Bioactive Secondary Metabolites from the Culture of the Mangrove-Derived Fungus Daldinia eschscholtzii HJ004
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Fungal Material
3.3. Extraction and Isolation
3.4. Biological Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Diabetes Federation. IDF Diabetes Atlas, 8th ed. 2017. Available online: http://www.diabetesatlas.org/resources/2017-atlas.html (accessed on 14 November 2017).
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 2018, 14, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.M.; Newton, R.W.; Ruta, D.A.; MacDonald, T.M.; Morris, A.D. Socio-economic status, obesity and prevalence of Type 1 and Type 2 diabetes mellitus. Diabet. Med. 2000, 17, 478–480. [Google Scholar] [CrossRef] [PubMed]
- Bruno, G.; Runzo, C.; Cavallo-Perin, P.; Trovati, M.; Merletti, F.; Rivetti, M.; Pinach, S.; Novelli, G.; Trovati, M.; Cerutti, F.; et al. Incidence of Type 1 and Type 2 Diabetes in Adults Aged 30–49 Years: The population-based registry in the province of Turin, Italy. Diabet. Care 2005, 28, 2613–2619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holman, N.; Young, B.; Gadsby, R. Current prevalence of Type 1 and Type 2 diabetes in adults and children in the UK. Diabet. Med. 2015, 32, 1119–1120. [Google Scholar] [CrossRef]
- Cui, H.; Liu, Y.Y.; Nie, Y.; Liu, Z.M.; Chen, S.H.; Zhang, Z.R.; Lu, Y.J.; He, L.; Huang, X.S.; She, Z.G. Polyketides from the mangrove-derived endophytic fungus Nectria sp. HN001 and their α-glucosidase inhibitory activity. Mar. Drugs 2016, 14, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.T.; Liu, J.T.; Li, L.; Gong, C.; Wang, S.P.; Yang, F.; Hua, H.M.; Lin, H.W. New butenolide derivatives from the marine sponge-derived fungus Aspergillus terreus. Bioorg. Med. Chem. Lett. 2018, 28, 315–318. [Google Scholar] [CrossRef] [PubMed]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2019, 36, 122–173. [Google Scholar] [CrossRef] [Green Version]
- Liao, H.X.; Zheng, C.J.; Huang, G.L.; Mei, R.Q.; Nong, X.H.; Shao, T.M.; Chen, G.Y.; Wang, C.Y. Bioactive polyketide derivatives from the mangrove-derived fungus Daldinia eschscholtzii HJ004. J. Nat. Prod. 2019, 82, 2211–2219. [Google Scholar] [CrossRef]
- Huang, G.L.; Zhou, X.M.; Bai, M.; Liu, Y.X.; Zhao, Y.L.; Luo, Y.P.; Niu, Y.Y.; Zheng, C.J.; Chen, G.Y. Dihydroisocoumarins from the mangrove-derived fungus Penicillium citrinum. Mar. Drugs 2016, 14, 177. [Google Scholar] [CrossRef] [Green Version]
- Mei, R.Q.; Huang, G.L.; Wang, B.; Bai, M.; Luo, Y.P.; Chen, G.Y.; Zheng, C.J. Two new isocoumarins isolated from a mangrove-derived fungus Penicillium citrinum HL-5126. Chin. J. Org. Chem. 2019, 39, 1479–1482. [Google Scholar] [CrossRef]
