Halophiles and Their Biomolecules: Recent Advances and Future Applications in Biomedicine
Abstract
:1. Halophilic Microorganisms
2. Biotechnological Importance/Interest of Haloarchaea and Halophilic Bacteria
3. Antimicrobial Compounds
3.1. Bacteria
3.2. Archaea
3.3. Fungi
4. Anticancer Compounds
4.1. Bacteria
4.2. Archaea
4.3. Fungi
5. Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Oren, A. Microbial life at high salt concentrations: Phylogenetic and metabolic diversity. Saline Syst. 2008, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Kushner, D.J. Life in high salt and solute concentrations: Halophilic bacteria. In Microbial Life in Extreme Environments; Kushner, D.J., Ed.; Academic Press: London, UK, 1978; p. 318. [Google Scholar]
- Kushner, D.; Kamekura, M. Physiology of halophilic eubacteria. In Halophilic Bacteria; Rodriguez-Valera, F., Ed.; CRC Press: Boca Raton, FL, USA, 1988; Volume 1, pp. 109–138. [Google Scholar]
- Rodriguez-Valera, F.; Ruiz-Berraquero, F.; Ramos-Cormenzana, A. Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microb. Ecol. 1981, 7, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Seckbach, J.; Oren, A.; Stan-Lotter, H. (Eds.) Polyextremophiles: Life Under Multiple Forms of Stress; Springer: Heidelberg, Germany, 2013. [Google Scholar]
- Bowers, K.J.; Mesbah, N.M.; Wiegel, J. Biodiversity of poly-extremophilic bacteria: Does combining the extremes of high salt, alkaline pH and elevated temperature approach a physico-chemical boundary for life? Saline Syst. 2009, 5, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesbah, N.M.; Wiegel, J. Life under multiple extreme conditions: Diversity and physiology of the halophilic alkalithermophiles. Appl. Environ. Microbiol. 2012, 78, 4074–4082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ventosa, A.; Nieto, J.J.; Oren, A. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 1998, 62, 504–544. [Google Scholar]
- Bremer, E.; Krämer, R. Responses of microorganisms to osmotic stress. Annu. Rev. Microbiol. 2019, 73, 313–334. [Google Scholar] [CrossRef]
- De la Haba, R.R.; Sánchez-Porro, C.; Marquez, M.C.; Ventosa, A. Taxonomy of halophiles. In Extremophiles Handbook; Horikoshi, K., Ed.; Springer Japan: Tokyo, Japan, 2011; pp. 255–308. [Google Scholar]
- Andrei, A.-Ş.; Banciu, H.L.; Oren, A. Living with salt: Metabolic and phylogenetic diversity of archaea inhabiting saline ecosystems. FEMS Microbiol. Lett. 2012, 330, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ventosa, A.; Oren, A.; Ma, Y. (Eds.) Halophiles and Hypersaline Environments; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Akpolat, C.; Ventosa, A.; Birbir, M.; Sánchez-Porro, C.; Caglayan, P. Molecular identification of moderately halophilic bacteria and extremely halophilic archaea isolated from salted sheep skins containing red and yellow discolorations. J. Am. Leather Chem. Assoc. 2015, 110, 211–220. [Google Scholar]
- Ventosa, A. Unusual micro-organisms from unusual habitats: Hypersaline environments. In Prokaryotic Diversity; Logan, N.A., Lappin-Scott, H.M., Oyston, P.C.F., Eds.; Cambridge University Press: Cambridge, UK, 2006; pp. 223–254. [Google Scholar]
- Ventosa, A.; Fernández, A.B.; León, M.J.; Sánchez-Porro, C.; Rodriguez-Valera, F. The Santa Pola saltern as a model for studying the microbiota of hypersaline environments. Extremophiles 2014, 18, 811–824. [Google Scholar] [CrossRef]
- Ventosa, A.; de la Haba, R.R.; Sánchez-Porro, C.; Papke, R.T. Microbial diversity of hypersaline environments: A metagenomic approach. Curr. Opin. Microbiol. 2015, 25, 80–87. [Google Scholar] [CrossRef]
- Samylina, O.S.; Namsaraev, Z.B.; Grouzdev, D.S.; Slobodova, N.V.; Zelenev, V.V.; Borisenko, G.V.; Sorokin, D.Y. The patterns of nitrogen fixation in haloalkaliphilic phototrophic communities of Kulunda Steppe soda lakes (Altai, Russia). FEMS Microbiol. Ecol. 2019, 95, fiz174. [Google Scholar] [CrossRef] [PubMed]
- Naghoni, A.; Emtiazi, G.; Amoozegar, M.A.; Cretoiu, M.S.; Stal, L.J.; Etemadifar, Z.; Shahzadeh Fazeli, S.A.; Bolhuis, H. Microbial diversity in the hypersaline Lake Meyghan, Iran. Sci. Rep. 2017, 7, 11522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amoozegar, M.A.; Siroosi, M.; Atashgahi, S.; Smidt, H.; Ventosa, A. Systematics of haloarchaea and biotechnological potential of their hydrolytic enzymes. Microbiology 2017, 163, 623–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oren, A.; Rodrı́guez-Valera, F. The contribution of halophilic bacteria to the red coloration of saltern crystallizer ponds. FEMS Microbiol. Ecol. 2001, 36, 123–130. [Google Scholar] [CrossRef]
- Charlesworth, J.C.; Burns, B.P. Untapped resources: Biotechnological potential of peptides and secondary metabolites in archaea. Archaea 2015, 2015, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-H.; Lu, C.-W.; Shyu, Y.-T.; Lin, S.-S. Revealing the saline adaptation strategies of the halophilic bacterium Halomonas beimenensis through high-throughput omics and transposon mutagenesis approaches. Sci. Rep. 2017, 7, 13037. [Google Scholar] [CrossRef]
- Das, S.; Dash, H.R. (Eds.) Microbial Diversity in the Genomic Era; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Vavourakis, C.D.; Mehrshad, M.; Balkema, C.; van Hall, R.; Andrei, A.-Ş.; Ghai, R.; Sorokin, D.Y.; Muyzer, G. Metagenomes and metatranscriptomes shed new light on the microbial-mediated sulfur cycle in a Siberian soda lake. BMC Biol. 2019, 17, 69. [Google Scholar] [CrossRef] [Green Version]
- DasSarma, P.; Coker, J.A.; Huse, V.; DasSarma, S. Halophiles, industrial applications. In Encyclopedia of Industrial Biotechnology; American Cancer Society: Atlanta, GA, USA, 2010; pp. 1–43. [Google Scholar]
- Yin, J.; Chen, J.-C.; Wu, Q.; Chen, G.-Q. Halophiles, coming stars for industrial biotechnology. Biotechnol. Adv. 2015, 33, 1433–1442. [Google Scholar] [CrossRef]
- Shirazian, P.; Asad, S.; Amoozegar, M.A. The potential of halophilic and halotolerant bacteria for the production of antineoplastic enzymes: L-asparaginase and L-glutaminase. EXCLI J. 2016, 15, 268–279. [Google Scholar]
- Kiadehi, M.S.H.; Amoozegar, M.A.; Asad, S.; Siroosi, M. Exploring the potential of halophilic archaea for the decolorization of azo dyes. Water Sci. Technol. 2018, 77, 1602–1611. [Google Scholar] [CrossRef]
