Alginate Materials and Dental Impression Technique: A Current State of the Art and Application to Dental Practice
Abstract
:1. Introduction
- Borax, zinc sulphate, and sodium fluoride in order to increase the resistance of the impression and the hardness of the model surface, avoiding the adherence of the impression of alginate to the plaster during the casting of the model.
- Fossil flour or diatomaceous earth, which has the function of being a filler and also controls the fluidity and the consistency of the mass, making the impression surface smooth and compact.
- Chemical indicators: These are substances that have the ability to make the material change color as its acidity varies during the gelling reaction [5].
2. Materials and Methods
2.1. Target Questions
- What is the contribution of marine sciences in the field of medical impression materials?
- Do marine derived materials used for impression techniques make clinical and scientific contributions in dentistry?
2.2. Searches
2.3. Data Recorded from the Selected Manuscripts
2.4. Selections of the Papers
2.5. Research Classifications
2.6. Statement of the Problem
2.7. Exclusion and Inclusion Criteria
- English language.
- Clinical human studies or merchandising updates on alginates impression materials used in dentistry.
- vivo/in vitro studies.
- Studies not relevant to our selected topic.
- Animal studies.
- Medicated impression materials, digital impression techniques, or use of combined alginates.
- Literature review articles published prior to 1 December 2018.
- No access to the title and abstract not in English language.
2.8. Strategy for Collecting Data
2.9. Record of the Extracted and Collected Data Extraction
2.10. Risk of Bias Assessment
2.11. History of Impression Materials
2.12. Use of Alginates in Dentistry
3. Results
Manuscript Collection
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Anusavice, K.J.; Kenneth, J. Phillips’ Science of Dental Materials, 11th ed.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 210–230. [Google Scholar]
- Giordano, R. Impression materials: Basic properties. Gen. Dent. 2000, 48, 510–516. [Google Scholar] [PubMed]
- Craig, R.G.; Robert, G. Restorative Dental Materials, 11th ed.; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Donovan, J.E.; Chee, W.W. A review of contemporary impression materials and techniques. Dent. Clin. N. Am. 2004, 48, 445–470. [Google Scholar] [CrossRef] [PubMed]
- Spoto, G. Materiali e Tecnologie Odontostomatologiche; AriesDue: Milano, Italy, 2013; pp. 150–153, 154–196. ISBN 978-88-98789-00-9. [Google Scholar]
- Petropoulos, V.C.; Rashedi, B. Current concepts and techniques in complete denture final impression procedures. J. Prosthodont. 2003, 12, 280–287. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C.; et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef]
- Papadiochos, I.; Papadiochou, S.; Emmanouil, I. The Historical Evolution of Dental Impression Materials. J. Hist. Dent. 2017, 65, 79–89. [Google Scholar] [PubMed]
- Starcke, J.E. A historical review of complete denture impression materials. J. Am. Dent. Assoc. 1975, 91, 1037–1041. [Google Scholar] [CrossRef] [PubMed]
- Hansson, O.; Eklund, J. A historical review of hydrocolloids and an investigation of the dimensional accuracy of the new alginates for crown and bridge impressions when using stock trays. Swed. Dent. J. 1984, 8, 81–95. [Google Scholar]
- Buchan, S.; Peggie, R.W. Role of ingredients in alginate impression compounds. J. Dent. Res. 1966, 45, 1120–1129. [Google Scholar] [CrossRef]
- Burdick, J.A.; Stevens, M.M. Biomedical hydrogels. In Biomaterials, Artificial Organs and Tissue Engineering; Woodhead Publishing Series in Biomaterials; Elsevier: Amsterdam, The Netherlands, 2005; pp. 107–115. [Google Scholar]
- Vidyashree Nandini, V.; Vijay Venkatesh, K.; Chandrasekharan Nair, K. Alginate impressions: A practical perspective. J. Conserv. Dent. 2008, 11, 37–41. [Google Scholar] [CrossRef]
- Nallamuthu, N.; Braden, M.; Oxford, J.; Williams, D.; Patel, M. Modification of pH Conferring Virucidal Activity on Dental Alginates. Materials 2015, 8, 1966–1975. [Google Scholar] [CrossRef] [Green Version]
- Juniordentist. Available online: https://www.juniordentist.com/alginate-impression-material.html (accessed on 25 November 2018).
