A Potential Antineoplastic Peptide of Human Prostate Cancer Cells Derived from the Lesser Spotted Dogfish (Scyliorhinus canicula L.)
Abstract
:1. Introduction
2. Results
2.1. Decrease in Mitochondrial Activity and Cell Number Was Reported in pE-K092D-Treated Human Prostate Cancer Cells
2.2. pE-K092D Induced a Generation Lag in Human Prostate Cancer Cells
2.3. pE-K092D Induced Early Autophagy Inhibition Followed by Membrane Destabilization and Necrosis
2.4. pE-K092D Induced Early Cytoskeleton Perturbations with Particular Features
3. Discussion
4. Materials and Methods
4.1. Cell Culture and Treatment Conditions
4.2. Mitochondrial Activity Assay
4.3. Apoptosis/necrosis and Membranes Integrity Analysis
4.4. Cell Cycle Analysis
4.5. Cell Generation Study
4.6. Autophagy Measurement
4.7. Immunocytochemistry Analysis
4.8. Subcellular Fractionation
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Suarez-Jimenez, G.M.; Burgos-Hernandez, A.; Ezquerra-Brauer, J.M. Bioactive peptides and depsipeptides with anticancer potential: Sources from marine animals. Mar. Drugs 2012, 10, 963–986. [Google Scholar] [CrossRef] [PubMed]
- Negi, B.; Kumar, D.; Rawat, D.S. Marine Peptides as Anticancer Agents: A Remedy to Mankind by Nature. Curr. Protein Pept. Sci. 2017, 18, 885–904. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Phat, C.; Hong, S.C. Structural diversity of marine cyclic peptides and their molecular mechanisms for anticancer, antibacterial, antifungal, and other clinical applications. Peptides 2017, 95, 94–105. [Google Scholar] [CrossRef]
- Blanco-Míguez, A.; Gutiérrez-Jácome, A.; Pérez-Pérez, M.; Pérez-Rodríguez, G.; Catalán-García, S.; Fdez-Riverola, F.; Lourenço, A.; Sánchez, B. From amino acid sequence to bioactivity: The biomedical potential of antitumor peptides. Protein Sci. 2016, 25, 1084–1095. [Google Scholar] [CrossRef]
- Wang, L.; Dong, C.; Li, X.; Han, W.; Su, X. Anticancer potential of bioactive peptides from animal sources (Review). Oncol. Rep. 2017, 38, 637–651. [Google Scholar] [CrossRef]
- Fan, M.; Nath, A.K.; Tang, Y.; Choi, Y.J.; Debnath, T.; Choi, E.J.; Kim, E.K. Investigation of the Anti-Prostate Cancer Properties of Marine-Derived Compounds. Mar. Drugs 2018, 16, 160–174. [Google Scholar] [CrossRef]
- Huang, F.; Yang, Z.; Yu, D.; Wang, J.; Li, R.; Ding, G. Sepia ink oligopeptide induces apoptosis in prostate cancer cell lines via caspase-3 activation and elevation of Bax/Bcl-2 ratio. Mar. Drugs 2012, 10, 2153–2165. [Google Scholar] [CrossRef]
- Huang, F.; Jing, Y.; Ding, G.; Yang, Z. Isolation and purification of novel peptides derived from Sepia ink: Effects on apoptosis of prostate cancer cell PC-3. Mol. Med. Rep. 2017, 16, 4222–4228. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Ding, G.; Yang, Z.; Yu, F. Two novel peptides derived from Sinonovacula constricta inhibit the proliferation and induce apoptosis of human prostate cancer cells. Mol. Med. Rep. 2017, 16, 6697–6707. [Google Scholar] [CrossRef]
- Yu, F.; Zhang, Y.; Ye, L.; Tang, Y.; Ding, G.; Zhang, X.; Yang, Z. A novel anti-proliferative pentapeptide (ILYMP) isolated from Cyclina sinensis protein hydrolysate induces apoptosis of DU-145 prostate cancer cells. Mol. Med. Rep. 2018, 18, 771–778. [Google Scholar] [CrossRef]