- Giani, M.; Garbayo, I.; Vílchez, C.; Martínez-Espinosa, R.M. Haloarchaeal carotenoids: Healthy novel compounds from extreme environments. Mar. Drugs 2019, 17, 524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amoozegar, M.A.; Safarpour, A.; Noghabi, K.A.; Bakhtiary, T.; Ventosa, A. Halophiles and their vast potential in biofuel production. Front. Microbiol. 2019, 10, 1895. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Gai, Y.; Guo, X.; Hou, Y.; Zeng, R. Properties and applications of extremozymes from deep-sea extremophilic microorganisms: A mini review. Mar. Drugs 2019, 17, 656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tseng, W.-P.; Chen, Y.-C.; Chen, S.-Y.; Chen, S.-Y.; Chang, S.-C. Risk for subsequent infection and mortality after hospitalization among patients with multidrug-resistant Gram-negative bacteria colonization or infection. Antimicrob. Resist. Infect. Control 2018, 7, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, L.; Olson, L.; Khu, D.T.K.; Linnros, S.; Le, N.K.; Hanberger, H.; Hoang, N.T.B.; Tran, D.M.; Larsson, M. Multiple antibiotic resistance as a risk factor for mortality and prolonged hospital stay: A cohort study among neonatal intensive care patients with hospital-acquired infections caused by gram-negative bacteria in Vietnam. PLoS ONE 2019, 14, e0215666. [Google Scholar] [CrossRef]
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Valera, F.; Juez, G.; Kushner, D.J. Halocins: Salt-dependent bacteriocins produced by extremely halophilic rods. Can. J. Microbiol. 1982, 28, 151–154. [Google Scholar] [CrossRef]
- Gohel, S.D.; Sharma, A.K.; Dangar, K.G.; Thakrar, F.J.; Singh, S.P. Antimicrobial and biocatalytic potential of haloalkaliphilic actinobacteria. In Halophiles; Maheshwari, D.K., Saraf, M., Eds.; Springer: Heidelberg, Germany, 2015; Volume 6, pp. 29–55. [Google Scholar]
- Ventosa, A.; Mellado, E.; Sanchez-Porro, C.; Marquez, M.C. Halophilic and halotolerant microorganisms from soils. In Microbiology of Extreme Soils; Dion, P., Nautiyal, C.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 87–115. [Google Scholar]
- Hamedi, J.; Mohammadipanah, F.; Ventosa, A. Systematic and biotechnological aspects of halophilic and halotolerant actinomycetes. Extremophiles 2013, 17, 1–13. [Google Scholar] [CrossRef]
- Manteca, Á.; Yagüe, P. Streptomyces as a source of antimicrobials: Novel approaches to activate cryptic secondary metabolite pathways. In Antimicrobial, Antibiotic Resistant, Antibiofilm Strategies and Activity Methods; Intechopen: London, UK, 2019; pp. 1–21. [Google Scholar]
- Adlin Jenifer, J.S.C.; Michaelbabu, M.; Eswaramoorthy Thirumalaikumar, C.L.; Jeraldin Nisha, S.R.; Uma, G.; Citarasu, T. Antimicrobial potential of haloalkaliphilic Nocardiopsis sp. AJ1 isolated from solar salterns in India. J. Basic Microbiol. 2019, 59, 288–301. [Google Scholar] [CrossRef]
- Hadj Rabia-Boukhalfa, Y.; Eveno, Y.; Karama, S.; Selama, O.; Lauga, B.; Duran, R.; Hacène, H.; Eparvier, V. Isolation, purification and chemical characterization of a new angucyclinone compound produced by a new halotolerant Nocardiopsis sp. HR-4 strain. World J. Microbiol. Biotechnol. 2017, 33, 126. [Google Scholar] [CrossRef]
- Kim, J.; Shin, D.; Kim, S.-H.; Park, W.; Shin, Y.; Kim, W.K.; Lee, S.K.; Oh, K.-B.; Shin, J.; Oh, D.-C. Borrelidins C–E: New Antibacterial macrolides from a saltern-derived halophilic Nocardiopsis sp. Mar. Drugs 2017, 15, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, S.; Yang, Y.; Liu, K.; Xiong, Z.; Xu, L.; Zhao, L. Antimicrobial metabolites from a novel halophilic actinomycete Nocardiopsis terrae YIM 90022. Nat. Prod. Res. 2014, 28, 344–346. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.-Z.; Pu, X.; Luo, G.; Zhao, L.-X.; Xu, L.-H.; Li, W.-J.; Luo, Y. Isolation and characterization of new p-terphenyls with antifungal, antibacterial, and antioxidant activities from halophilic actinomycete Nocardiopsis gilva YIM 90087. J. Agric. Food Chem. 2013, 61, 3006–3012. [Google Scholar] [CrossRef] [PubMed]
- Gorajana, A.; Vinjamuri, S.; Poluri, E.; Zeeck, A. 1-Hydroxy-1-norresistomycin, a new cytotoxic compound from a marine actinomycete, Streptomyces chibaensis. J. Antibiot. 2005, 8, 526–529. [Google Scholar] [CrossRef] [PubMed]
- Maskey, R.P.; Helmke, E.; Laatsch, H. Himalomycin A and B: Isolation and structure elucidation of new fridamycin type antibiotics from a marine Streptomyces isolate. J. Antibiot. 2003, 56, 942–949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parthasarathi, S.; Sathya, S.; Bupesh, G.; Samy, R.D.; Mohan, M.R.; Kumar, G.S.; Manikandan, M.; Kim, C.J.; Balakrishnan, K. Isolation and characterization of antimicrobial compound from marine Streptomyces hygroscopicus BDUS 49. World J. Fish Mar. Sci. 2012, 4, 268–277. [Google Scholar]
- Metelev, M.; Tietz, J.I.; Melby, J.O.; Blair, P.M.; Zhu, L.; Livnat, I.; Severinov, K.; Mitchell, D.A. Structure, bioactivity, and resistance mechanism of Streptomonomicin, an unusual lasso peptide from an understudied halophilic actinomycete. Chem. Biol. 2015, 22, 241–250. [Google Scholar] [CrossRef] [Green Version]
- Frikha Dammak, D.; Zarai, Z.; Najah, S.; Abdennabi, R.; Belbahri, L.; Rateb, M.E.; Mejdoub, H.; Maalej, S. Antagonistic properties of some halophilic thermoactinomycetes isolated from superficial sediment of a solar saltern and production of cyclic antimicrobial peptides by the novel isolate Paludifilum halophilum. BioMed Res. Int. 2017, 2017, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Mangamuri, U.K.; Vijayalakshmi, M.; Poda, S.; Manavathi, B.; Chitturi, B.; Yenamandra, V. Isolation and biological evaluation of N-(4-aminocyclooctyl)-3,5-dinitrobenzamide, a new semisynthetic derivative from the mangrove-associated actinomycete Pseudonocardia endophytica VUK-10. 3 Biotech 2016, 6, 158. [Google Scholar] [CrossRef] [Green Version]
- Conde-Martínez, N.; Acosta-González, A.; Díaz, L.E.; Tello, E. Use of a mixed culture strategy to isolate halophilic bacteria with antibacterial and cytotoxic activity from the Manaure solar saltern in Colombia. BMC Microbiol. 2017, 17, 230. [Google Scholar] [CrossRef] [Green Version]
- Bell, R.; Carmeli, S.; Sar, N. Vibrindole A, a Metabolite of the marine bacterium, Vibrio parahaemolyticus, isolated from the toxic mucus of the boxfish Ostracion cubicus. J. Nat. Prod. 1994, 57, 1587–1590. [Google Scholar] [CrossRef] [PubMed]
- Donio, M.; Ronica, S.; Viji, V.T.; Velmurugan, S.; Jenifer, J.A.; Michaelbabu, M.; Citarasu, T. Isolation and characterization of halophilic Bacillus sp. BS3 able to produce pharmacologically important biosurfactants. Asian Pac. J. Trop. Med. 2013, 6, 876–883. [Google Scholar] [CrossRef] [Green Version]
- Velmurugan, S.; Raman, K.; Thanga Viji, V.; Donio, M.B.S.; Adlin Jenifer, J.; Babu, M.M.; Citarasu, T. Screening and characterization of antimicrobial secondary metabolites from Halomonas salifodinae MPM-TC and its in vivo antiviral influence on Indian white shrimp Fenneropenaeus indicus against WSSV challenge. J. King Saud Univ. Sci. 2013, 25, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Fewer, D.P.; Holm, L.; Rouhiainen, L.; Sivonen, K. Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes. Proc. Natl. Acad. Sci. USA 2014, 111, 9259–9264. [Google Scholar] [CrossRef] [Green Version]
