High-Performance Thin-Layer Chromatography Hyphenated with Microchemical and Biochemical Derivatizations in Bioactivity Profiling of Marine Species
Abstract
:1. Introduction
2. Results and Discussion
2.1. Plate Derivatization
2.2. Method Validation
2.3. AChE and α-Amylase Inhibitory Activity
2.4. Terpene and Phytosterol Compounds
2.5. Flavonoid Compounds
2.6. Alkylresorcinol Compounds
3. Materials and Methods
3.1. Chemicals Used
3.2. Sample Collection and Extraction
3.3. High Performance Thin Layer Chromatography (HPTLC)
3.4. Post Chromatographic Derivatization
3.5. HPTLC-EDA
3.6. Method Validation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hage, S.; Morlock, G.E. Bioprofiling of Salicaceae bud extracts through high-performance thin-layer chromatography hyphenated to biochemical, microbiological and chemical detections. J. Chromatogr. A 2017, 1490, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Akkad, R.; Schwack, W. Multi-enzyme inhibition assay for the detection of insecticidal organophosphates and carbamates by high-performance thin-layer chromatography applied to determine enzyme inhibition factors and residues in juice and water samples. J. Chromatogr. B 2010, 878, 1337–1345. [Google Scholar] [CrossRef] [PubMed]
- Agatonovic-Kustrin, S.; Morton, D.W. HPTLC—Bioautographic methods for selective detection of the antioxidant and α-amylase inhibitory activity in plant extracts. MethodsX 2018, 5, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gao, Z.; Guo, Q.; Wang, T.; Lu, C.; Chen, Y.; Sheng, Q.; Chen, J.; Nie, Z.; Zhang, Y. Anti-diabetic effects of CTB-APSL fusion protein in type 2 diabetic mice. Mar. Drugs 2014, 12, 1512–1529. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Karadeniz, F.; Kim, M.M.; Kim, S.K. α-Glucosidase and α-amylase inhibitory activities of phloroglucinal derivatives from edible marine brown alga, Ecklonia cava. J. Sci. Food Agric. 2009, 89, 1552–1558. [Google Scholar] [CrossRef]
- Lebovitz, H.E. Oral antidiabetic agents. The emergence of alpha-glucosidase inhibitors. Drugs 1992, 44 (Suppl. 3), 21–28. [Google Scholar] [CrossRef] [PubMed]
- Agatonovic-Kustrin, S.; Kettle, C.; Morton, D.W. A molecular approach in drug development for Alzheimer’s disease. Biomed. Pharmacother. 2018, 106, 553–565. [Google Scholar] [CrossRef] [PubMed]
- Sebastião, I.; Candeias, E.; Santos, M.S.; de Oliveira, C.R.; Moreira, P.I.; Duarte, A.I. Insulin as a bridge between type 2 diabetes and Alzheimer disease – how anti-diabetics could be a solution for dementia. Front. Endocrinol. 2014, 5, 110. [Google Scholar] [CrossRef] [PubMed]
- Agatonovic-Kustrin, S.; Morton, D.W.; Ristivojevic, P. Assessment of antioxidant activity in Victorian marine algal extracts using high performance thin-layer chromatography and multivariate analysis. J. Chromatogr. A 2016, 1468, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Agatonovic-Kustrin, S.; Morton, D.W. High-performance thin-layer chromatography-direct bioautography as a method of choice for alpha-amylase and antioxidant activity evaluation in marine algae. J. Chromatogr. A 2017, 1530, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Malve, H. Exploring the ocean for new drug developments: Marine pharmacology. J. Pharm. Bioallied Sci. 2016, 8, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Bresson, J.-L.; Flynn, A.; Heinonen, M.; Hulshof, K.; Korhonen, H.; Lagiou, P.; Løvik, M.; Marchelli, R.; Martin, A.; Moseley, B. Plant Sterols and Blood Cholesterol Scientific substantiation of a health claim related to plant sterols and lower/reduced blood cholesterol and reduced risk of (coronary) heart disease pursuant to Article 14 of Regulation (EC) No 1924/2006 Scientific Opinion of the Panel on Dietetic Products, Nutrition and Allergies. EFSA J. 2008, 781, 1–12. [Google Scholar]
