Spirulina Platensis Supplementation Coupled to Strength Exercise Improves Redox Balance and Reduces Intestinal Contractile Reactivity in Rat Ileum
Abstract
:1. Introduction
2. Results
2.1. Electromechanical Coupling Contractile Reactivity Measurement
2.2. Pharmacomechanical Coupling Contractile Reactivity Measurement
2.3. Lipid Peroxidation Assay
2.4. Antioxidant Assay
3. Discussion
4. Material and Methods
4.1. Animals
4.2. Drugs
4.3. Spirulina Platensis
4.4. Experimental Protocol
4.5. Contractile Reactivity Measurement
4.6. Lipid Peroxidation Assay
4.7. Antioxidant Assay
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviation List
Sedentary (S) |
S + supplemented with algae at 50 (S50) 150 (S150) |
S + supplemented with algae at 150 (S150) |
S + supplemented with algae at 500 mg/kg (S500) |
Trained (T) |
T + supplemented (T50, T150, and T500) |
2,2-diphenyl-1-picrylhydrazyl (DPPH) |
Malondialdehyde (MDA) |
Carbachol (CCh) |
Potassium chloride (KCl) |
Maximum effect (Emax) |
pEC50 |
Reactive oxygen species (ROS) |
Acetylcholine (ACh) |
Ca2+ channels (CaV) |
Lactate dehydrogenase (LDH) |
Creatine kinase (CK) |
Superoxide dismutase (SOD) |
Catalase (CAT) |
Calcium chloride bihydrate (CaCl2.2H2O) |
Magnesium chloride hexahydrate (MgCl2.6H2O) |
Glucose (C6H12O6) |
Sodium bicarbonate (NaHCO3) |
Sodium chloride (NaCl) |
Monosodium dihydrogen orthophosphate (NaH2PO4) |
Sodium hydroxide (NaOH) |
Hydrochloric acid (HCl) |
Carbamylcholine hydrochloride (CCh) |
2-thiobarbituric acid (TBA) |
References
- Newman, D.J.; Cragg, G.M.; Snader, K.M. Natural products as sources of new drugs over the period 1981–2002. J. Nat. Prod. 2003, 66, 1022–1037. [Google Scholar] [CrossRef] [PubMed]
- Petrovska, B.B. Historical review of medicinal plants’ usage. Pharmacogn. Rev. 2012, 6, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, S.Y.; Litscher, G.; Gao, S.H.; Shou, S.F.; Yu, Z.L.; Chen, H.Q.; Zhang, S.F.; Tang, M.K.; Sun, J.N.; Ko, K.M. Historical perspective of traditional indigenous medical practices: The current renaissance and conservation of herbal resources. J. Evid. Based Complementary Altern. Med. 2014. [Google Scholar] [CrossRef] [PubMed]
- Riccioni, G.; D’orazio, N.; Franceschelli, S.; Speranza, L. Marine carotenoids and cardiovascular risk markers. Mar. Drugs 2011, 9, 1166–1175. [Google Scholar] [CrossRef] [Green Version]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2012, 29, 144–222. [Google Scholar] [CrossRef]
- Yamazaki, D.A.; Sumilat, S.; Kanno, S.; Ukai, K.; Rotinsulu, H.; Wewengkang, D.S.; Ishikawa, M.; Mangindaan, R.E.P.; Namikoshi, M. A polybromodiphenyl ether from an Indonesian marine sponge Lamellodysidea herbacea and its chemical derivates inhibit protein tyrosine phosphatase 1B, an important target for diabetes treatment. J. Nat. Med. 2013, 67, 730–735. [Google Scholar] [CrossRef] [Green Version]
- Ciferri, O. Spirulina, the edible microorganism. Microbio.l Rev. 1983, 47, 551–578. [Google Scholar] [CrossRef]
- Riss, J.; Decorde, K.; Sutra, T.; Delage, M.; Baccou, J.C.; Jouy, N.; Brune, J.P.; Oreal, H.; Cristol, J.P.; Rouanet, J.M. Phycobiliprotein Cphycocyanin from Spirulina platensis is powerfully responsible for reducing oxidative stress and NADPH oxidase expression induced by an atherogenic diet in hamsters. J. Agric. Food Chem. 2007, 55, 7962–7967. [Google Scholar] [CrossRef]
- Park, H.J.; Lee, Y.J.; Ryu, H.Q.; Kim, M.H.; Chung, H.W.; Kim, W.Y. A randomized double-blind, placebo-controlled study to establish the the effects os Spirilina in elderly Koreans. Ann. Nutr. Metab. 2008, 52, 322–328. [Google Scholar] [CrossRef]