- Bose, U.; Hewavitharana, A.; Ng, Y.; Shaw, P.; Fuerst, J.; Hodson, M. LC-MS-based metabolomics study of marine bacterial secondary metabolite and antibiotic production in Salinispora arenicola. Mar. Drugs 2015, 13, 249–266. [Google Scholar] [CrossRef]
- McArthur, K.A.; Mitchell, S.S.; Tsueng, G.; Rheingold, A.; White, D.J.; Grodberg, J.; Lam, K.S.; Potts, B.C.M. Lynamicins A−E, chlorinated bisindole pyrrole antibiotics from a novel marine actinomycete. J. Nat. Prod. 2008, 71, 1732–1737. [Google Scholar] [CrossRef]
- El-Gendy, M.M.A.; Shaaban, M.; Shaaban, K.A.; El-Bondkly, A.M.; Laatsch, H. Essramycin: A first triazolopyrimidine antibiotic isolated from nature. J. Antibiot. 2008, 61, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Hughes, C.C.; Prieto-Davo, A.; Jensen, P.R.; Fenical, W. The Marinopyrroles, antibiotics of an unprecedented structure class from a marine Streptomyces sp. Org. Lett. 2008, 10, 629–631. [Google Scholar] [CrossRef] [Green Version]
- Kock, I.; Maskey, R.P.; Biabani, M.A.F.; Helmke, E.; Laatsch, H. 1-Hydroxy-1-norresistomycin and resistoflavin methyl ether: New antibiotics from marine-derived streptomycetes. J. Antibiot. 2005, 58, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Manam, R.R.; Teisan, S.; White, D.J.; Nicholson, B.; Grodberg, J.; Neuteboom, S.T.C.; Lam, K.S.; Mosca, D.A.; Lloyd, G.K.; Potts, B.C.M. Lajollamycin, a nitro-tetraene spiro-β-lactone-γ-lactam antibiotic from the marine actinomycete Streptomyces nodosus. J. Nat. Prod. 2005, 68, 240–243. [Google Scholar] [CrossRef] [PubMed]
- Maskey, R.P.; Li, F.C.; Qin, S.; Fiebig, H.H.; Laatsch, H. Chandrananimycins A-C: Production of novel anticancer antibiotics from a marine Actinomadura sp. isolate M048 by variation of medium composition and growth conditions. J. Antibiot. 2003, 56, 622–629. [Google Scholar] [CrossRef] [Green Version]
- Fariq, A.; Yasmin, A.; Jamil, M. Production, characterization and antimicrobial activities of bio-pigments by Aquisalibacillus elongatus MB592, Salinicoccus sesuvii MB597, and Halomonas aquamarina MB598 isolated from Khewra Salt Range, Pakistan. Extremophiles 2019, 23, 435–449. [Google Scholar] [CrossRef]
- Trenozhnikova, L.; Azizan, A. Discovery of actinomycetes from extreme environments with potential to produce novel antibiotics. Cent. Asian J. Glob. Health 2018, 7, 337. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.R.; Jadeja, V.J. Characterization and partial purification of an antibacterial agent from halophilic actinomycete Kocuria sp. strain rsk4. BioImpacts 2018, 8, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Ballav, S.; Kerkar, S.; Thomas, S.; Augustine, N. Halophilic and halotolerant actinomycetes from a marine saltern of Goa, India producing anti-bacterial metabolites. J. Biosci. Bioeng. 2015, 119, 323–330. [Google Scholar] [CrossRef]
- Ray, L.; Suar, M.; Pattnaik, A.K.; Raina, V. Streptomyces chilikensis sp. nov., a halophilic streptomycete isolated from brackish water sediment. Int. J. Syst. Evol. Microbiol. 2013, 63, 2757–2764. [Google Scholar] [CrossRef]
- Rao, K.V.R. Isolation and characterization of antagonistic actinobacteria from mangrove soil. J. Biochem. Tech. 2012, 3, 361–365. [Google Scholar]
- Mangamuri, U.K.; Vijayalakshmi Muvva, V.; Poda, S.; Kamma, S. Isolation, identification and molecular characterization of rare actinomycetes from mangrove ecosystem of Nizampatnam. Malays. J. Microbiol. 2012, 8, 83–91. [Google Scholar] [CrossRef]
- Kamat, T.; Kerkar, S. Bacteria from salt pans: A potential resource of antibacterial metabolites. RRST-Biotech. 2011, 3, 46–52. [Google Scholar]
- Gayathri, A.; Madhanraj, P.; Panneerselvam, A. Diversity, antibacterial activity and molecular characterization of actinomycetes isolated from salt pan region of Kodiakarai, Nagapattinam DT. Asian J. Pharm. Technol. 2011, 1, 79–81. [Google Scholar]
- Meklat, A.; Sabaou, N.; Zitouni, A.; Mathieu, F.; Lebrihi, A. Isolation, taxonomy, and antagonistic properties of halophilic actinomycetes in Saharan soils of Algeria. Appl. Environ. Microbiol. 2011, 77, 6710–6714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jose, A.; Santhi, S.; Solomon, R.D.J. In vitro antimicrobial potential and growth characteristics of Nocardiopsis sp. JAJ16 isolated from crystallizer pond. Int. J. Curr. Res. 2010, 3, 024–026. [Google Scholar]
- Saurav, K. Diversity and optimization of process parameters for the growth of Streptomyces VITSVK9 spp. isolated from Bay of Bengal, India. J. Nat. Environ. Sci. 2010, 1, 56–65. [Google Scholar]
- Suthindhir, K.; Kannabiran, K. Cytotoxic and antimicrobial potential of actinomycete species Saccharopolyspora salina VITSDK4 isolated from the Bay of Bengal coast of India. Am. J. Infect. Dis. 2009, 5, 90–98. [Google Scholar] [CrossRef]
- Suthindhiran, K.; Kannabiran, K. Hemolytic activity of Streptomyces VITSDK1 spp. isolated from marine sediments in Southern India. J. Mycol. Médicale 2009, 19, 77–86. [Google Scholar] [CrossRef]
- Cao, L.; Yun, W.; Tang, S.; Zhang, P.; Mao, P.; Jing, X.; Wang, C.; Lou, K. Biodiversity and enzyme screening of actinomycetes from Hami lake. Wei Sheng Wu Xue Bao 2009, 49, 287–293. [Google Scholar]
- Ramesh, S.; Mathivanan, N. Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. World J. Microbiol. Biotechnol. 2009, 25, 2103–2111. [Google Scholar] [CrossRef]
- Hakvåg, S.; Fjærvik, E.; Josefsen, K.; Ian, E.; Ellingsen, T.; Zotchev, S. Characterization of Streptomyces spp. isolated from the sea surface microlayer in the Trondheim Fjord, Norway. Mar. Drugs 2008, 6, 620–635. [Google Scholar] [CrossRef] [Green Version]
- Dhanasekaran, D.; Rajakumar, G.; Sivamani, P.; Selvamani, S.; Panneerselvam, A.; Thajuddin, N. Screening of salt pans actinomycetes for antibacterial agents. Internet J. Microbiol. 2004, 1, 1–4. [Google Scholar]
- Magarvey, N.A.; Keller, J.M.; Bernan, V.; Dworkin, M.; Sherman, D.H. Isolation and characterization of novel marine-derived actinomycete taxa rich in bioactive metabolites. Appl. Environ. Microbiol. 2004, 70, 7520–7529. [Google Scholar] [CrossRef] [Green Version]
- Kokare, C.R.; Mahadik, K.R.; Kadam, S.S.; Chopade, B.A. Isolation, characterization and antimicrobial activity of marine halophilic Actinopolyspora species AH1 from the west coast of India. Curr. Sci. 2004, 86, 5. [Google Scholar]
- Meseguer, I.; Rodríguez-Valera, F.; Ventosa, A. Antagonistic interactions among halobacteria due to halocin production. FEMS Microbiol. Lett. 1986, 36, 177–182. [Google Scholar] [CrossRef]
- Torreblanca, M.; Meseguer, I.; Ventosa, A. Production of halocins is a practically universal feature of archaeal halophilic rods. Lett. Appl. Microbiol. 1994, 19, 201–205. [Google Scholar] [CrossRef]
- Shand, R.F.; Leyva, K.J. Peptide and protein antibiotics from the domain Archaea: Halocins and sulfolobicins. In Bacteriocins: Ecology and Evolution; Riley, M.A., Chavan, M.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 93–109. [Google Scholar]