- Borges de Olival, A.R.; da Penha Junior, N.L.; Frazão Câmara, J.V.; Corrêa Duarte Simões, A.C.; Estruc Verbicário dos Santos, J.R.; Groisman, S. Analysis of Chemical Composition of Different Irreversible Hydrocolloids. Dent. J. 2018, 6, 37. [Google Scholar] [CrossRef] [PubMed]
- Craig, R.G. Review of Dental Impression Materials. Adv. Dent. Res. 1988, 2, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Cesur, M.G.; Omurlu, I.K.; Ozer, T. Evaluation of digital model accuracy and time-dependent deformation of alginate impressions. Niger. J. Clin. Pract. 2017, 20, 1175–1181. [Google Scholar] [CrossRef]
- Akpinar, Y.Z.; Yilmaz, B.; Tatar, N.; Demirtağ, Z. Changing the bonding force of impression tray to edentulous maxillary jaw simulator with impression valve system: In vitro study. Niger. J. Clin. Pract. 2015, 18, 115–119. [Google Scholar] [PubMed]
- Punj, A.; Bompolaki, D.; Garaicoa, J. Dental Impression Materials and Techniques. Dent. Clin. 2017, 61, 779–796. [Google Scholar] [CrossRef] [PubMed]
- Ting-Shu, S.; Jian, S. Intraoral Digital Impression Technique: A Review. J. Prosthodont. 2015, 24, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.B.; Kilic, F.; Schmidt, F.; Rübel, S.; Lapatki, B.G. Dimensional accuracy of jaw scans performed on alginate impressions or stone models: A practice-oriented study. J. Orofac. Orthop. 2015, 76, 351–365. [Google Scholar] [CrossRef] [PubMed]
- Gumru, O.Z. Foreign Body (Alginate Impression Paste) in the Maxillary Sinus: A Case Report. J. Nihon Univ. Sch. Dent. 1990, 32, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Bida, D.F. Bone impressions made easy. J. Oral Implantol. 1984, 11, 594–600. [Google Scholar] [PubMed]
- Isola, G.; Cicciù, M.; Fiorillo, L.; Matarese, G. Association Between Odontoma and Impacted Teeth. J. Craniofac. Surg. 2017, 28, 755–758. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Sun, Y.S.; Pang, H.; Munyendo, W.L.L.; Lv, H.X.; Zhu, S.L. Preparation and Evaluation of Berberine Alginate Beads for Stomach-Specific Delivery. Molecules 2011, 16, 10347–10356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arlov, Ø.; Skjåk-Bræk, G. Sulfated Alginates as Heparin Analogues: A Review of Chemical and Functional Properties. Molecules 2017, 22, 778. [Google Scholar] [CrossRef] [PubMed]
- Andersen, T.; Auk-Emblem, P.; Dornish, M. 3D Cell Culture in Alginate Hydrogels. Microarrays 2015, 4, 133–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.; Zhu, Y.; Men, Y.; Zeng, Y.; Sun, Y. Purification and Characterization of a Novel Alginate Lyase from the Marine Bacterium Bacillus sp. Alg07. Mar. Drugs 2018, 16, 86. [Google Scholar] [CrossRef] [PubMed]
- Gang, L.; Dun-Chen, L.; Ping-Ping, L.; Ran-Ran, L.; Shu-Ying, C. Nanoparticle methotrexate delivery system for the treatment of paediatric patients with inflammatory bowel disease. Biomed. Res. 2017, 28, 3328–3335. [Google Scholar]
- Isola, G.; Ramaglia, L.; Cordasco, G.; Lucchese, A.; Fiorillo, L.; Matarese, G. The effect of a functional appliance in the management of temporomandibular joint disorders in patients with juvenile idiopathic arthritis. Minerva Stomatol. 2017, 66, 1–8. [Google Scholar] [PubMed]
- Thornton, A.J.; Alsberg, E.; Albertelli, M.; Mooney, D.J. Shape-defining scaffolds for minimally invasive tissue engineering. Transplantation 2004, 77, 1798–1803. [Google Scholar] [CrossRef]