- Ku, C.S.; Pham, T.X.; Park, Y.; Kim, B.; Shin, M.; Kang, I.; Lee, J. Edible blue-green algae reduce the production of pro-inflammatory cytokines by inhibiting NF-kB pathway in macrophages and splenocytes. Biochem. Biophys. Acta 2013, 1830, 2981–2989. [Google Scholar] [CrossRef] [Green Version]
- Brito, A.F.; Silva, A.S.; Souza, A.A.; Ferreira, P.B.; Souza, I.L.L.; Araujo, L.C.C.; Félix, G.S.; Sampaio, R.S.; Silva, M.C.C.; Tavares, R.L.; et al. Aortic Response to Strength Training and Spirulina platensis Dependent on Nitric Oxide and Antioxidants. Front Physiol. 2018, 9, 1522. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wisloff, U.; Kemi, O.J. Animal models in the study of exercise-induced. Physiol. Res. 2010, 59, 633–644. [Google Scholar] [PubMed]
- Abdel-Daim, M.M.; Frouk, S.M.; Madkour, F.F.; Azab, S.S. Anti-inflammatory and immunomodulatory effects of Spirulina platensis in comparison to Dunaliella salina in acetic acid-induced rat experimental colitis. J. Immunopharmacol. Immunotoxicol. 2015, 37, 126–139. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Xiong, H.; Zhu, X.; Ji, C.; Xue, J.; Li, R.; Ge, B.; Cui, H. Polysaccharide from Spirulina platensis ameliorates diphenoxylate-induced constipation symptoms in mice. Int. J. Biol. Macromol. 2019, 133, 1090–1101. [Google Scholar] [CrossRef] [PubMed]
- Araujo, L.C.C.; Souza, I.L.L.; Vasconcelos, L.H.C.; Brito, A.F.; Queiroga, F.R.; Silva, A.S.; Silva, P.M.; Cavalcante, F.A.; Silva, B.A. Chronic aerobic swimming exercise promotes functional and morphological changes in rat ileum. Biosci Rep 2015, 35, 259. [Google Scholar] [CrossRef]
- Araujo, L.C.C.; Souza, I.L.L.; Vasconcelos, L.H.C.; Brito, A.F.; Queiroga, F.R.; Silva, A.S.; Silva, P.M.; Cavalcante, F.A.; Silva, B.A. Acute aerobic swimming exercise induces distinct effects in the contractile reactivity of rat ileum to KCl and Carbachol. Front Physiol. 2016, 7, 103. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.X.; Mei, X.T.; Xu, D.H.; Xu, S.B.; Lv, J.Y. Protective effects of polysaccharide of Spirulina platensis and Sargassum thunbeergii on vascular of alloxan induced diabetic rats. Zhongguo Zhong Yao Za Zhi 2005, 30, 211–215. [Google Scholar]
- Wu, H.E.; Chen, T.F.; Yin, X.; Zheng, W.J. Spectrometric characteristics and underlying mechanisms of protective effects of selenium on Spirulina platensis against oxidative stress. Guang Pu Xue Yu Guang Pu Fen Xi 2012, 32, 749–754. [Google Scholar]
- Furness, J.B.; Young, H.M.; Pompolo, S.; Bornstein, J.C.; Kunze, W.A.A.; McConalogue, K. Plurichemical transmission and chemical coding of neurons in the digestive tract. Gastroenterology 1995, 108, 554–563. [Google Scholar] [CrossRef]
- Bornstein, J.C.; Costa, M.; Grider, J.R. Enteric motor and interneuronal circuits controlling motility. Neurogastroenterol. Motil 2004, 16, 34–38. [Google Scholar] [CrossRef]
- Reuter, H. Properties of two in ward membrane currents in the heart. Annu. Rev. Physiol. 1979, 41, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Tsien, R.W. Calcium channels in excitable cell membranes. Annu. Rev. Physiol. 1983, 45, 341–358. [Google Scholar] [CrossRef] [PubMed]
- Bers, D.M. Cardiac excitation-contraction coupling. Nature 2002, 415, 198–205. [Google Scholar] [CrossRef]
- Somlyo, A.V.; Somlyo, A.P. Electromechanical and pharmacomechanical coupling in vascular smooth muscle. J. Pharmacol. Exp. Ther. 1968, 159, 129–145. [Google Scholar] [PubMed]