- Atanasova, N.S.; Pietilä, M.K.; Oksanen, H.M. Diverse antimicrobial interactions of halophilic archaea and bacteria extend over geographical distances and cross the domain barrier. MicrobiologyOpen 2013, 2, 811–825. [Google Scholar] [CrossRef]
- Corral, P.; Esposito, F.P.; Tedesco, P.; Falco, A.; Tortorella, E.; Tartaglione, L.; Festa, C.; D’Auria, M.V.; Gnavi, G.; Varese, G.C.; et al. Identification of a Sorbicillinoid-producing Aspergillus strain with antimicrobial activity against Staphylococcus aureus: A new polyextremophilic marine fungus from Barents Sea. Mar. Biotechnol. 2018, 20, 502–511. [Google Scholar] [CrossRef]
- Besse, A. Antimicrobial peptides and proteins in the face of extremes: Lessons from archaeocins. Biochimie 2015, 118, 344–355. [Google Scholar] [CrossRef]
- Quadri, I.; Hassani, I.I.; l’Haridon, S.; Chalopin, M.; Hacène, H.; Jebbar, M. Characterization and antimicrobial potential of extremely halophilic archaea isolated from hypersaline environments of the Algerian Sahara. Microbiol. Res. 2016, 186–187, 119–131. [Google Scholar] [CrossRef]
- Pi, B.; Yu, D.; Dai, F.; Song, X.; Zhu, C.; Li, H.; Yu, Y. A Genomics based discovery of secondary metabolite biosynthetic gene clusters in Aspergillus ustus. PLoS ONE 2015, 10, e0116089. [Google Scholar] [CrossRef]
- Kjærbølling, I.; Vesth, T.C.; Frisvad, J.C.; Nybo, J.L.; Theobald, S.; Kuo, A.; Bowyer, P.; Matsuda, Y.; Mondo, S.; Lyhne, E.K.; et al. Linking secondary metabolites to gene clusters through genome sequencing of six diverse Aspergillus species. Proc. Natl. Acad. Sci. USA 2018, 115, E753–E761. [Google Scholar] [CrossRef] [Green Version]
- Wolfender, J.-L.; Litaudon, M.; Touboul, D.; Queiroz, E.F. Innovative omics-based approaches for prioritisation and targeted isolation of natural products—New strategies for drug discovery. Nat. Prod. Rep. 2019, 36, 855–868. [Google Scholar] [CrossRef] [Green Version]
- Metcalf, J.A.; Funkhouser-Jones, L.J.; Brileya, K.; Reysenbach, A.-L.; Bordenstein, S.R. Antibacterial gene transfer across the tree of life. eLife 2014, 25, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plemenitaš, A.; Lenassi, M.; Konte, T.; Kejžar, A.; Zajc, J.; Gostinčar, C.; Gunde-Cimerman, N. Adaptation to high salt concentrations in halotolerant/halophilic fungi: A molecular perspective. Front. Microbiol. 2014, 5, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunde-Cimerman, N.; Plemenitaš, A.; Oren, A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol. Rev. 2018, 42, 353–375. [Google Scholar] [CrossRef] [PubMed]
- Plemenitaš, A.; Vaupotič, T.; Lenassi, M.; Kogej, T.; Gunde-Cimerman, N. Adaptation of extremely halotolerant black yeast Hortaea werneckii to increased osmolarity: A molecular perspective at a glance. Stud. Mycol. 2008, 61, 67–75. [Google Scholar] [CrossRef]
- Moubasher, A.-A.H.; Abdel-Sater, M.A.; Soliman, Z.S.M. Yeasts and filamentous fungi associated with some dairy products in Egypt. J. Mycol. Médicale 2018, 28, 76–86. [Google Scholar] [CrossRef]
- Chamekh, R.; Deniel, F.; Donot, C.; Jany, J.-L.; Nodet, P.; Belabid, L. Isolation, identification and enzymatic activity of halotolerant and halophilic fungi from the Great Sebkha of Oran in Northwestern of Algeria. Mycobiology 2019, 47, 230–241. [Google Scholar] [CrossRef]
- Chung, D.; Kim, H.; Choi, H.S. Fungi in salterns. J. Microbiol. 2019, 57, 717–724. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, Y.; Wang, J.; Liu, P.; Li, J.; Zhu, W. Antimicrobial ergosteroids and pyrrole derivatives from halotolerant Aspergillus flocculosus PT05-1 cultured in a hypersaline medium. Extremophiles 2013, 17, 963–971. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, J.; Liu, P.; Wang, W.; Zhu, W. Three new compounds from Aspergillus terreus PT06-2 grown in a high salt medium. Mar. Drugs 2011, 9, 1368–1378. [Google Scholar] [CrossRef] [Green Version]
- Ali, I.; Siwarungson, N.; Punnapayak, H.; Lotrakul, P.; Prasongsuk, S.; Bankeeree, W.; Rakshit, S.K. Screening of potential biotechnological applications from obligate halophilic fungi, isolated from a man-made solar saltern located in Phetchaburi province, Thailand. Pak. J. Bot. 2014, 46, 983–988. [Google Scholar]
- Lebogang, L.; Taylor, J.E.; Mubyana-John, T. A preliminary study of the fungi associated with saltpans in Botswana and their anti-microbial properties. Bioremediation Biodivers. Bioavailab. 2009, 3, 61–71. [Google Scholar]
- Safarpour, A.; Amoozegar, M.A.; Ventosa, A. Hypersaline environments of Iran: Prokaryotic biodiversity and their potentials in microbial biotechnology. In Extremophiles in Eurasian Ecosystems: Ecology, Diversity, and Applications; Egamberdieva, D., Birkeland, N.-K., Panosyan, H., Li, W.-J., Eds.; Springer: Singapore, 2018; Volume 8, pp. 265–298. [Google Scholar]
- Safarpour, A.; Ebrahimi, M.; Shahzadeh Fazeli, S.A.; Amoozegar, M.A. Supernatant metabolites from halophilic archaea to reduce tumorigenesis in prostate cancer in-vitro and in-vivo. Iran. J. Pharm. Res. 2019, 18, 241–253. [Google Scholar] [PubMed]
- Chen, L.; Wang, G.; Bu, T.; Zhang, Y.; Wang, Y.; Liu, M.; Lin, X. Phylogenetic analysis and screening of antimicrobial and cytotoxic activities of moderately halophilic bacteria isolated from the Weihai Solar Saltern (China). World J. Microbiol. Biotechnol. 2010, 26, 879–888. [Google Scholar] [CrossRef]
- Zhao, L.-X.; Huang, S.-X.; Tang, S.-K.; Jiang, C.-L.; Duan, Y.; Beutler, J.A.; Henrich, C.J.; McMahon, J.B.; Schmid, T.; Blees, J.S.; et al. Actinopolysporins A–C and tubercidin as a Pdcd4 stabilizer from the halophilic actinomycete Actinopolyspora erythraea YIM 90600. J. Nat. Prod. 2011, 74, 1990–1995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagar, S.; Esau, L.; Hikmawan, T.; Antunes, A.; Holtermann, K.; Stingl, U.; Bajic, V.B.; Kaur, M. Cytotoxic and apoptotic evaluations of marine bacteria isolated from brine-seawater interface of the Red Sea. BMC Complement. Altern. Med. 2013, 13, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagar, S.; Esau, L.; Holtermann, K.; Hikmawan, T.; Zhang, G.; Stingl, U.; Bajic, V.B.; Kaur, M. Induction of apoptosis in cancer cell lines by the Red Sea brine pool bacterial extracts. BMC Complement. Altern. Med. 2013, 13, 344. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Xiao, L.; Wei, J.; Schmitz, J.C.; Liu, M.; Wang, C.; Cheng, L.; Wu, N.; Chen, L.; Zhang, Y.; et al. Identification of Streptomyces sp. nov. WH26 producing cytotoxic compounds isolated from marine solar saltern in China. World J. Microbiol. Biotechnol. 2013, 29, 1271–1278. [Google Scholar] [CrossRef]
- Kim, S.-H.; Shin, Y.; Lee, S.-H.; Oh, K.-B.; Lee, S.K.; Shin, J.; Oh, D.-C. Salternamides A–D from a halophilic Streptomyces sp. actinobacterium. J. Nat. Prod. 2015, 78, 836–843. [Google Scholar] [CrossRef]