- Ma, H.L.; Hung, S.C.; Lin, S.Y.; Chen, Y.L.; Lo, W.H. Chondrogenesis of human mesenchymal stem cells encapsulated in alginate beads. J. Biomed. Mater. Res. Part A 2003, 64, 273–281. [Google Scholar] [CrossRef]
- Igarashi, T.; Iwasaki, N.; Kasahara, Y.; Minami, A. A cellular implantation system using an injectable ultra-purified alginate gel for repair of osteochondral defects in a rabbit model. J. Biomed. Mater. Res. Part A 2010, 94, 844–855. [Google Scholar] [CrossRef]
- Awad, H.A.; Wickham, M.Q.; Leddy, H.A.; Gimble, J.M.; Guilak, F. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 2004, 25, 3211–3222. [Google Scholar] [CrossRef]
- Jin, X.B.; Sun, Y.S.; Zhang, K.; Wang, J.; Shi, T.P.; Ju, X.D.; Lou, S.Q. Ectopic neocartilage formation from predifferentiated human adipose derived stem cells induced by adenoviral-mediated transfer of hTGF-beta2. Biomaterials 2007, 28, 2994–3003. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Kang, S.W.; Kim, B.S.; Mooney, D.J.; Lee, K.Y. Shear-reversibly cross-linked alginate hydrogels for tissue engineering. Macromol. Biosci. 2009, 9, 895–901. [Google Scholar] [CrossRef]
- Saxena, A.K.; Marler, J.; Benvenuto, M.; Willital, G.H.; Vacanti, J.P. Skeletal muscle tissue engineering using isolated myoblasts on synthetic biodegradable polymers: Preliminary studies. Tissue Eng. 1999, 5, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Levenberg, S.; Rouwkema, J.; Macdonald, M.; Garfein, E.S.; Kohane, D.S.; Darland, D.C.; Marini, R.; van Blitterswijk, C.A.; Mulligan, R.C.; D’Amore, P.A.; et al. Engineering vascularized skeletal muscle tissue. Nat. Biotechnol. 2005, 23, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Garrofé, A.B.; Ferrari, B.A.; Picca, M.; Kaplan, A.E. Linear Dimensional Stability of Irreversible Hydrocolloid Materials Over Time. Acta Odontol. Latinoam. 2015, 28, 258–262. [Google Scholar] [PubMed]
- Guiraldo, R.D.; Moreti, A.F.; Martinelli, J.; Berger, S.B.; Meneghel, L.L.; Caixeta, R.V.; Sinhoreti, M.A. Influence of alginate impression materials and storage time on surface detail reproduction and dimensional accuracy of stone models. Acta Odontol. Latinoam. 2015, 28, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Rohanian, A.; Ommati Shabestari, G.; Zeighami, S.; Samadi, M.J.; Shamshiri, A.R. Effect of storage time of extended-pour and conventional alginate impressions on dimensional accuracy of casts. J. Dent. 2014, 11, 655–664. [Google Scholar]
- Inoue, S.; Kawara, M.; Iida, T.; Iwasaki, M.; Komiyama, O. Influences of differences intray design and impression material on impression pressure at edentulous mandible. J. Oral Sci. 2017, 59, 505–510. [Google Scholar] [CrossRef]
- Hyde, T.P.; Craddock, H.L.; Gray, J.C.; Pavitt, S.H.; Hulme, C.; Godfrey, M.; Fernandez, C.; Navarro-Coy, N.; Dillon, S.; Wright, J.; et al. A randomised controlled trial of complete denture impression materials. J. Dent. 2014, 42, 895–901. [Google Scholar] [CrossRef]
- Marquezan, M.; Jurach, E.M.; Guimarães, V.D.; Valentim, R.G.; Nojima, L.I.; Nojima Mda, C. Does the contact time of alginate with plaster cast influence its properties? Braz. Oral Res. 2012, 26, 197–201. [Google Scholar] [CrossRef] [Green Version]
- Farzin, M.; Panahandeh, H. Effect of pouring time and storage temperature on dimensional stability of casts made from irreversible hydrocolloid. J. Dent. 2010, 7, 179–184. [Google Scholar]