- Bhargava, P.; Marshall, J.L.; Dahut, W.; Rizvi, N.; Trocky, N.; Williams, J.I.; Hait, H.; Song, S.; Holroyd, K.J.; Hawkins, M.J. A Phase I and Pharmacokinetic Study of Squalamine, a Novel Antiangiogenic Agent, in Patients with Advanced Cancers. Clin. Cancer Res. 2001, 7, 3912–3919. [Google Scholar]
- Connolly, B.; Desai, A.; Garcia, C.A.; Thomas, E.; Gast, M.J. Squalamine lactate for exudative age-related macular degeneration. Ophthalmol. Clin. N. Am. 2006, 19, 381–391. [Google Scholar] [CrossRef]
- Zasloff, M.; Adams, A.P.; Beckerman, B.; Campbell, A.; Han, Z.; Luijten, E.; Meza, I.; Julander, J.; Mishra, A.; Qu, W.; et al. Squalamine as a broad-spectrum systemic antiviral agent with therapeutic potential. Proc. Natl. Acad. Sci. USA 2011, 108, 15978–15983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Márquez-Garbán, D.C.; Gorrín-Rivas, M.; Chen, H.W.; Sterling, C., Jr.; Elashoff, D.; Hamilton, N.; Pietras, R.J. Squalamine blocks tumor-associated angiogenesis and growth of human breast cancer cells with or without HER-2/neu overexpression. Cancer Lett. 2019, 449, 66–75. [Google Scholar] [CrossRef]
- Lv, Z.; Ou, Y.; Li, Q.; Zhang, W.; Ye, B.; Wu, W. Expression, purification and bioactivities analysis of recombinant active peptide from shark liver. Mar. Drugs 2009, 7, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Nomura, A.; Noda, N.; Maruyama, S. Purification of angiotensin I-converting enzyme inhibitors in pelagic thresher Alopias pelagicus muscle hydrolysate and viscera extracts. Fish Sci. 2002, 68, 954–956. [Google Scholar] [CrossRef] [Green Version]
- García-Moreno, P.J.; Espejo-Carpio, F.J.; Guadix, A.; Guadix, E.M. Production and identification of angiotensin I-converting enzyme (ACE) inhibitory peptides from Mediterranean fish discards. J. Funct. Foods 2015, 18, 95–105. [Google Scholar] [CrossRef]
- Ngo, D.-H.; Kang, K.-H.; Ryu, B.; Vo, T.-S.; Jung, W.-K.; Byun, H.-G.; Kim, S.-K. Angiotensin-I converting enzyme inhibitory peptides from antihypertensive skate (Okamejei kenojei) skin gelatin hydrolysate in spontaneously hypertensive rats. Food Chem. 2015, 174, 37–43. [Google Scholar] [CrossRef]
- Zheng, L.; Ling, P.; Wang, Z.; Niu, R.; Hu, C.; Zhang, T.; Lin, X. A novel polypeptide from shark cartilage with potent anti-angiogenic activity. Cancer Biol. Ther. 2007, 6, 775–780. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Zhao, Y.Q.; Hu, F.Y.; Chi, C.F.; Wang, B. Anticancer Activity of a Hexapeptide from Skate (Raja porosa) Cartilage Protein Hydrolysate in HeLa Cells. Mar. Drugs 2016, 14, 153. [Google Scholar] [CrossRef]
- Auvray, P.; Duval, E. Peptides isolés et purifiés à partir de testicules de roussettes. WO 2012/130999 A1 4 October 2012. [Google Scholar]
- White, E.J.; Martin, V.; Liu, J.-L.; Klein, S.R.; Piya, S.; Gomez-Manzano, C.; Fueyo, J.; Jiang, H. Autophagy regulation in cancer development and therapy. Am. J. Cancer Res. 2011, 1, 362–372. [Google Scholar] [PubMed]
- Esteve, J.M.; Knecht, E. Mechanisms of autophagy and apoptosis: Recent developments in breast cancer cells. World J. Biol. Chem. 2011, 2, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Yang, Z.; Xu, Y.; Chen, Y.; Yu, Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol. Cancer 2015, 14, 48. [Google Scholar] [CrossRef] [PubMed]