- Bach, D.-H.; Kim, S.-H.; Hong, J.-Y.; Park, H.J.; Oh, D.-C.; Lee, S.K. Salternamide A suppresses hypoxia-induced accumulation of HIF-1α and induces apoptosis in human colorectal cancer cells. Mar. Drugs 2015, 13, 6962–6976. [Google Scholar] [CrossRef] [Green Version]
- Sarvari, S.; Seyedjafari, E.; Amoozgar, M.A.; Bakhshandeh, B. The effect of moderately halophilic bacteria supernatant on proliferation and apoptosis of cancer cells and mesenchymal stem cells. Cell. Mol. Biol. Noisy Gd. Fr. 2015, 61, 30–34. [Google Scholar]
- Sun, M.; Zhang, X.; Hao, H.; Li, W.; Lu, C. Nocarbenzoxazoles A−G, benzoxazoles produced by halophilic Nocardiopsis lucentensis DSM 44048. J. Nat. Prod. 2015, 78, 2123–2127. [Google Scholar] [CrossRef] [PubMed]
- Son, S.; Ko, S.-K.; Jang, M.; Kim, J.; Kim, G.; Lee, J.; Jeon, E.; Futamura, Y.; Ryoo, I.-J.; Lee, J.-S.; et al. New cyclic lipopeptides of the iturin class produced by saltern-derived Bacillus sp. KCB14S006. Mar. Drugs 2016, 14, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prathiba, S.; Jayaraman, G. Evaluation of the anti-oxidant property and cytotoxic potential of the metabolites extracted from the bacterial isolates from mangrove forest and saltern regions of South India. Prep. Biochem. Biotechnol. 2018, 48, 750–758. [Google Scholar] [CrossRef] [PubMed]
- Lawrance, A.; Balakrishnan, M.; Gunasekaran, R.; Srinivasan, R.; Valsalan, V.N.; Gopal, D.; Ramalingam, K. Unexplored deep sea habitats in active volcanic Barren Island, Andaman and Nicobar Islands are sources of novel halophilic eubacteria. Infect. Genet. Evol. 2018, 65, 1–5. [Google Scholar] [CrossRef]
- Neelam, D.K.; Agrawal, A.; Tomer, A.K.; Bandyopadhayaya, S.; Sharma, A.; Jagannadham, M.V.; Mandal, C.C.; Dadheech, P.K. A Piscibacillus sp. isolated from a soda lake exhibits anticancer activity against breast cancer MDA-MB-231 cells. Microorganisms 2019, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Donio, M.B.S.; Ronica, F.A.; Viji, V.T.; Velmurugan, S.; Jenifer, J.S.C.A.; Michaelbabu, M.; Dhar, P.; Citarasu, T. Halomonas sp. BS4, a biosurfactant producing halophilic bacterium isolated from solar salt works in India and their biomedical importance. SpringerPlus 2013, 2, 149. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Ruiz, C.; Srivastava, G.K.; Carranza, D.; Mata, J.A.; Llamas, I.; Santamaría, M.; Quesada, E.; Molina, I.J. An exopolysaccharide produced by the novel halophilic bacterium Halomonas stenophila strain B100 selectively induces apoptosis in human T leukaemia cells. Appl. Microbiol. Biotechnol. 2011, 89, 345–355. [Google Scholar] [CrossRef]
- Sarilmiser, H.K.; Ozlem, A.; Gonca, O.; Arga, K.Y.; Toksoy Oner, E. Effective stimulating factors for microbial levan production by Halomonas smyrnensis AAD6T. J. Biosci. Bioeng. 2015, 119, 455–463. [Google Scholar] [CrossRef]
- Rezaeeyan, Z.; Safarpour, A.; Amoozegar, M.A.; Babavalian, H.; Tebyanian, H.; Shakeri, F. High carotenoid production by a halotolerant bacterium, Kocuria sp. strain QWT-12 and anticancer activity of its carotenoid. EXCLI J. 2017, 16, 840–851. [Google Scholar]
- Zolfaghar, M.; Amoozegar, M.A.; Khajeh, K.; Babavalian, H.; Tebyanian, H. Isolation and screening of extracellular anticancer enzymes from halophilic and halotolerant bacteria from different saline environments in Iran. Mol. Biol. Rep. 2019, 46, 3275–3286. [Google Scholar] [CrossRef]
- Ghasemi, A.; Asad, S.; Kabiri, M.; Dabirmanesh, B. Cloning and characterization of Halomonas elongata L-asparaginase, a promising chemotherapeutic agent. Appl. Microbiol. Biotechnol. 2017, 101, 7227–7238. [Google Scholar] [CrossRef] [PubMed]
- Hamidi, M.; Mirzaei, R.; Delattre, C.; Khanaki, K.; Pierre, G.; Gardarin, C.; Petit, E.; Karimitabar, F.; Faezi, S. Characterization of a new exopolysaccharide produced by Halorubrum sp. TBZ112 and evaluation of its anti-proliferative effect on gastric cancer cells. 3 Biotech 2019, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Abbes, M.; Baati, H.; Guermazi, S.; Messina, C.; Santulli, A.; Gharsallah, N.; Ammar, E. Biological properties of carotenoids extracted from Halobacterium halobium isolated from a Tunisian solar saltern. BMC Complement. Altern. Med. 2013, 13, 255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, J.; Cui, H.-L. In vitro antioxidant, antihemolytic, and anticancer activity of the carotenoids from halophilic archaea. Curr. Microbiol. 2018, 75, 266–271. [Google Scholar] [CrossRef]
- Xiao, L.; Liu, H.; Wu, N.; Liu, M.; Wei, J.; Zhang, Y.; Lin, X. Characterization of the high cytochalasin E and rosellichalasin producing Aspergillus sp. nov. F1 isolated from marine solar saltern in China. World J. Microbiol. Biotechnol. 2013, 29, 11–17. [Google Scholar] [CrossRef]
- León, M.J.; Fernández, A.B.; Ghai, R.; Sánchez-Porro, C.; Rodriguez-Valera, F.; Ventosa, A. From metagenomics to pure culture: Isolation and characterization of the moderately halophilic bacterium Spiribacter salinus gen. nov., sp. nov. Appl. Environ. Microbiol. 2014, 80, 3850–3857. [Google Scholar] [CrossRef] [Green Version]
- Hamm, J.N.; Erdmann, S.; Eloe-Fadrosh, E.A.; Angeloni, A.; Zhong, L.; Brownlee, C.; Williams, T.J.; Barton, K.; Carswell, S.; Smith, M.A.; et al. Unexpected host dependency of Antarctic nanohaloarchaeota. Proc. Natl. Acad. Sci. USA 2019, 116, 14661–14670. [Google Scholar] [CrossRef] [Green Version]
- Blin, K.; Kim, H.U.; Medema, M.H.; Weber, T. Recent development of antiSMASH and other computational approaches to mine secondary metabolite biosynthetic gene clusters. Brief. Bioinform. 2019, 20, 1103–1113. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, Z.; Zou, H.; Li, N.; Wu, M. Characterization of the secondary metabolite biosynthetic gene clusters in archaea. Comput. Biol. Chem. 2019, 78, 165–169. [Google Scholar] [CrossRef]
- Zheng, Y.; Saitou, A.; Wang, C.-M.; Toyoda, A.; Minakuchi, Y.; Sekiguchi, Y.; Ueda, K.; Takano, H.; Sakai, Y.; Abe, K.; et al. Genome features and secondary metabolites biosynthetic potential of the class Ktedonobacteria. Front. Microbiol. 2019, 10, 893. [Google Scholar] [CrossRef]
- Weber, T.; Blin, K.; Duddela, S.; Krug, D.; Kim, H.U.; Bruccoleri, R.; Lee, S.Y.; Fischbach, M.A.; Müller, R.; Wohlleben, W.; et al. antiSMASH 3.0—A comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 2015, 43, W237–W243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohimani, H.; Gurevich, A.; Shlemov, A.; Mikheenko, A.; Korobeynikov, A.; Cao, L.; Shcherbin, E.; Nothias, L.-F.; Dorrestein, P.C.; Pevzner, P.A. Dereplication of microbial metabolites through database search of mass spectra. Nat. Commun. 2018, 9, 4035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Isolation Source | Genus | Antimicrobial Activity | Molecule | Formula | Reference |
---|---|---|---|---|---|