- Matarese, G.; Ramaglia, L.; Fiorillo, L.; Cervino, G.; Lauritano, F.; Isola, G. Implantology and Periodontal Disease: The Panacea to Problem Solving? Open Dent. J. 2017, 11, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Cervino, G.; Fiorillo, L.; Spagnuolo, G.; Bramanti, E.; Laino, L.; Lauritano, F.; Cicciù, M. Interface Between MTA and Dental Bonding Agents: Scanning Electron Microscope Evaluation. J. Int. Soc. Prev. Commun. Dent. 2017, 7, 64–68. [Google Scholar] [CrossRef]
- Fonseca, R.B.; Branco, C.A.; Haiter-Neto, F.; Gonçalves Lde, S.; Soares, C.J.; Carlo, H.L.; Sinhoreti, M.A.; Correr-Sobrinho, L. Radiodensity evaluation of dental impression materials in comparison to tooth structures. J. Appl. Oral Sci. 2010, 18, 467–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwasaki, Y.; Hiraguchi, H.; Iwasaki, E.; Yoneyama, T. Effects of immersion disinfection of agar-alginate combined impressions on the surface properties of stone casts. Dent. Mater. J. 2016, 35, 45–50. [Google Scholar] [CrossRef]
- Hiraguchi, H.; Kaketani, M.; Hirose, H.; Yoneyama, T. Effect of immersion disinfection of alginate impressions in sodium hypochlorite solution on the dimensional changes of stone models. Dent. Mater. J. 2012, 31, 280–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiraguchi, H.; Kaketani, M.; Hirose, H.; Yoneyama, T. The influence of storing alginate impressions sprayed with disinfectant on dimensional accuracy and deformation of maxillary edentulous stone models. Dent. Mater. J. 2010, 29, 309–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surna, R.; Junevicius, J.; Rutkauskas, E. In vitro investigation of the integration depth of oral fluids and disinfectants into alginate impressions. Stomatologija 2009, 11, 129–134. [Google Scholar]
- Hulme, C.; Yu, G.; Browne, C.; O’Dwyer, J.; Craddock, H.; Brown, S.; Gray, J.; Pavitt, S.; Fernandez, C.; Godfrey, M.; et al. Cost-effectiveness of silicone and alginate impressions for complete dentures. J. Dent. 2014, 42, 902–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cicciù, M.; Cervino, G.; Herford, A.S.; Famà, F.; Bramanti, E.; Fiorillo, L.; Lauritano, F.; Sambataro, S.; Troiano, G.; Laino, L. Facial Bone Reconstruction Using both Marine or Non-Marine Bone Substitutes: Evaluation of Current Outcomes in a Systematic Literature Review. Mar. Drugs 2018, 16, 27. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Tan, H. Alginate-based biomaterials for regenerative medicine applications. Materials 2013, 6, 1285–1309. [Google Scholar] [CrossRef] [PubMed]
Reference | Authors | Title | Results | Years |
---|---|---|---|---|
[5], pp. 154–196 | Spoto G. | Title of chapter. In Materiali e Tecnologie Odontostomatologiche | Alginates features | 2013 |
[5], pp. 150–153 | Spoto G. | Title of chapter. In Materiali e Tecnologie Odontostomatologiche | Alginates impression techniques | 2013 |
[18] | Cesur et al. | Evaluation of digital model accuracy and time-dependent deformation of alginate impressions. | Deformation and alginates storage | 2017 |
[39] | Garrofé et al. | Linear Dimensional Stability of Irreversible Hydrocolloid Materials Over Time. | Deformation and alginates storage | 2015 |
[40] | Guiraldo et al. | Influence of alginate impression materials and storage time on surface detail reproduction and dimensional accuracy of stone models. | Deformation alginates storage, | 2015 |