- Kundu, S.; Kim, T.H.; Yoon, J.H.; Shin, H.S.; Lee, J.; Jung, J.H.; Kim, H.S. Viriditoxin regulates apoptosis and autophagy via mitotic catastrophe and microtubule formation in human prostate cancer cells. Int. J. Oncol. 2014, 45, 2331–2340. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, M.; Wang, D.; Li, X.; Wang, W.; Lou, H.; Yuan, H. Malformin A1 promotes cell death through induction of apoptosis, necrosis and autophagy in prostate cancer cells. Cancer Chemother. Pharmacol. 2016, 77, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Amaravadi, R.K.; Yu, D.; Lum, J.J.; Bui, T.; Christophorou, M.A.; Evan, G.I.; Thomas-tikhonenko, A.; Thompson, C.B. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J. Clin. Investig. 2007, 117, 326–336. [Google Scholar] [CrossRef] [Green Version]
- Racoma, I.O.; Meisen, W.H.; Wang, Q.-E.; Kaur, B.; Wani, A.A. Thymoquinone inhibits autophagy and induces cathepsin-mediated, caspase-independent cell death in glioblastoma cells. PLoS ONE 2013, 8, e72882. [Google Scholar] [CrossRef]
- Kast, D.J.; Dominguez, R. The Cytoskeleton-Autophagy Connection. Curr. Biol. 2017, 27, R318–R326. [Google Scholar] [CrossRef]
- Wills, J.; Credle, J.; Oaks, A.W.; Duka, V.; Lee, J.-H.; Jones, J.; Sidhu, A. Paraquat, but not maneb, induces synucleinopathy and tauopathy in striata of mice through inhibition of proteasomal and autophagic pathways. PLoS ONE 2012, 7, e30745. [Google Scholar] [CrossRef]
- di Pietro, F.; Echard, A.; Morin, X. Regulation of mitotic spindle orientation: An integrated view. EMBO Rep. 2016, 17, 1106–1130. [Google Scholar] [CrossRef]
- Jackson, S.J.T.; Singletary, K.W. Sulforaphane: A naturally occurring mammary carcinoma mitotic inhibitor, which disrupts tubulin polymerization. Carcinogenesis 2004, 25, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Appierto, V.; Tiberio, P.; Cavadini, E.; Casalini, P.; Cappelletti, G.; Formelli, F. Antimitotic effect of the retinoid 4-oxo-fenretinide through inhibition of tubulin polymerization: A novel mechanism of retinoid growth-inhibitory activity. Mol. Cancer Ther. 2009, 8, 3360–3368. [Google Scholar] [CrossRef] [PubMed]
- Duangmano, S.; Sae-Lim, P.; Suksamrarn, A.; Domann, F.E.; Patmasiriwat, P. Cucurbitacin B inhibits human breast cancer cell proliferation through disruption of microtubule polymerization and nucleophosmin/B23 translocation. BMC Complement. Altern. Med. 2012, 12, 185. [Google Scholar] [CrossRef]
- Park, C.J.; Song, S.; Lee, P.R.; Shou, W.; Deshaies, R.J.; Lee, K.S. Loss of CDC5 Function in Saccharomyces cerevisiae Leads to Defects in Swe1p Regulation and Bfa1p/Bub2p-Independent Cytokinesis. Genetics 2003, 33, 21–33. [Google Scholar]
- Dayma, K.; Radha, V. Cytoskeletal remodeling by C3G to induce neurite-like extensions and inhibit motility in highly invasive breast carcinoma cells. Biochim. Biophys. Acta 2011, 1813, 456–465. [Google Scholar] [CrossRef] [Green Version]
- Strobl, J.S.; Nikkhah, M.; Agah, M. Actions of the anti-cancer drug suberoylanilide hydroxamic acid (SAHA) on human breast cancer cytoarchitecture in silicon microstructures. Biomaterials 2010, 31, 7043–7050. [Google Scholar] [CrossRef]