Saline soil of Kovalam solar salterns India | Nocardiopsis sp. AJ1 | E. coli, S. aureus, P. aeruginosa, V. parahaemolyticus, A. hydrophila | Pyrrolo (1,2-A (pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)-) | C11H18N2O2 | [40] |
Actinomycin C2 | C63H88N12O16 | ||||
Sfax solar saltern, Tunisia | Paludifilum halophilum SMBg3 | E. coli BW25113, S. henoxaz ATCC43972, P. aeruginosa ATCC 49189 Gram-positive M. luteus LB 14110, S. aureus ATCC6538, and L. ivanovii BUG 496) | Cyclic lipopeptide: | [49] | |
Gramicidin S | C60H92N12O10 | ||||
Cyclic dipeptides (CDPs): | |||||
Cyclo(l-4-OH-Pro-l-Leu) | C11H18N2O3 | ||||
Cyclo(l-Tyr-l-Pro) | C14H16N2O3 | ||||
Cyclo(l-Phe-l-Pro) | C14H16N2O2 | ||||
Cyclo(l-Leu-l-Pro) | C11H18N2O2 | ||||
Brine and sediments from Manaure solar saltern. La Guajira, Colombia | Vibrio sp. A1SM3–36-8 | Methicillin-resistant S. aureus (MRSA) ATCC BAA-44, B. subtilis ATCC 21556 | 13-cis-docosenamide | C22H43NO | [51] |
Salt lake soil, Algerian Sahara. Algeria | Nocardiopsis sp. HR-4 | S. aureus ATCC 25923, Methicillin-Resistant S. aureus (MRSA) ATCC 43300, M. luteus ATCC 4698, E. faecalis ATCC 29212 | Angucyclines and angucyclinones: | [41] | |
Compound 1: (−)-8-O-methyltetrangomycin | C20H16O5 | ||||
Compound 2: (−)-7-deoxy-8-O methyltetrangomycin | C20H18 O5 | ||||
Topsoil saltern in Jeungdo, Jeollanam-do, Republic of Korea | Nocardiopsis sp. HYJ128 | Salmonella enterica ATCC 14028 | Borrelidin C | C28H43NO7 | [42] |
Borrelidin D | C28H43NO7 | ||||
Sediments of mangrove Nizampatnam, Bay of Bengal, Andhra Pradesh, India | Pseudonocardia endophytica VUK-10 | B. cereus (MTCC 430), S. mutans (MTCC 497), S. aureus (MTCC 3160), S. epidermis (MTCC 120), B. subtilis (ATCC 6633), B. megaterium (NCIM 2187), E. coli (ATCC 35218), P. aeruginosa (ATCC 9027), P. vulgaris (MTCC 7299), S. marcescens (MTCC 118), X. campestris (MTCC 2286), X. malvacearum (NCIM 2954) and S. typhi (ATCC 14028) | N-(4-aminocyclooctyl)-3,5-dinitrobenzamide | C15H20N4O5 | [50] |
3-((1H-indol-6-yl) methyl) hexahydropyrrolo [1,2-a] pyrazine-1,4-dione | C16H17N3O2 | ||||
Soil sample, Xinjiang Province, China | Streptomonospora alba YIM 90003 | B. anthracis, B. halodurans, B. cereus ATCC 4342, ATCC 13472, B. subtilis, L. monocytogenes, E. faecalis, S. aureus and M. smegmatis | Streptomonomicin (STM) | C107H160N22O30 | [48] |
Great Barrier Reef (GBR) sponges, Queensland, Australia | Salinisporaarenicola | M. avium, M. leprae, M. lepromatosis, M. tuberculosis | Rifamycin B | C39H49NO14 | [56] |
Rifamycin S | C37H45NO12 | ||||
Rifamycin W | C35H45NO11 | ||||
Saline soil, Qaidam Basin, north-west China | Nocardiopsis terrae YIM 90022 | S. aureus, E. coli and B. subtilis | Quinoloid alkaloid 4-oxo-1,4-dihydroquinoline-3-carboxamide | C10H7N2O2 | [43] |
p-hydroxybenzoic acid | C7H6O3 | ||||
N-acetyl-anthranilic acid | C9H9NO | ||||
Indole-3-carboxylic acid | C9H7NO2 | ||||
Cyclo (Trp-Gly) | C13H13N3O2 | ||||
Cyclo (Leu-Ala) | C9H16N2O2 | ||||
Condenser water, solar salt works in Thamaraikulam, Kanyakumari district, Tamil Nadu, India | Bacillus sp. BS3 | E. coli, S. aureus, P. aeruginosa and S. typhi | Lipopeptide biosurfactants | [53] | |
13-Docosenamide, (Z) | CH3(CH2)7CH=CH(CH2)11CONH2 | ||||
Mannosamine | C6H13NO5.HCl | ||||
9-Octadecenamide, (Z) | C18H35NO | ||||
2-Octanol, 2-methyl-6-methylene | C12H22O2 | ||||
Cylohex-1,4,5-triol-3-one-1-carbo | C5H8FN3 | ||||
2-Butanamine, 2-methyl- | C5H13N | ||||
1,2-Ethanediamine, N,N,N′,N′-tetramethyl- | C6H16N2 | ||||
Hypersaline soil, Xinjiang, China | Nocardiopsis gilva YIM 90087 | B. subtilis, S. aureus | p-Terphenyl: 6′-Hydroxy-4,2′,3′,4′′-tetramethoxy-p-terphenyl | C22H22O5 | [44] |
p-Terphenyl derivative: 4,7-bis(4-methoxyphenyl)-6-hydroxy-5-methoxybenzo[d]thiazole | C22H19NO4S | ||||
Solar salt condenser, Thamaraikulam solar saltern, Kanyakumari district, Tamil Nadu, India | Halomonas salifodinae MPM-TC | V. harveyi, V. parahaemolyticus, P. aeruginosa and A. hydrophila | Perfluorotributylamine | C12F27N | [54] |
Cyclopentane, 1-butyl-2-ethyl- | C11H22 | ||||
1,1′-Biphenyl]-3-amine | C12H11N | ||||
Pyridine, 4-(phenylmethyl)- | C12H11N | ||||
Hexadecane, 2-methyl- | C17H36 | ||||
Nonadecane | C19H40 | ||||
Phytol | C20H40O | ||||
Seashore soil, Bigeum Island, South West coast of South Korea | Streptomyces hygroscopicus BDUS 49 | B. subtilis, S. aureus, E. coli, S. typhi | 7-Demethoxy rapamycin | C50H75NO12 | [47] |
Marine sediment of Mission Bay, San Diego, South California | Marinispora sp. NPS12745 | S. aureus ATCC 29213-MSSA, S. aureus ATCC 43300-MRSA, S. epidermidis ATCC 700578, S. epidermidis ATCC 700582, S. pneumoniae ATCC 49619-Penicillin sensitive, S. pneumoniae ATCC 51915-Penicillin resistant, E. faecalis ATCC 29212-Vancomycin sensitive, E. faecium ATCC 700221-Vancomycin resistant, Haemophilus influenzae ATCC 49247, Haemophilus influenzae ATCC 49766 E. coli permeable mutant | Chlorinated bisindole pirroles: | [57] | |
Lynamicin A | C22H16N3O2Cl2 | ||||
Lynamicin B | C22H14N3O2Cl3Na | ||||
Lynamicin C | C20H12N3Cl4 | ||||
Lynamicin D | C24H18N3O4Cl2 | ||||
Lynamicin E | C24H19N3O4Cl | ||||
Platinum Coast on the Mediterranean Sea, north of Egypt | Streptomyces sp. Merv8102 | E. coli ATCC 10536, P. aeruginosa ATCC 10145), B. subtilis ATCC 6051, S. aureus ATCC 6538 and M. luteus ATCC 9341 | Essramycin Triazolopyrimidine [1,2,4] Triazolo[1,5-a]pyrimidin-7(4H)-one, 5-methyl-2-(2-oxo-2-phenylethyl)- | C14H12N4O2 | [58] |
Marine sediment, La Jolla, California | Streptomyces sp. CNQ-418 | Methicillin-resistant S. aureus (MRSA) | Marinopyrroles A | C22H12Cl4N2O4 | [59] |
Marinopyrroles B | C22H11BrCl4N2O4 | ||||
Sediment of Bay of Bengal, India | Streptomyces chibaensis sp. AUBN1/7 | B. subtilis ATCC 6633, B. pumilus ATCC 19164, S. aureus ATCC 29213, E. coli ATCC 25922, P. aeruginosa ATCC 27853 P. vulgaris ATCC 6897 | 1-Hydroxy-1-norresistomycin | C21H14O7 | [45] |
Sediment of the Lagoon de Terminos at the Gulf of Mexico | Streptomyces B8005Streptomyces B4842 | E. coli, S. aureus, S. viridochromogenes | Resistomycin 1-Hydroxy-1-norresistomycin | C21H14O7 | [60] |
Resistoflavin Resistoflavin methyl ether | C23H18O7 | ||||
Marine sediment from Scripps Canyon. La Jolla, California, Pacific Coast, United States | Streptomyces nodosus NPS007994 | Drug-sensitive and drug-resistant Gram-positive reaction bacteria | Lajollamycin Nitro-tetraene Spiro-β-lactone-γ-lactam | C36H53N3O10 | [61] |
Sediment of Jiaozhou Bay, China | Actinomadura sp. M048 | S. aureus, B. subtilis, and S. viridochromogenes | Chandrananimycin A Acetamide, N-(9-hydroxy-3-oxo-3H-phenoxazin-2-yl)- | C14H10N2O4 | [62] |
Chandrananimycin B Acetamide, 2-hydroxy-N-(3-oxo-3H-phenoxazin-2-yl)- | C14H10N2O4 | ||||
Chandrananimycin C 1-Methoxy-3-methyl-1,2,3,4-tetrahydro-5H-pyrido[3,2 a]phenoxazin-5-one | C17H16N2O3 | ||||