- Bai, M.; Zheng, C.J.; Huang, G.L.; Mei, R.Q.; Wang, B.; Luo, Y.P.; Zheng, C.; Niu, Z.G.; Chen, G.Y. Bioactive meroterpenoids and isocoumarins from the mangrove-derived fungus Penicillium sp. TGM112. J. Nat. Prod. 2019, 82, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.J.; Bai, M.; Zhou, X.M.; Huang, G.L.; Shao, T.M.; Luo, Y.P.; Niu, Z.G.; Niu, Y.Y.; Chen, G.Y.; Han, C.R. Penicilindoles A–C, cytotoxic indole diterpenes from the mangrove-derived fungus Eupenicillium sp. HJ002. J. Nat. Prod. 2018, 81, 1045–1049. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Huang, G.L.; Mei, R.Q.; Wang, B.; Luo, Y.P.; Nong, X.H.; Chen, G.Y.; Zheng, C.J. Bioactive lactones from the mangrove-derived fungus Penicillium sp. TGM112. Mar. Drugs 2019, 17, 433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, C.J.; Liao, H.X.; Huang, G.L.; Chen, G.Y.; Luo, Y.P. Method for Preparing Polyketone Compound from Endophytic Fungi of Mangrove, and Application Thereof. Patent No. CN108640897, 12 October 2018. [Google Scholar]
- Bringmann, G.; Mutanyatta-Comer, J.; Maksimenka, K.; Wanjohi, J.M.; Heydenreich, M.; Brun, R.; Müller, W.E.; Peter, M.G.; Midiwo, J.O.; Yenesew, A. Joziknipholones A and B: The first dimeric phenylanthraquinones, from the roots of Bulbine frutescens. Chem. Eur. J. 2008, 14, 1420–1429. [Google Scholar] [CrossRef]
- Wen, L.; Guo, Z.Y.; Li, Q.; Zhang, D.Z.; She, Z.G.; Vrijmoed, L.L.P. A new griseofulvin derivative from the mangrove endophytic fungus Sporothrix sp. Chem. Nat. Compd. 2010, 46, 363–365. [Google Scholar] [CrossRef]
- Hallock, Y.F.; Clardy, J.; Kenfield, D.S.; Strobel, G. De-O-methyldiaporthin, a phytotoxin from Drechslera siccans. Phytochemistry 1988, 27, 3123–3125. [Google Scholar] [CrossRef]
- Islam, M.S.; Ishigami, K.; Watanabe, H. Synthesis of (−)-mellein, (+)-ramulosin, and related natural products. Tetrahedron 2007, 63, 1074–1079. [Google Scholar] [CrossRef]
- Dai, J.Q.; Krohn, K.; Draeger, S.; Schulz, B. New naphthalene-chroman coupling products from the endophytic fungus, Nodulisporium sp. from Erica arborea. Eur. J. Org. Chem. 2009, 10, 1564–1569. [Google Scholar] [CrossRef]
- Budzianowski, J. Naphthoquinones of Drosera spathulata from in vitro cultures. Phytochemistry 1995, 40, 1145–1148. [Google Scholar] [CrossRef]
- Sawada, Y.; Tsuno, T.; Ueki, T.; Yamamoto, H.; Fukagawa, Y.; Oki, T. Pradimicin Q, a new pradimicin aglycone, with α-glucosidase inhibitory activity. J. Antibiot. 1993, 46, 507–510. [Google Scholar] [CrossRef] [PubMed]
- Pierce, C.G.; Uppuluri, P.; Tristan, A.R.; Wormley, J.F.L.; Mowat, E.; Ramage, G.; Lopez-Ribot, J.L. A simple reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat. Protoc. 2008, 3, 1494–1500. [Google Scholar] [CrossRef] [PubMed]
Position | 1 | 2 | ||
---|---|---|---|---|
δC, Type | δH (J in Hz) | δC, Type | δH (J in Hz) | |
1 | 126.0, C | 125.7, C | ||
2 | 135.3, CH | 6.64, d (8.0) | 134.0, CH | 6.90, d (8.4) |
3 | 105.4, CH | 6.07, d (8.0) | 107.6, CH | 6.22, d (8.4) |
4 | 156.2, C | 158.8, C | ||
5 | 208.1, C | 208.1, C | ||
6 | 46.8, CH2 | 3.12, t (7.2) | 46.9, CH2 | 3.10, dd (7.8, 6.6) |
7 | 17.9, CH2 | 1.75, m | 18.0, CH2 | 1.73, m |
8 | 14.1, CH3 | 1.01, t (7.4) | 14.0, CH3 | 0.99, t (7.4) |
9 | 161.0, C | 158.3, C | ||
10 | 111.7, C | 110.2, C | ||