[42] | Rohanian et al. | Effect of storage time of extended-pour and conventional alginate impressions on dimensional accuracy of casts. | Deformation and alginates storage and alginates impression detail | 2014 |
[43] | Inoue et al. | Influences of differences intray design and impression material on impression pressure at edentulous mandible. | Alginates impression techniques | 2017 |
[44] | Hyde et al. | A randomised controlled trial of complete denture impression materials. | Alginates impression techniques | 2014 |
[45] | Marquezan et al. | Does the contact time of alginate with plaster cast influence its properties? | Alginates impression techniques and dental impression material costs | 2012 |
[46] | Farzin et al. | Effect of pouring time and storage temperature on dimensional stability of casts made from irreversible hydrocolloid. | Alginates impression detail and deformation | 2010 |
[49] | Fonseca et al. | Radiodensity evaluation of dental impression materials in comparison to tooth structures. | Alginates impression radiodensity | 2010 |
[50] | Iwasaki et al. | Effects of immersion disinfection of agar-alginate combined impressions on the surface properties of stone casts. | Alginates deformation and deterioration during disinfection | 2016 |
[51] | Hiraguchi et al. | Effect of immersion disinfection of alginate impressions in sodium hypochlorite solution on the dimensional changes of stone models. | Alginates deformation and deterioration during disinfection | 2012 |
[52] | Hiraguchi et al. | The influence of storing alginate impressions sprayed with disinfectant on dimensional accuracy and deformation of maxillary edentulous stone models. | Alginates deformation and deterioration during disinfection | 2010 |
[53] | Surna et al. | In vitro investigation of the integration depth of oral fluids and disinfectants into alginate impressions. | Alginates deformation and deterioration during disinfection | 2009 |
[54] | Hulme et al. | Cost-effectiveness of silicone and alginate impressions for complete dentures. | Impression materials costs | 2014 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cervino, G.; Fiorillo, L.; Herford, A.S.; Laino, L.; Troiano, G.; Amoroso, G.; Crimi, S.; Matarese, M.; D’Amico, C.; Nastro Siniscalchi, E.; et al. Alginate Materials and Dental Impression Technique: A Current State of the Art and Application to Dental Practice. Mar. Drugs 2019, 17, 18. https://doi.org/10.3390/md17010018
Cervino G, Fiorillo L, Herford AS, Laino L, Troiano G, Amoroso G, Crimi S, Matarese M, D’Amico C, Nastro Siniscalchi E, et al. Alginate Materials and Dental Impression Technique: A Current State of the Art and Application to Dental Practice. Marine Drugs. 2019; 17(1):18. https://doi.org/10.3390/md17010018
Chicago/Turabian StyleCervino, Gabriele, Luca Fiorillo, Alan Scott Herford, Luigi Laino, Giuseppe Troiano, Giulia Amoroso, Salvatore Crimi, Marco Matarese, Cesare D’Amico, Enrico Nastro Siniscalchi, and et al. 2019. "Alginate Materials and Dental Impression Technique: A Current State of the Art and Application to Dental Practice" Marine Drugs 17, no. 1: 18. https://doi.org/10.3390/md17010018
APA StyleCervino, G., Fiorillo, L., Herford, A. S., Laino, L., Troiano, G., Amoroso, G., Crimi, S., Matarese, M., D’Amico, C., Nastro Siniscalchi, E., & Cicciù, M. (2019). Alginate Materials and Dental Impression Technique: A Current State of the Art and Application to Dental Practice. Marine Drugs, 17(1), 18. https://doi.org/10.3390/md17010018