Sandy sediment, coastal site of Mauritius, Indian Ocean | Streptomyces sp. B6921 | S. aureus, E. coli, B. subtilis, and S. viridochromogenes | Fridamycin D | C31H32O12 | [46] |
Himalomycin A | C43H52O16 | ||||
Himalomycin B | C43H56O16 | ||||
Mucus secreted by the box- fish Ostracion cubicus, Israel | Vibrio parahaemolyticus B2 | S. aureus, S. albus and B. subtilis | Vibrindole A | C18H16N2 | [52] |
Isolation Source | Genus | Antimicrobial Activity | Reference |
---|---|---|---|
Khewra Salt Range, Punjab, Pakistan | Aquisalibacillus elongatus MB592, Salinicoccus sesuvii MB597, and Halomonas aquamarina MB598 | B. subtilis, B. pumilus, E. faecalis, B. cereus, K. pneumoniae, Alcaligenes faecalis, P. geniculata, E. faecium | [63] |
Hypersaline soils (solonchaks, solonetz and takyr) from Kostanay, Auliekol and Mendykara. Almaty region, Balkhash, Kazakhstan | Actinomycetes spp. | S. aureus MRSA, E. coli (pMG223) | [64] |
Marine water, Gujarat, Western India | Kocuria sp. strain rsk4 | Antibiotic-resistant S. aureus | [65] |
Crystallizer pond sediments of Ribandar saltern, Goa, India | Streptomyces radiopugnans | S. typhimurium, P. vulgaris, E. coli | [66] |
Streptomyces sporocinereus | S. typhimurium, P. vulgaris, E. coli | ||
Kocuria palustris | S. aureus | ||
Micromonospora sp. | V. cholerae | ||
Nocardiopsis sp. | S. citreus | ||
Coastal Solar Saltern, India | Nonomuraea sp. JAJ18 | Methicillin-Resistant S. aureus (MRSA), B. subtilis MTCC 441, K. pneumonia MTCC 109, S. typhi MTCC 733, and P. vulgaris MTCC 426 | [67] |
Sediment of estuarine coastal brackish, Chilika Lake, Khurdha Odisha, India | Streptomyces chilikensis RC 1830 | E. coli, S. aureus, B. cereus and S. typhi | [67] |
Mangrove sediment of Visakhapatnam, Andhra Pradesh, India | Streptomyces sp. | S. aureus, B. subtilis, B. cereus, E. coli, P. aeruginosa, P. vulgaris | [68] |
Mangrove sediment, Nizampatnam, Andhra Pradesh, India | Pseudonocardia VUK-10 | S. aureus, S. mutans, B. subtilis, E. coli, E. faecalis, P. aeruginosa | [69] |
Salt pans Batim and Ribandar, Goa, India | Bacillus spp. Virgibacillus spp. | A. baumanii, A. hydrophila, Citrobacter diversus, Citrobacter freundii, E. coli ATCC 25922, K. pneumoniae, Morganella morganii, P. mirabilis, P. ATCC 27855, P. spp., S. paratyphi A, S. typhi, S. typhimurium, S. boydii, S. flexneri, V. cholerae, Methicillin Resistant S. aureus (MRSA), Methicillin Sensitive S. aureus (MSSA), S. aureus ATCC 25923, S. citreus | [70] |
Salt pans, Kodiakarai, Tamil Nadu, India | Streptoverticillium album | S. aureus, K. pneumoniae and E. coli | [71] |
Nonrhizospheric soil, Saharan regions, south of Algeria | Actinopolyspora spp. A. halophila, A. mortivallis, A. erythraea, A. xinjiangensis, A. alba.Nocardiopsis spp. N. litoralis, N. xinjiangensis N. valliformis and N. exhalans Saccharomonospora spp. S. paurometabolica, S. halophila Streptomonospora spp. S. alba, S. amylolytica, S. flavalba Saccharopolyspora sp. | B. subtilis, S. aureus, M. luteus, K. pneumoniae, L. monocytogenes | [72] |
Crystallizer pond, Madurai, India | Nocardiopsis sp. JAJ16 | S. aureus, B. subtilis, S. typhi, Methicillin-resistant S. aureus (MRSA), K. pneumoniae, Enterobacter sp. and P. aeruginosa | [73] |
Bay of Bengal coast of Puducherry and Marakkanam, India | Streptomyces sp. VITSVK9 | B. subtilis, Escherchia coli, K. pneumoniae, S. aureus and S. species | [74] |
Marine sediment of Marakkanam, Bay of Bengal Coast, Tamil Nadu. India | Saccharopolyspora salina VITSDK4 | S. aureus ATCC 25923, B. subtilis ATCC 6633, E. coli ATCC 25922, K. pneumoniae ATCC 10273 | [75] |
Marakkanam coast of Tamil Nadu, India | Streptomyces sp. VITSDK1 | S. aureus ATCC 25923, B. subtilis ATCC 6633, E. coli ATCC 25922, K. pneumoniae ATCC 10273 | [76] |
Salt Lake Hami in Xinjiang, China | Actinomyces sp. | B. subtilis | [77] |
Salt lakes of Bay of Bengal, India | Actinomyces sp. Streptomyces sp. | P. aeruginosa, B. subtilis, S. epidermidis, E. coli | [78] |
Water samples Asen fjord in the Trondheim fjord and Steinvikholmen, Norway | Streptomyces sp. | Gram-negative and Gram-positive bacteria | [79] |
Salt Lake Bardawil, Egypt | Streptomyces viridiviolaceus | E. coli, Edwardsiella tarda, Corynebacterium michiganese B-33, P. solanacearum B-3212 and Staphilococcus spp. | [77] |
Soil from salt pan regions of Cuddalore and Parangipettai (Porto-Novo). Tamil Nadu, India | Streptomyces sp., Saccharomonospora sp. | E. coli, K. pneumoniae, P. aeruginosa, V. cholerae, S. typhi, S. aureus, and S. dysenteriae | [80] |
Bismarck and Solomon Sea off the coast of Papua New Guinea | Micromonospora nigra DSM 43818, Micromonospora rhodorangea, Micromonospora halophytica DSM 43171 | Multidrug-resistant (MDR) Gram-positive pathogens, vancomycin-resistant enterococci (VRE), and methicillin-resistant S. aureus (MRSA) | [81] |
Marine sediment, Alibag coast, Maharashtra, India | Actinopolyspora spp. AH1, A.halophila, A. mortivallis, A. iraqiensis | S. aureus, S. epidermidis, B. subtilis | [82] |
Isolation Source | Species | Antimicrobial Activity | Molecule | Formula | Reference |
---|---|---|---|---|---|
Abyssal marine sediment. Barents Sea. Arctic Ocean | Aspergillus protuberus MUT 3638 | S. aureus, K. pneumoniae, A. baumanii and B. metallica | Bisvertinolone | C28H33O9 | [87] |
Solar saltern, Phetchaburi, Thailand | Aspergillus flavus, Aspergillus gracilis, and Aspergillus penicillioids | Antibacterial and antioxidant | Crude extracellular compounds | NR | [102] |
Putian saltern of Fujian, China | Aspergillus flocculosus PT05-1 | E. aerogenes, P. aeruginosa, and C. albicans | Ergosteroids: (22R,23S)-epoxy-3b,11a,14b,16b-tetrahydr- oxyergosta-5,7-dien-12-one | C28H42O6 | [100] |
Pyrrole derivates: 6-(1H-pyrrol-2-yl) hexa-1,3,5-trienyl-4-methoxy-2H-pyran-2-one | C16H15NO3 | ||||
Putian saltern of Fujian, China | Aspergillus terreus PT06-2 | E. aerogenes, P. aeruginosa, and C. albicans | Terremide A | C21H17N3O5 | [101] |
Terremide B | C21H15N3O4 | ||||
Terrelactone A | C24H26O8 | ||||
Semiarid saltpans in Botwana | Aspergillus terreus Tsp22 | B. megaterium and S. aureus | Crude extracellular compounds | NR | [103] |
Anticancer Activity of: | Isolation Source | Halophilic Strain | Cancer Cell Lines | Molecule | Formula | Reference |
---|---|---|---|---|---|---|
Bacteria | ||||||
Metabolite | Marakkanam saltern and Pichavaram mangroveForest in India | Bacillus sp. VITPS16 | Cervical carcinoma | Squalene | C30H50 | [116] |
3-Methyl-2-(2-oxopropyl) furan | C8H10O2 | |||||
Methyl hexadeconate | C17H34O2 | |||||
Topsoil saltern in Jeungdo, Jeollanam-do, Republic of Korea | Nocardiopsis sp. HYJ128 | Stomach and Leukemia carcinoma | Borrelidin C | C28H43NO7 | [42] | |
Borrelidin D | C28H43NO7 | |||||
Saltern in Incheon in Korea | Bacillus sp. KCB14S006 | Cervical carcinoma Myeloid leukemia | Iturin F1 | C51H80N12O15Na | [115] | |
Iturin F2 | C51H80N12O15Na | |||||