- Tse, G.; Lai, E.T.; Yeo, J.M.; Tse, V.; Wong, S.H. Mechanisms of Electrical Activation and Conduction in the Gastrointestinal System: Lessons from Cardiac Electrophysiology. Front Physiol. 2016, 31, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanders, K.M.; Koh, S.D.; Ordog, T.; Ward, S.M. Ionic conductances involved in generation and propagation of electrical slow waves in phasic gastrointestinal muscles. Neurogastroenterol. Motil. 2004, 16, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Neubig, R.R.; Spedding, M.; Kenakin, T.; Christopoulos, A. International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. XXXVIII. Update on terms and symbols in quantitative pharmacology. Pharmacol. Rev. 2003, 55, 597–606. [Google Scholar] [CrossRef] [Green Version]
- Mcardle, W.D.; Katch, F.J.; Katch, V.L. Fisiologia do Exercício: Energia, nutrição e desempenho humano. Traduzido po Giuseppe Taranto. Rio de Janeiro; LWW: Philadelphia, PA, USA, 2016. [Google Scholar]
- Otte, J.; Oostveen, E.; Geelkerken, R.H.; Groeneveld, A.B.J.; Kolkman, J.J. Exercise induces gastric ischemia in healthy volunteers: A tonometry study. Eur. J. Appl. Physiol. 2001, 91, 866–871. [Google Scholar] [CrossRef]
- Brito, A.F.; Alves, N.F.B.; Souza, A.A.; Goncalves, M.C.R.; Silva, A.S. Active intervals between sets of resistance exercises potentiate the magnitude of postexercise hypotension in elderly hypertensive women. J. Strength Cond. Res. 2011, 25, 3129–3136. [Google Scholar] [CrossRef]
- Trinity, J.D.; Wray, D.W.; Witman, M.A.; Layec, G.; Barrett-O’Keefe, Z.; Ives, S.J.; Conklin, J.D.; Reese, V.; Richardson, R.S. Contribution of nitric oxide to brachial artery vasodilation during progressive handgrip exercise in the elderly. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 305, 893–899. [Google Scholar] [CrossRef] [Green Version]
- Beck, D.T.; Martin, J.S.; Casey, D.P.; Braith, R.W. Exercise training improves endothelial function in resistance arteries of young prehypertensives. J. Hum. Hypertens. 2014, 28, 303–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, Y.; Akazawa, N.; Miyaki, A.; Ra, S.G.; Shiraki, H.; Ajisaka, R.; Maeda, S. Acute effect of high-intensity eccentric exercise on vascular endothelial function in young men. J. Strength Cond. Res. 2014, 14, 2279–2285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araújo, A.J.S.; Santos, A.C.V.; Souza, K.S.; Aires, M.B.; Santana-Filho, V.J.; Fioretto, E.T.; Mota, M.M.; Santos, M.R.B. Resistance training controls arterial blood pressure in rats with L-NAME-induced hypertension. Arq Bras Cardiol 2013, 100, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Ballabeni, B.; Barocelli, E.; Bertoni, S.; Impicciatore, M. Alterations of intestinal motor responsiveness in a model of mild mesenteric ischemia/reperfusion in rats. Life Sci. 2002, 71, 2025–2035. [Google Scholar] [CrossRef]
- Smith, L.L. Tissue trauma: The underlying cause of overtraining syndrome? J. Strength Cond. Res. 2004, 18, 185–193. [Google Scholar] [CrossRef]
- Bhat, V.B.; Madyastha, K.M. C-phycocyanin: A potent peroxyl radical scavenger in vivo and in vitro. Biochem. Biophys. Res. Commun. 2000, 275, 20–25. [Google Scholar] [CrossRef]
- Mccarty, M.F. Clinical potential of Spirulina as a source of phycocyanobilin. J. Med. Food 2007, 10, 566–570. [Google Scholar] [CrossRef]
- Kuddus, M.; Singh, P.; Thomas, G.; Al-Hazimi, A. Recent developments in production and biotechnological applications of C-phycocyanin. Biomed. Res. Int. 2013, 2013, 742–859. [Google Scholar] [CrossRef] [Green Version]
- Cuvelier, M.E. Antioxidants. In Functional foods: An introductory course; Morais, R., Ed.; Universidade 611 Católica Portuguesa—Escola Superior de Biotecnologia: Porto, Portugal, 2001; pp. 95–105. [Google Scholar]
- Del Rio, D.; Stewart, A.J.; Pellegrini, N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 316–328. [Google Scholar] [CrossRef]