1′ | 29.5, CH | 4.54, dd (5.2, 0.8) | 32.0, CH2 | 4.44, dd (10.4, 8.0) |
2′ | 34.5, CH2 | 1.89, ddd (14.0, 11.6, 5.2)2.07, dt (14.0, 2.0) | 39.1, CH2 | 1.77, ddd (14.0, 11.2, 10.4)2.39, ddd (14.0, 8.0, 1.6) |
3′ | 67.9, CH | 3.98, ddq (11.6, 6.4, 2.0) | 72.6, CH | 4.09, ddq (11.2, 6.4, 1.6) |
5′ | 109.7, CH | 6.55, brd (8.0) | 110.5, CH | 6.58, br d (8.0) |
6′ | 128.1, CH | 7.14, dd (8.0, 7.8) | 127.8, CH | 7.11, dd (8.0, 7.8) |
7′ | 102.2, CH | 6.42, d (7.8) | 103.8, CH | 6.42, br d (7.8) |
8′ | 158.1, C | 158.6, C | ||
9′ | 156.8, C | 158.0, C | ||
10′ | 109.5, C | 114.0, C | ||
3′-Me | 21.5, CH3 | 1.30, d (6.4) | 21.3, CH3 | 1.38, d (6.4) |
8′-OMe | 55.8, CH3 | 3.63, s | 55.7, CH3 | 3.48, s |
9-OH | 13.1, s |
Position | 3 | 4 | 5 | |||
---|---|---|---|---|---|---|
δC, Type | δH (J in Hz) | δC, Type | δH (J in Hz) | δC, Type | δH (J in Hz) | |
1 | 179.8, C | 179.4, C | 157.5, C | |||
2 | 161.2, C | 161.3, C | 99.0, CH | 6.71, d (2.2) | ||
3 | 109.5, CH | 6.05, s | 109.5, CH | 6.08, s | 158.1, C | |
4 | 190.9, C | 191.0, C | 98.8, CH | 6.51, d (2.2) | ||
4a | 111.7, C | 113.9, C | 139.0, C | |||
5 | 159.7, C | 156.0, C | 114.5, CH | 7.30, s | ||
6 | 134.2, C | 134.7, C | 127.7, C | |||
7 | 145.1, C | 147.9, C | 140.5, C | |||
8 | 121.4, CH | 7.50, s | 112.6, CH | 7.56, s | 150.6, C | |
8a | 159.7, C | 131.8, C | 115.4, C | |||
9 | 11.9, CH3 | 2.25, s | 72.1, CH2 | 5.20, s | 73.3, CH2 | 5.16, s |
10 | 20.8, CH3 | 2.36, s | 74.3, CH2 | 5.16, s | 71.7, CH2 | 5.26, s |
1-OMe | 56.2, CH3 | 3.97, s | ||||
2-OMe | 56.7, CH3 | 3.90, s | 56.9, CH3 | 3.93, s | ||
3-OMe | 55.4, CH3 | 3.89, s | ||||
8-OMe | 61.6, CH3 | 3.84, s | ||||
5-OH | 12.61, s | 12.34, s |
Compound | MIC (μg/mL) | ||
---|---|---|---|
S. aureus | MRSA | B. cereus | |
1 | 6.25 | 12.5 | 6.25 |
2 | 12.5 | 12.5 | 6.25 |
3 | >25 | >25 | 12.5 |
Ciprofloxacin a | 0.31 | 1.25 | 1.25 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, H.-X.; Shao, T.-M.; Mei, R.-Q.; Huang, G.-L.; Zhou, X.-M.; Zheng, C.-J.; Wang, C.-Y. Bioactive Secondary Metabolites from the Culture of the Mangrove-Derived Fungus Daldinia eschscholtzii HJ004. Mar. Drugs 2019, 17, 710. https://doi.org/10.3390/md17120710
Liao H-X, Shao T-M, Mei R-Q, Huang G-L, Zhou X-M, Zheng C-J, Wang C-Y. Bioactive Secondary Metabolites from the Culture of the Mangrove-Derived Fungus Daldinia eschscholtzii HJ004. Marine Drugs. 2019; 17(12):710. https://doi.org/10.3390/md17120710
Chicago/Turabian StyleLiao, Hai-Xia, Tai-Ming Shao, Rong-Qing Mei, Guo-Lei Huang, Xue-Ming Zhou, Cai-Juan Zheng, and Chang-Yun Wang. 2019. "Bioactive Secondary Metabolites from the Culture of the Mangrove-Derived Fungus Daldinia eschscholtzii HJ004" Marine Drugs 17, no. 12: 710. https://doi.org/10.3390/md17120710
APA StyleLiao, H. -X., Shao, T. -M., Mei, R. -Q., Huang, G. -L., Zhou, X. -M., Zheng, C. -J., & Wang, C. -Y. (2019). Bioactive Secondary Metabolites from the Culture of the Mangrove-Derived Fungus Daldinia eschscholtzii HJ004. Marine Drugs, 17(12), 710. https://doi.org/10.3390/md17120710