- Burg, V.K.; Grimm, H.S.; Rothhaar, T.L.; Grösgen, S.; Hundsdörfer, B.; Haupenthal, V.J.; Zimmer, V.C.; Mett, J.; Weingärtner, O.; Laufs, U. Plant sterols the better cholesterol in Alzheimer’s disease? A mechanistical study. J. Neurosci. 2013, 33, 16072–16087. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Liu, J.; Wu, F.; Zhu, X.; Yew, D.T.; Xu, J. β-sitosterol inhibits high cholesterol-induced platelet β-amyloid release. J. Bioenerg. Biomembr. 2011, 43, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Vanmierlo, T.; Popp, J.; Koelsch, H.; Friedrichs, S.; Jessen, F.; Stoffel-Wagner, B.; Bertsch, T.; Hartmann, T.; Maier, W.; von Bergmann, K. The plant sterol brassicasterol as additional CSF biomarker in Alzheimer’s disease. Acta Psychiatr. Scand. 2011, 124, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Stirk, W.A.; Reinecke, D.L.; van Staden, J. Seasonal variation in antifungal, antibacterial and acetylcholinesterase activity in seven South African seaweeds. J. Appl. Phycol. 2007, 19, 271–276. [Google Scholar] [CrossRef]
- Yoon, N.Y.; Lee, S.-H.; Kim, S.-K. Phlorotannins from Ishige okamurae and their acetyl- and butyrylcholinesterase inhibitory effects. J. Funct. Foods 2009, 1, 331–335. [Google Scholar] [CrossRef]
- Wei, D.; Wang, L.; Liu, C.; Wang, B. β-Sitosterol solubility in selected organic solvents. J. Chem. Eng. Data 2010, 55, 2917–2919. [Google Scholar] [CrossRef]
- Agatonovic-Kustrin, S.; Morton, D.W. Quantification of polyphenolic antioxidants and free radical scavengers in marine algae. J. Appl. Phycol. 2018, 30, 113–120. [Google Scholar] [CrossRef]
- Szabo, M.; Idiţoiu, C.; Chambre, D.; Lupea, A. Improved DPPH determination for antioxidant activity spectrophotometric assay. Chem. Papers 2007, 61, 214–216. [Google Scholar] [CrossRef]
- Martelanc, M.; Naumoska, K.; Vovk, I. Determination of common triterpenoids and phytosterols in vegetable waxes by HPTLC-densitometry and HPTLC-image analysis. J. Liq. Chromatogr. Relat. Technol. 2016, 39, 312–321. [Google Scholar] [CrossRef]
- Paul, M.; Brüning, G.; Bergmann, J.; Jauch, J. A thin-layer chromatography method for the identification of three different olibanum resins (Boswellia serrata, Boswellia papyrifera and Boswellia carterii, respectively, Boswellia sacra). Phytochem. Anal. 2012, 23, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Gerlach, A.D.C.L.; Gadea, A.; Silveira, R.M.B.D.; Clerc, P.; Dévéhat, F.L. The use of anisaldehyde sulfuric acid as an alternative spray reagent in TLC analysis reveals three classes of compounds in the genus Usnea Adans. (Parmeliaceae, lichenized Ascomycota). Preprints 2018, 2018020151. [Google Scholar] [CrossRef]
- Hostettmann, K.; Chen, S.; Marston, A.; Stuppner, H. Handbook of Chemical and Biological Plant Analytical Methods; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Agatonovic-Kustrin, S.; Kustrin, E.; Angove, M.J.; Morton, D.W. A screening method for cardiovascular active compounds in marine algae. J. Chromatogr. A 2018, 1550, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Payghami, N.; Jamili, S.; Rustaiyan, A.; Saeidnia, S.; Nikan, M.; Gohari, A.R. Alpha-amylase inhibitory activity and sterol composition of the marine algae, Sargassum glaucescens. Pharmacogn. Res. 2015, 7, 314–321. [Google Scholar]
- Westermann, J.-C.; Craik, D.J. 5.09—Plant Peptide Toxins from Nonmarine Environments. In Comprehensive Natural Products II; Liu, H.-W., Mander, L., Eds.; Elsevier: Oxford, UK, 2010; pp. 257–285. [Google Scholar]
- Yoon, N.Y.; Chung, H.Y.; Kim, H.R.; Choi, J.S. Acetyl- and butyrylcholinesterase inhibitory activities of sterols and phlorotannins from Ecklonia stolonifera. Fish. Sci. 2008, 74, 200–207. [Google Scholar] [CrossRef]
