Capillasterin A, a Novel Pyrano[2,3-f]chromene from the Australian Crinoid Capillaster multiradiatus
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Chemistry Experimental Procedures
3.2. Collection, Extraction and Isolation
3.3. HIV-1 Replication and Apoptosis Assays
3.4. Cell Proliferation Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wolkenstein, K. Persistent and widespread occurrence of bioactive quinone pigments during post–Paleozoic crinoid diversification. Proc. Natl. Acad. Sci. USA 2015, 112, 2794–2799. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Khokhar, S.; Davis, R.A. Crinoids: ancient organisms, modern chemistry. Nat. Prod. Rep. 2017, 34, 571–584. [Google Scholar] [CrossRef] [PubMed]
- Khokhar, S.; Pierens, G.K.; Hooper, J.N.A.; Ekins, M.G.; Feng, Y.; Davis, R.A. Rhodocomatulin-Type Anthraquinones from the Australian Marine Invertebrates Clathria hirsuta and Comatula rotalaria. J. Nat. Prod. 2016, 79, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Summers, M.M.; Messing, C.G.; Rouse, G.W. Phylogeny of Comatulidae (Echinodermata: Crinoidea: Comatulida): A new classification and an assessment of morphological characters for crinoid taxonomy. Mol. Phylogenet. Evol. 2014, 80, 319–339. [Google Scholar] [CrossRef] [PubMed]
- Wätjen, W.; Ebada, S.S.; Bergermann, A.; Chovolou, Y.; Totzke, F.; Kubbutat, M.H.G.; Lin, W.; Proksch, P. Cytotoxic effects of the anthraquinone derivatives 1′-deoxyrhodoptilometrin and (S)-(−)-rhodoptilometrin isolated from the marine echinoderm Comanthus sp. Arch. Toxicol. 2017, 91, 1485–1495. [Google Scholar] [CrossRef] [PubMed]
- Folmer, F.; Harrison, W.T.A.; Tabudravu, J.N.; Jaspars, M.; Aalbersberg, W.; Feussner, K.; Wright, A.D.; Dicato, M.; Diederich, M. NF–κB-inhibiting naphthopyrones from the Fijian echinoderm Comanthus parvicirrus. J. Nat. Prod. 2008, 71, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-C.; Lin, Y.-Y.; Jean, Y.-H.; Lu, Y.; Chen, W.-F.; Yang, S.-N.; Wang, H.-M.; Jang, I.-Y.; Chen, I.-M.; Su, J.-H.; Sung, P.-J.; Sheu, J.-H.; Wen, Z.-H. Anti–inflammatory and analgesic effects of the marine-derived compound comaparvin isolated from the crinoid Comanthus bennetti. Molecules 2014, 19, 14667–14686. [Google Scholar] [CrossRef] [PubMed]
- Bokesch, H.R.; Cartner, L.K.; Fuller, R.W.; Wilson, J.A.; Henrich, C.J.; Kelley, J.A.; Gustafson, K.R.; McMahon, J.B.; McKee, T.C. Inhibition of ABCG2–mediated drug efflux by naphthopyrones from marine crinoids. Bioorg. Med. Chem. Lett. 2010, 20, 3848–3850. [Google Scholar] [CrossRef] [PubMed]
- Jebasingh, S.E.J.; Rajesh, R.P.; Raja, P.; Lakshmikandan, M. Presence of antibacterial activity in feather star, Capillaster multiradiatus extract against human and fish bacterial pathogens. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2015, 85, 271–276. [Google Scholar]
- Vien, L.T.; Hanh, T.T.H.; Huong, P.T.T.; Dang, N.H.; Thanh, N.V.; Cuong, N.X.; Nam, N.H.; Thung, D.C.; Kiem, P.V.; Minh, C.V. Anthraquinone and butenolide constituents from the crinoid Capillaster multiradiatus. Chem. Pharm. Bull. 2018, 66, 1023–1026. [Google Scholar] [CrossRef] [PubMed]