Iturin A8 | C51H80N12O14Na | |||||
Iturin A9 | C51H80N12O14Na | |||||
A saltern on Shinui Island in Korea | Streptomyces sp. | Colorectal cancer Gastric cancer | Salternamide A | C23H32ClNO5 | [111] | |
Salt marsh soil, Alicante, Spain | Nocardiopsis lucentensis DSM 44048 | Liver cancer Cervical cancer cells | Nocarbenzoxazole G | C15H13NO4 | [114] | |
- | Brine-seawater interface of the Red Sea | 12 halophilic marine strains | Breast adenocarcinoma Cervical carcinoma Prostate carcinoma | Crude extract | NR | [108] |
- | Deep-sea brine pools of the Red Sea | 24 halophilic marine strains | Breast adenocarcinoma Cervical carcinoma Prostate carcinoma | Crude extract | NR | [109] |
- | Weihai Solar Saltern in China | Streptomyces sp. WH26 | Lung adenocarcinoma Liver hepatocellular adenocarcinoma Cervical carcinoma Colorectal cancer | 8-O-Methyltetrangulol | C20H14O4 | [110] |
- | Naphthomycin A | C40H46ClNO9 | ||||
- | Baicheng salt field, Xingjiang Province, China | Actinopolyspora erythraea YIM 90600 | Tumor suppressor Programmed Cell Death Protein 4 (Pdcd4) | Actinopolysporins A | C15H28O4 | [107] |
Actinopolysporins B | C16H30O4 | |||||
Actinopolysporins C | C16H30O2 | |||||
Weihai Solar Saltern in China | 45 moderately halophilic strains | Liver hepatocellular adenocarcinoma | Crude extracts | NR | [106] | |
Supernatant metabolite | Sambhar Lake in India | Piscibacillus sp. C12A1 | Breast adenocarcinoma | Crude extract | NR | [118] |
Brine and sediment of the Manaure solar saltern in Colombia | Vibrio sp. A1SM3-36-8 | Lung adenocarcinoma | 13-cis-docosenamide | C22H43NO | [51] | |
Different hypersaline lakes in Iran | 9 moderately halophilic strains | Umbilical vein endothelial cancer cell | Crude extract | NR | [113] | |
Biosurfactant | Thamaraikulam solar salt works in India | Halomonas sp. BS4 | Mammary epithelial carcinoma | 1,2-Ethanediamine, N,N,N’,N’-tetra | C6H16N2 | [119] |
8-Methyl-6-nonenamide | C10H19NO | |||||
9-Octadecenamide, (Z) | C18H35NO | |||||
Solar salt works in India | Bacillus sp. BS3 | Mammary epithelial carcinoma | 13-Docosenamide, (Z) | CH3(CH2)7CH=CH(CH2)11CONH2 | [53] | |
Mannosamine | C6H13NO5·HCl | |||||
9-Octadecenamide, (Z) | C18H35NO | |||||
2-Octanol,2-methyl-6-methylene | C12H22O2 | |||||
Cylohex-1,4,5-triol-3-one-1-carbo | C5H8FN3 | |||||
2-Butanamine, 2-methyl- | C5H13N | |||||
1,2-Ethanediamine, N,N,N′,N′-tetramethyl- | C6H16N2 | |||||
Exopolysaccharide | Çamalti saltern area in Turkey | Halomonas smyrnensis strain AAD6 | Breast adenocarcinoma Lung adenocarcinoma Liver hepatocellular adenocarcinoma Gastric adenocarcinoma | Levan | C18H32O16 | [121] |
Sabinar saline wetland in Spain | Halomonas stenophila strain B100 | Lymphoblastic leukemia | Single acidic exopolysaccharide with glucose, mannose and galactose | NR | [120] | |
Carotenoid | Industrial tannery wastewater in Iran | Kocuria sp. MA-2 | Prostate carcinoma | Neurosporene | C40H58 | [122] |
Enzyme | Hypersaline soil in Iran | Halomonas elongata IBRC-M 10216 | Lymphoblastic leukemia Myeloid leukemia | l-asparaginase | C1377H2208N382O442S17 | [124] |
Archaea | ||||||
Supernatant metabolite | Aran Bidgol hypersaline lake in Iran | Halobacterium salinarum IBRC-M 10715 | Prostate carcinoma | Crude extract | NR | [105] |
Exopolysaccharide | Urmia Lake in Iran | Halorubrum sp. TBZ112 | Gastric adenocarcinoma | Monosaccharide composition mainly composed of mannose, glucosamine, galacturonic acid, arabinose, and glucuronic acid | NR | [125] |
Carotenoid | Marine solar saltern in eastern China | Halogeometricum limi strain RO1-6 Haloplanus vescus strain RO5-8 | Liver hepatocellular adenocarcinoma | Bacterioruberin | C50H76O4 | [127] |
Tunisian solar saltern | Halobacterium halobium | Liver hepatocellular adenocarcinoma | Bacterioruberin | C50H76O4 | [126] | |
Fungi | ||||||
Metabolite | Weihai Solar Saltern in China | Aspergillus sp. F1 | Lung adenocarcinoma Liver hepatocellular adenocarcinoma Cervical carcinoma Colorectal cancer | Cytochalasin E | C28H33NO7 | [128] |
Ergosterol | C28H44O | |||||
Rosellichalasin | C28H33NO5 |
Compound | Structure | Antibiotic Activity | Anticancer Activity | Reference | ||
---|---|---|---|---|---|---|
Microorganism | MIC (μM) | Cell Lines | IC50 (μM) | |||
Borrelidin C, D | S. enterica | 16–63 | Stomach | 5.5 | [42] | |
Leukemia | 5.7 | |||||
Leukemia | 6.7 | |||||
Angucyclinone: N-(4-aminocyclooctyl)-3,5-dinitrobenzamide | S. aureus, S. epidermis, B. subtilis, B. megaterium, P. aeruginosa | 16 | Breast, cervical, ovarian cyst, adenocarcinoma | 10 nM | [50] | |
S. mutans | 4 | |||||
X. malvacearum, S. typhi, E. coli | 32 | |||||
B. cereus | 8 | |||||
C. albicans | 16 | |||||
Streptomonomicin STM | B. anthracis | 2–4 | NR | NR | [48] | |
B. halodurans | 4 | |||||
B. cereus | 4–7 | |||||
Bacillus sp. | 7 | |||||
B. subtilis | 29 | |||||
L. monocytogenes | 14 | |||||
E. faecalis | 29 | |||||
S. aureus | 57 | |||||
4-oxo-1,4-dihydroquinoline-3-carboxamide | S. aureus | 64 | NR | NR | [43] | |
B. subtilis | 64 | |||||
6′-Hydroxy-4,2′,3′,4″-tetramethoxy-p-terphenyl | B. subtilis | 64 | NR | NR | [44] | |
C. albicans | 32 | |||||
Lynamicin A, B, C, and D | S. aureus | 1.8–6.2 | NR | NR | [57] | |
S. epidermidis | 2.2–9.5 | |||||
S. pneumoniae | 18–57 | |||||
E. faecalis | 3.3–19 | |||||
E. faecium | 4.4–19 | |||||
H. influenzae | 4.4–38 | |||||
E. coli | 13–16 | |||||
Essramycin | E. coli | 8 | NR | NR | [58] | |
P. aeruginosa | 3.5 | |||||
B. subtilis, S. aureus | 1 | |||||
M. luteus | 1.5 | |||||
Resistomycin 1-hydroxy-1-Norresistomycin | E. coli | 40 | NR | NR | [60] | |
S. aureus | ||||||
S. viridochromogenes | ||||||
Resistoflavin methyl ether | R=Me | B. subtilis | 3.1 | NR | NR | |
E. coli, S. aureus, C. albicans | 10 | |||||
Lajollamycin | MSSA | 4 | Murine melanoma cell line B16-F10 | 9.6 | [61] | |
MRSA | 5 | |||||
SPPS | 2 | |||||
PRSP | 1.5 | |||||
VSEF | 14 | |||||
VREF | 20 | |||||
E. coli | 12 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corral, P.; Amoozegar, M.A.; Ventosa, A. Halophiles and Their Biomolecules: Recent Advances and Future Applications in Biomedicine. Mar. Drugs 2020, 18, 33. https://doi.org/10.3390/md18010033
Corral P, Amoozegar MA, Ventosa A. Halophiles and Their Biomolecules: Recent Advances and Future Applications in Biomedicine. Marine Drugs. 2020; 18(1):33. https://doi.org/10.3390/md18010033
Chicago/Turabian StyleCorral, Paulina, Mohammad A. Amoozegar, and Antonio Ventosa. 2020. "Halophiles and Their Biomolecules: Recent Advances and Future Applications in Biomedicine" Marine Drugs 18, no. 1: 33. https://doi.org/10.3390/md18010033
APA StyleCorral, P., Amoozegar, M. A., & Ventosa, A. (2020). Halophiles and Their Biomolecules: Recent Advances and Future Applications in Biomedicine. Marine Drugs, 18(1), 33. https://doi.org/10.3390/md18010033