- Bahadori, M.B.; Dinparast, L.; Valizadeh, H.; Farimani, M.M.; Ebrahimi, S.N. Bioactive constituents from roots of Salvia syriaca L.: Acetylcholinesterase inhibitory activity and molecular docking studies. S. Afr. J. Bot. 2016, 106, 1–4. [Google Scholar] [CrossRef]
- Harborne, J.B. Phytochemical Methods—A Guide to Modern Techniques of Plant Analysis, 3rd ed.; Chapman & Hall: London, UK, 1998. [Google Scholar]
- Cimpan, G.; Gocan, S. Analysis of medicinal plants by HPLC: Recent approaches. J. Liq. Chromatogr. Relat. Technol. 2002, 25, 2225–2292. [Google Scholar] [CrossRef]
- Gajda, A.; Kulawinek, M.; Kozubek, A. An improved colorimetric method for the determination of alkylresorcinols in cereals and whole-grain cereal products. J. Food Compos. Anal. 2008, 21, 428–434. [Google Scholar] [CrossRef]
- Kozubek, A.; Tyman, J.H.P. Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chem. Rev. 1999, 99, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Seitz, L.M. Identification of 5-(2-oxoalkyl) resorcinols and 5-(2-oxoalkenyl) resorcinols in wheat and rye grains. J. Agric. Food Chem. 1992, 40, 1541–1546. [Google Scholar] [CrossRef]
- Suzuki, Y.; Esumi, Y.; Hyakutake, H.; Kono, Y.; Sakurai, A. Isolation of 5-(8′ Z-heptadecenyl)-resorcinol from etiolated rice seedlings as an antifungal agent. Phytochemistry 1996, 41, 1485–1489. [Google Scholar] [CrossRef]
- Suzuki, Y.; Esumi, Y.; Yamaguchi, I. Structures of 5-alkylresorcinol-related analogues in rye. Phytochemistry 1999, 52, 281–289. [Google Scholar] [CrossRef]
- Kozubek, A.; Tyman, J.H.P. Cereal grain resorcinolic lipids: Mono and dienoic homologues are present in rye grains. Chem. Phys. Lipids 1995, 78, 29–35. [Google Scholar] [CrossRef]
- Sampietro, D.A.; Vattuone, M.A.; Catalán, C.A.N. A new colorimetric method for determination of alkylresorcinols in ground and whole-cereal grains using the diazonium salt Fast Blue RR. Food Chem. 2009, 115, 1170–1174. [Google Scholar] [CrossRef]
- Ross, A.B.; Åman, P.; Andersson, R.; Kamal-Eldin, A. Chromatographic analysis of alkylresorcinols and their metabolites. J. Chromatogr. A 2004, 1054, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Sampietro, D.; Belizán, M.E.M.; Apud, G.R.; Juarez, J.H.; Vattuone, M.; Catalan, C. Alkylresorcinols: Chemical properties, methods of analysis and potential uses in food, industry and plant protection. In Natural Antioxidants and Biocides from Wild Medicinal Plants; Cespedes, C., Seigler, D., Rai, M., Eds.; CABI: Wallingford, UK, 2013; pp. 148–166. [Google Scholar]
- Ross, A.B.; Kamal-Eldin, A.; Aman, P. Dietary alkylresorcinols: Absorption, bioactivities, and possible use as biomarkers of whole-grain wheat- and rye-rich foods. Nutr. Rev. 2004, 62, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Kruk, J.; Aboul-Enein, B.; Bernstein, J.; Marchlewicz, M. Dietary alkylresorcinols and cancer prevention: A systematic review. Eur. Food Res. Technol. 2017, 243, 1693–1710. [Google Scholar] [CrossRef]
- Sethi, A. Systematic Lab Experiments in Organic Chemistry; New Age International (P) Limited: New Delhi, India, 2006. [Google Scholar]
- Olempska-Beer, Z. Alpha-Amylase from Bacillus Licheniformis; Food and Agriculture Organization of the United Nations (FAO): Roma, Italy, 2004. [Google Scholar]
- Jenkins, P.J.; Donald, A.M. The influence of amylose on starch granule structure. Int. J. Biol. Macromol. 1995, 17, 315–321. [Google Scholar] [CrossRef]
- International Conference on Harmonization, Validation of Analytical Procedures: Text and Methodology Q2 (R1); International Conference of Harmonization: Geneva, Switzerland, 2005.
