCaP cells) | [18] | |
Rhizochalinin | Cytotoxicity (IC50: 1.14 μM in PC-3 cells, IC50: 1.05 μM in DU-145 cells, IC50: 1.69 μM in LNCaP cells, IC50: 0.87 μM in 22Rv1 cells, IC50: 0.42 μM in VCaP cells) | [19] | ||
latrunculin A | Inhibition of invasion (23% inhibition at 100 nM in PC-3 cells) | [20] | ||
Halichondramide | Cytotoxicity (IC50: 0.81 μM in PC-3 cells) | [21] | ||
Spongistatin 1 | Inhibition of proliferation (50% inhibition at 500 pmol in LNCaP cells) | [22] | ||
Furospinosulin-1 | Inhibition of proliferation (60% inhibition at 100 μM in DU-145 cells) | [23] | ||
Sodwanone and Yardenone | Inhibition of HIF-1α expression at 15 μM in PC-3 cells | [24] | ||
Niphatenone B | Inhibition of proliferation (90% inhibition at 250 μM in LNCaP cells) | [25] | ||
Agelasine B | Cytotoxicity (IC50: 0.04 μg/mL in DU-145 cells) | [26] | ||
Cyanobacteria | Cryptophycin 52 | Apoptosis (40% at 250 μg/mL in LNCaP cells) | [27] | |
Lagunamide C | Cytotoxicity (IC50: 2.6 nM in PC-3 cells) | [28] | ||
Dolastatins | Cell cycle arrest (G2/M arrest in DU-145 cells) | [29] | ||
C-phycocyanin (C-PC) | Inhibition of proliferation (30% inhibition at 500 μg/mL in LNCaP cells) | [30] | ||
Iejimalide B | Cell cycle arrest (G0 / G1 arrest in LNCaP cells) | [31] | ||
Rhodophyta | Bromophycolide D | Cytotoxicity (IC50: 9.0 μM in PC-3 cells) | [32] | |
Chlorophyta | 14-keto-stypodiol diacetate (SDA) | Cytotoxicity (IC50: 2.7 μM in DU145 cells) | [33] | |
Astaxanthin | Inhibition of proliferation (38% inhibition at 0.01 μg/mL in LNCaP cells) | [34] | ||
Phaeophyta | Fucoidan | Apoptosis (15.2% at 10 μg/mL, 29.8% at 50 μg/mL, 39.3% at 100 μg/mL, and 45.1% at 200 μg/mL in PC3 cells) | [35,36] | |
Marine diatoms | Fucoxanthin | Inhibition of proliferation (50% inhibition at 2.5 μM in LNCaP cells) | [37,38] | |
Fucoxanthin, Fucoxanthinol, and Amarouciaxanthin A | Cytotoxicity (IC50: 2.0–4.6 μM in PC-3 cells) | [39] | ||
Corals | Pachycladins A–E | Inhibition of invasion (87% inhibition at 50 μM in PC-3 cells) | [40] | |
Metabolite 1 from Sarcophyton ehrenbergi, synthetic enantiomer (R)-1 | Cytotoxicity ((S)-1 (IC50: 161 mM in DU-145 cells); (R)-1 (IC50: 77.2 in DU145 cells) | [41] | ||
Holothurians | Frondoside A | Cell cycle arrest (G2/M-phase at 0.5 µM in PC-3 cells) | [42] | |
12-methyltetradecanoic acid | Cytotoxicity (IC50: 35.48 μg/mL in DU-145 cells, IC50: 20.45 μg/mL in PC-3 cells) | [43] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, M.; Nath, A.K.; Tang, Y.; Choi, Y.-J.; Debnath, T.; Choi, E.-J.; Kim, E.-K. Investigation of the Anti-Prostate Cancer Properties of Marine-Derived Compounds. Mar. Drugs 2018, 16, 160. https://doi.org/10.3390/md16050160
Fan M, Nath AK, Tang Y, Choi Y-J, Debnath T, Choi E-J, Kim E-K. Investigation of the Anti-Prostate Cancer Properties of Marine-Derived Compounds. Marine Drugs. 2018; 16(5):160. https://doi.org/10.3390/md16050160
Chicago/Turabian StyleFan, Meiqi, Amit Kumar Nath, Yujiao Tang, Young-Jin Choi, Trishna Debnath, Eun-Ju Choi, and Eun-Kyung Kim. 2018. "Investigation of the Anti-Prostate Cancer Properties of Marine-Derived Compounds" Marine Drugs 16, no. 5: 160. https://doi.org/10.3390/md16050160
APA StyleFan, M., Nath, A. K., Tang, Y., Choi, Y. -J., Debnath, T., Choi, E. -J., & Kim, E. -K. (2018). Investigation of the Anti-Prostate Cancer Properties of Marine-Derived Compounds. Marine Drugs, 16(5), 160. https://doi.org/10.3390/md16050160