4 h | 8 h | 12 h | 24 h | 48 h | 72 h | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | PEP | Control | PEP | Control | PEP | Control | PEP | Control | PEP | Control | PEP | |
G0/G1 | 63.20 ± 1.41 | 60.78 ± 0.98 * | 64.92 ± 1.71 | 64.24 ± 0.54 | 50.70 ± 2.99 | 65.22 ± 1.71 * | 57.11 ± 1.78 | 55.82 ± 6.29 | 67.25 ± 3.49 | 71.10 ± 6.02 | 68.83 ± 3.30 | 72.63 ± 0.76 |
S | 13.22 ± 1.28 | 13.49 ± 1.51 | 16.90 ± 0.91 | 14.36 ± 0.54 * | 25.62 ± 0.13 | 16.06 ± 0.14 * | 16.75 ± 1.23 | 16.77 ± 2.59 | 14.36 ± 1.03 | 11.34 ± 2.88 | 14.61 ± 0.85 | 10.62 ± 2.35 * |
G2/M | 22.50 ± 0.01 | 24.82 ± 0.53 * | 18.06 ± 1.07 | 21.27 ± 0.02 * | 23.53 ± 2.94 | 20.81 ± 3.48 * | 26.03 ± 2.55 | 27.06 ± 4.07 | 18.28 ± 3.20 | 17.13 ± 3.62 | 16.06 ± 2.61 | 16.22 ± 1.87 |
6 h | 12 h | 48 h | ||||
---|---|---|---|---|---|---|
Control | PEP | Control | PEP | Control | PEP | |
g0 | 17.5 ± 0.4 | 19.8 ± 1.2 | 11.0 ± 0.8 * | 21.0 ± 1.3 | 1.1 ± 0.0 * | 11.3 ± 2.4 |
g1 | 73.6 ± 1.6 | 72.7 ± 1.8 | 74.6 ± 2.4 * | 66.4 ± 1.8 | 17.1 ± 1.2 * | 29.6 ± 1.9 |
g2 | 8.0 ± 0.9 | 7.6 ± 0.4 | 13.8 ± 1.2 * | 9.7 ± 0.9 | 22.0 ± 1.3 * | 26.5 ± 1.4 |
g3 | 0.3 ± 0.1 | 0.4 ± 0.1 | 0.8 ± 0.1 | 0.6 ± 0.2 | 46.5 ± 2.6 * | 29.0 ± 1.5 |
g4 | 0.1 ± 0.0 | 0.4 ± 0.1 | 0.1 ± 0.0 | 0.2 ± 0.0 | 13.0 ± 0.4 * | 2.2 ± 0.9 |
Study | Samples | 24 h | 48 h | 72 h |
---|---|---|---|---|
Destabilized membranes | Control | 3.0 ± 0.4 | 2.1 ± 0.4 | 2.2 ± 0.8 |
PEP | 6.9 ± 1.1 * | 7.5 ± 2.3 * | 4.8 ± 0.4 * | |
Destroyed membranes | Control | 2.2 ± 0.7 | 1.5 ± 0.1 | 1.5 ± 0.4 |
PEP | 9.1 ± 3.7 * | 3.3 ± 0.3* | 4.6 ± 0.4 * | |
Cell Fragments | Control | 3.7 ± 1.1 | 3.9 ± 0.2 | 4.0 ± 2.6 |
PEP | 5.1 ± 1.4 | 5.3 ± 2.3 | 5.6 ± 2.4 | |
Apoptosis | Control | 2.3 ± 0.8 | 1.5 ± 0.5 | 1.9 ± 1.1 |
PEP | 2.9 ± 1.3 | 2.8 ± 1.5 | 2.7 ± 0.7 | |
Necrosis | Control | 3.1 ± 0.5 | 2.3 ± 0.0 | 4.0 ± 1.2 |
PEP | 5.4 ± 2.6 | 5.2 ± 1.9 * | 6.4 ± 1.1 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosseboeuf, A.; Baron, A.; Duval, E.; Gautier, A.; Sourdaine, P.; Auvray, P. A Potential Antineoplastic Peptide of Human Prostate Cancer Cells Derived from the Lesser Spotted Dogfish (Scyliorhinus canicula L.). Mar. Drugs 2019, 17, 585. https://doi.org/10.3390/md17100585
Bosseboeuf A, Baron A, Duval E, Gautier A, Sourdaine P, Auvray P. A Potential Antineoplastic Peptide of Human Prostate Cancer Cells Derived from the Lesser Spotted Dogfish (Scyliorhinus canicula L.). Marine Drugs. 2019; 17(10):585. https://doi.org/10.3390/md17100585
Chicago/Turabian StyleBosseboeuf, Adrien, Amandine Baron, Elise Duval, Aude Gautier, Pascal Sourdaine, and Pierrick Auvray. 2019. "A Potential Antineoplastic Peptide of Human Prostate Cancer Cells Derived from the Lesser Spotted Dogfish (Scyliorhinus canicula L.)" Marine Drugs 17, no. 10: 585. https://doi.org/10.3390/md17100585
APA StyleBosseboeuf, A., Baron, A., Duval, E., Gautier, A., Sourdaine, P., & Auvray, P. (2019). A Potential Antineoplastic Peptide of Human Prostate Cancer Cells Derived from the Lesser Spotted Dogfish (Scyliorhinus canicula L.). Marine Drugs, 17(10), 585. https://doi.org/10.3390/md17100585