Standard | Method | Regression Equations (Linear and Nonlinear) | R2 | Range (μg/band) | LOD (μg) | LOQ (μg) |
---|---|---|---|---|---|---|
Acarbose | Starch/iodine test | y = 91.23x + 4125.2 y = −0.0117x2 + 114.47x − 1934.5 | 0.969 0.988 | 100–2200 100–4000 | 52 | 173 |
Gallic acid | DPPH• | y = 780150x + 66380 y = −487389x2 + 10−6x + 39382 | 0.939 0.983 | 0.05–0.50 0.05–1.5 | 0.02 | 0.06 |
β-sitosterol | p-Anisaldehyde/sulfuric acid | y = 14645x + 16883 y = −349.43x2 + 14185x + 19341 | 0.963 0.979 | 0.5–5.0 0.5–12.0 | 0.5 | 1.6 |
Donepezil | Ellman’s reaction | y = 202.15x + 14999 y = −0.1849x2 + 302.33x + 4994.8 | 0.970 0.967 | 50–600 50–1000 | 29 | 96 |
Acarbose | Gallic Acid | Donepezil | β-Sitosterol | ||||
---|---|---|---|---|---|---|---|
Applied (µg) | RDS (%) | Applied (µg) | RDS (%) | Applied (µg) | RDS (%) | Applied (µg) | RDS (%) |
200 | 7.20 | 0.05 | 8.17 | 50 | 6.96 | 1.00 | 7.06 |
400 | 2.98 | 0.10 | 3.16 | 500 | 6.02 | 2.00 | 7.88 |
900 | 5.93 | 0.20 | 2.59 | 1000 | 8.11 | 4.00 | 4.72 |
average | 5.37 | 4.64 | 7.03 | 6.55 |
Sample | AE µg/Band | SE µg/Band | GAE ng/Band | DE µg/Band |
---|---|---|---|---|
1 | 204 | 45 | 540 | 0 |
2 | 3927 | 61 | 30 | 1072 |
3 | 644 | 26 | 20 | 276 |
4 | 411 | 20 | 40 | 255 |
5 | 299 | 14 | 20 | 116 |
6 | 1451 | 35 | 240 | 1521 |
7 | 279 | 20 | 20 | 267 |
8 | 2606 | 105 | 210 | 2515 |
9 | 501 | 30 | 290 | 51 |
10 | 1925 | 32 | 310 | 819 |
11 | 51 | 14 | 440 | 17 |
12 | 75 | 5 | 60 | 185 |
13 | 20 | 1 | * | 32 |
14 | 14 | * | * | 12 |
15 | 301 | 24 | 140 | 170 |
16 | 44 | 5 | 10 | 91 |
17 | 11 | 14 | 30 | 97 |
18 | 91 | 11 | 90 | 194 |
19 | 205 | 2 | 30 | 378 |
20 | 307 | 150 | 1410 | * |
R2 | α-Amylase inhibition | 0.4 | NC | 0.8 |
Phytosterol content | 0.8 | NC | ||
Antioxidant activity | NC |
Sample Number | Species | Type of Marine Species |
---|---|---|
1 | Cystophora pectinata (Greville & C.Agardh ex Sonder) J.Agardh | brown algae |
2 | Codium fragile subsp. tasmanicum (J.Agardh) P.C.Silva | green algae |
3 | Pyllospora comoasa (Labillardière) C.Agardh | brown algae |
4 | Scytothalia dorycarpa (Turner) Greville | brown algae |
5 | Carpoglossum confluens (R. Brown ex Turner) Kützing | brown algae |
6 | Ecklonia radiata (C.Agardh) J.Agardh | brown algae |
7 | Sargassum lacerifolium (Turner) C.Agardh | brown algae |
8 | Perithalia caudata (Labillardière) Womersley | brown algae |
9 | Cystophora harveyi Womersley | brown algae |
10 | Amphibolis antarctica (Labillardière) Sonder & Ascherson ex Ascherson | seagrass |
11 | Scytothalia dorycarpa (Turner) Greville | brown algae |
12 | Hypnea valida J.Agardh | brown algae |
13 | Austrophyllis harveyana (J.Agardh) Womersley & Norris | red algae |
14 | Plocamium dilatatum J.Agardh | red algae |
15 | Cystophora monilifera J.Agardh | brown algae |
16 | Rhodophyllis membaneacea (Harvey) Hooker & Harvey ex Harvey | red algae |
17 | Hormosira banksii (Turner) Decaisne | brown algae |
18 | Myriodesma integrifolium Harvey | brown algae |
19 | Epiphytic algae sp. | brown algae |
20 | Cystophora subfarcinata (Mertens) J.Agardh | brown algae |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agatonovic-Kustrin, S.; Kustrin, E.; Gegechkori, V.; Morton, D.W. High-Performance Thin-Layer Chromatography Hyphenated with Microchemical and Biochemical Derivatizations in Bioactivity Profiling of Marine Species. Mar. Drugs 2019, 17, 148. https://doi.org/10.3390/md17030148
Agatonovic-Kustrin S, Kustrin E, Gegechkori V, Morton DW. High-Performance Thin-Layer Chromatography Hyphenated with Microchemical and Biochemical Derivatizations in Bioactivity Profiling of Marine Species. Marine Drugs. 2019; 17(3):148. https://doi.org/10.3390/md17030148
Chicago/Turabian StyleAgatonovic-Kustrin, Snezana, Ella Kustrin, Vladimir Gegechkori, and David W. Morton. 2019. "High-Performance Thin-Layer Chromatography Hyphenated with Microchemical and Biochemical Derivatizations in Bioactivity Profiling of Marine Species" Marine Drugs 17, no. 3: 148. https://doi.org/10.3390/md17030148
APA StyleAgatonovic-Kustrin, S., Kustrin, E., Gegechkori, V., & Morton, D. W. (2019). High-Performance Thin-Layer Chromatography Hyphenated with Microchemical and Biochemical Derivatizations in Bioactivity Profiling of Marine Species. Marine Drugs, 17(3), 148. https://doi.org/10.3390/md17030148