- Chovolou, Y.; Ebada, S.S.; Wätjen, W.; Proksch, P. Identification of angular naphthopyrones from the Philippine echinoderm Comanthus species as inhibitors of the NF–κB signaling pathway. Eur. J. Pharmacol. 2011, 657, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, M.; Kohno, J.; Yamamoto, K.; Okuda, T.; Nishio, M.; Kawano, K.; Ohnuki, T. TMC-256A1 and C1, new inhibitors of IL-4 signal transduction produced by Aspergillus niger var niger TC 1629. J. Antibiot. 2002, 55, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Francesconi, K. Pigments of some echinoderms collected from Western Australian waters. Aust. J. Chem. 1980, 33, 2781–2784. [Google Scholar] [CrossRef]
- Sakuma, Y.; Tanaka, J.; Higa, T. New naphthopyrone pigments from the crinoid Comanthus parvicirrus. Aust. J. Chem. 1987, 40, 1613–1616. [Google Scholar] [CrossRef]
- Frandsen, R.J.N.; Nielsen, N.J.; Maolanon, N.; Sørensen, J.C.; Olsson, S.; Nielsen, J.; Giese, H. The biosynthetic pathway for aurofusarin in Fusarium graminearum reveals a close link between the naphthoquinones and naphthopyrones. Mol. Microbiol. 2006, 61, 1069–1080. [Google Scholar] [CrossRef] [PubMed]
- Staunton, J.; Weissman, K.J. Polyketide biosynthesis: a millennium review. Nat. Prod. Rep. 2001, 18, 380–416. [Google Scholar] [CrossRef] [PubMed]
- Tietjen, I.; Williams, D.E.; Read, S.; Kuang, X.T.; Mwimanzi, P.; Wilhelm, E.; Markle, T.; Kinloch, N.N.; Naphen, C.N.; Tenney, K.; et al. Inhibition of NF–κB-dependent HIV-1 replication by the marine natural product bengamide A. Antiviral Res. 2018, 152, 94–103. [Google Scholar] [CrossRef]
- Brockman, M.A.; Tanzi, G.O.; Walker, B.D.; Allen, T.M. Use of a novel GFP reporter cell line to examine replication capacity of CXCR4- and CCR5-tropic HIV-1 by flow cytometry. J. Virol. Methods 2006, 131, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Richard, K.; Williams, D.; de Silva, E.; Brockman, M.; Brumme, Z.; Andersen, R.; Tietjen, I. Identification of novel HIV-1 latency-reversing agents from a library of marine natural products. Viruses 2018, 10, 348. [Google Scholar] [CrossRef]
- Compounds Australia. Available online: https://www.griffith.edu.au/griffith–sciences/compounds–australia (accessed on 9 September 2018).
- Zulfiqar, B.; Jones, A.; Sykes, M.; Shelper, T.; Davis, R.A.; Avery, V. Screening a natural product-based library against kinetoplastid parasites. Molecules 2017, 22, 1715. [Google Scholar] [CrossRef]
- Levrier, C.; Sadowski, M.C.; Rockstroh, A.; Gabrielli, B.; Kavallaris, M.; Lehman, M.; Davis, R.A.; Nelson, C.C. 6alpha–Acetoxyanopterine: A novel structure class of mitotic inhibitor disrupting microtubule dynamics in prostate cancer cells. Mol. Cancer Ther. 2017, 16, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Foley, G.E.; Lazarus, H.; Farber, S.; Uzman, B.G.; Boone, B.A.; McCarthy, R.E. Continuous culture of human lymphoblasts from peripheral blood of a child with acute leukemia. Cancer 1965, 18, 522–529. [Google Scholar] [CrossRef] [Green Version]