- Sherwin, C.M.; Christiansen, S.B.; Duncan, I.J.; Erhard, H.W.; Lay, D.C., Jr.; Mench, J.A.; O’Connor, C.E.; Petherick, J.C. Guidelines for the ethical use of animals in applied animal behaviour research. Appl. Animal Behaviour. Sci. 2003, 81, 291–305. [Google Scholar] [CrossRef]
- Marqueti, R.C.; Parizotto, N.A.; Chriguer, R.S.; Perez, S.E.; Selistre-de-Araujo, H.S. Androgenic-anabolic steroids associated with mechanical loading inhibit matrix metallopeptidase activity and affect the remodeling of the achiles tendon in rats. Am. J. Sports Med. 2006, 34, 1274–1280. [Google Scholar] [CrossRef] [PubMed]
- Juarez-Oropeza, M.A.; Mascher, D.; Torres-Durán, P.V.; Farias, J.M.; Paredes-Carbajal, M.C. Effects of dietary Spirulina on vascular reactivity. J. Med. Food. 2009, 12, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Stefani, G.P.; Nunes, R.B.; Dornrlles, A.Z.; Alves, J.P.; Piva, M.O.; Domenico, M.D.; Rhoden, C.R.; Lago, P.D. Effects of creatine supplementation associated with resistance training on oxidative stress in different tissues of rats. J. Int. Soc. Sports Nutr. 2014, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radenkovic, M.; Ivetic, V.; Popovic, M.; Mimica-Dukic, N.; Veljkovic, S. Neurophysiological effects of mistletoe (Viscum album L.) on isolated rat intestines. Phytother. Res. 2006, 20, 374–377. [Google Scholar] [CrossRef]
- Winterbourn, C.C.; Gutteridge, J.M.; Halliwell, B. Doxorubicindependent lipid peroxidation at low partial pressures of O2. J. Free Radic. Biol. Med. 1985, 1, 43–49. [Google Scholar] [CrossRef]
- Brand Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. J. 1995, 28, 25–30. [Google Scholar] [CrossRef]
KCl (M) | Emax (%) | pEC50 |
---|---|---|
S | 100.0 | 1.76 ± 0.02 |
S50 | 59.7 ± 5.8 * # | 2.04 ± 0.04 * |
S150 | 71.6 ± 7.1 * | 1.76 ± 0.04 |
S500 | 51.3 ± 4.5 * # | 1.63 ± 0.02 |
T | 82.4 ± 7.5 | 1.78 ± 0.06 |
T50 | 14.0 ± 1.8 * # γ | 1.58 ± 0.09 |
T150 | 33.7 ± 5.7 * # γ | 1.65 ± 0.07 |
T500 | 83.3 ± 3.1 | 1.64 ± 0.04 |
CCh (M) | Emax (%) | pEC50 |
---|---|---|
S | 100.0 | 5.99 ± 0.05 |
S50 | 92.5 ± 2.6 | 6.19 ± 0.11 |
S150 | 30.0 ± 0.9 * | 6.26 ± 0.10 |
S500 | 53.3 ± 3.8 * # | 6.43 ± 0.15 * |
T | 57.1 ± 5.8 * | 6.44 ± 0.14 |
T50 | 33.3 ± 2.0 * # | 6.35 ± 0.18 |
T150 | 56.6 ± 3.9 * | 6.38 ± 0.20 |
T500 | 43.5 ± 4.5 * | 6.07 ± 0.18 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araujo, L.C.C.; Brito, A.F.; Souza, I.L.L.; Ferreira, P.B.; Vasconcelos, L.H.C.; Silva, A.S.; Silva, B.A. Spirulina Platensis Supplementation Coupled to Strength Exercise Improves Redox Balance and Reduces Intestinal Contractile Reactivity in Rat Ileum. Mar. Drugs 2020, 18, 89. https://doi.org/10.3390/md18020089
Araujo LCC, Brito AF, Souza ILL, Ferreira PB, Vasconcelos LHC, Silva AS, Silva BA. Spirulina Platensis Supplementation Coupled to Strength Exercise Improves Redox Balance and Reduces Intestinal Contractile Reactivity in Rat Ileum. Marine Drugs. 2020; 18(2):89. https://doi.org/10.3390/md18020089
Chicago/Turabian StyleAraujo, Layanne C. C., Aline F. Brito, Iara L. L. Souza, Paula B. Ferreira, Luiz Henrique C. Vasconcelos, Alexandre S. Silva, and Bagnólia A. Silva. 2020. "Spirulina Platensis Supplementation Coupled to Strength Exercise Improves Redox Balance and Reduces Intestinal Contractile Reactivity in Rat Ileum" Marine Drugs 18, no. 2: 89. https://doi.org/10.3390/md18020089
APA StyleAraujo, L. C. C., Brito, A. F., Souza, I. L. L., Ferreira, P. B., Vasconcelos, L. H. C., Silva, A. S., & Silva, B. A. (2020). Spirulina Platensis Supplementation Coupled to Strength Exercise Improves Redox Balance and Reduces Intestinal Contractile Reactivity in Rat Ileum. Marine Drugs, 18(2), 89. https://doi.org/10.3390/md18020089