- Adachi, A.; Gendelman, H.E.; Koenig, S.; Folks, T.; Willey, R.; Rabson, A.; Martin, M.A. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J. Virol. 1986, 59, 284–291. [Google Scholar] [PubMed]
- Tietjen, I.; Ntie-Kang, F.; Mwimanzi, P.; Onguéné, P.A.; Scull, M.A.; Idowu, T.O.; Ogundaini, A.O.; Meva’a, L.M.; Abegaz, B.M.; Rice, C.M.; et al. Screening of the pan-African Natural Product Library identifies ixoratannin A-2 and boldine as novel HIV-1 inhibitors. PLoS ONE 2015, 10, e0121099. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Vial, M.-L.; Tello Velasquez, J.; Ekberg, J.A.K.; Davis, R.A.; St John, J.A. The serrulatane diterpenoid natural products RAD288 and RAD289 stimulate properties of olfactory ensheathing cells useful for neural repair therapies. Sci. Rep. 2018, 8, 10240. [Google Scholar] [CrossRef] [PubMed]
Position | δc, type | δH, mult. (J in Hz) | COSY | HMBC | ROESY |
---|---|---|---|---|---|
2 | 168.0, C | - | - | - | - |
3 | 112.7, CH | 6.21, s | 11 | 2, 4, 4a, 4b w, 11 | 11 |
4 | 175.2, C | - | - | - | - |
4a | 113.1, C | - | - | - | - |
4b | 153.2, C | - | - | - | - |
6 | 161.0, C | - | - | - | - |
7 | 90.6, CH | 5.76, s | 8-OCH3 w | 6, 8, 8a, 9 | 8-OCH3 |
8 | 164.9, C | - | - | - | - |
8a | 107.9, C | - | - | - | - |
9 | 143.8, C | - | - | - | - |
10 | 111.2, CH | 7.06, s | - | 4 w, 4a, 4b w, 8a, 10a, 14 | - |
10a | 159.2, C | - | - | - | - |
11 | 35.6, CH2 | 2.58, t (7.2) | 12 | 13, 12, 3, 2 | 3, 13 |
12 | 20.1, CH2 | 1.76, tq (7.2, 7.4) | 11,13 | 13, 11, 2 | - |
13 | 13.6, CH3 | 1.03, t (7.4) | 12 | 11, 12 | 11 |
14 | 201.2, C | - | - | - | - |
15 | 31.4, CH3 | 2.52, s | - | 9, 14 | 8-OCH3 w |
8-OCH3 | 56.7, OCH3 | 3.96, s | 7 w | 8, 7 w | 7, 15 w |
Compound | EC50 (µM) a |
---|---|
1 | >100 |
2 | 7.5 ± 1.7 |
3 | 25.5 ± 3.4 |
4 | 14.5 ± 5.8 |
5 | 15.6 ± 6.5 |
6 | 20.2 ± 4.9 |
7 | >100 |
Efavirenz | 0.0025 ± 0.0019 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lum, K.Y.; Carroll, A.R.; Ekins, M.G.; Read, S.; Haq, Z.; Tietjen, I.; St John, J.; Davis, R.A. Capillasterin A, a Novel Pyrano[2,3-f]chromene from the Australian Crinoid Capillaster multiradiatus. Mar. Drugs 2019, 17, 26. https://doi.org/10.3390/md17010026
Lum KY, Carroll AR, Ekins MG, Read S, Haq Z, Tietjen I, St John J, Davis RA. Capillasterin A, a Novel Pyrano[2,3-f]chromene from the Australian Crinoid Capillaster multiradiatus. Marine Drugs. 2019; 17(1):26. https://doi.org/10.3390/md17010026
Chicago/Turabian StyleLum, Kah Yean, Anthony R. Carroll, Merrick G. Ekins, Silven Read, Zahra Haq, Ian Tietjen, James St John, and Rohan A. Davis. 2019. "Capillasterin A, a Novel Pyrano[2,3-f]chromene from the Australian Crinoid Capillaster multiradiatus" Marine Drugs 17, no. 1: 26. https://doi.org/10.3390/md17010026
APA StyleLum, K. Y., Carroll, A. R., Ekins, M. G., Read, S., Haq, Z., Tietjen, I., St John, J., & Davis, R. A. (2019). Capillasterin A, a Novel Pyrano[2,3-f]chromene from the Australian Crinoid Capillaster multiradiatus. Marine Drugs, 17(1), 26. https://doi.org/10.3390/md17010026