Micro RNA Expression after Ingestion of Fucoidan; A Clinical Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Test compounds
4.3. Trial design
4.4. miRNA Quantification
4.5. Pathway Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fitton, H.J.; Stringer, D.S.; Park, A.Y.; Karpiniec, S.N. Therapies from Fucoidan: New Developments. Mar. Drugs 2019, 17, 571. [Google Scholar] [CrossRef] [Green Version]
- Fitton, J.H.; Stringer, D.N.; Karpiniec, S.S.; Park, A.Y. The manufacture, characterization, and uses of fucoidans from macroalgae. In Enzymatic Technologies for Marine Polysaccharides, 8 Apr 2019 ed.; CRC Press: Boca Raton, FL, USA, 2019; pp. 47–60. [Google Scholar]
- Jeong, Y.; Thuy, L.T.; Ki, S.H.; Ko, S.; Kim, S.; Cho, W.K.; Choi, J.S.; Kang, S.M. Multipurpose Antifouling Coating of Solid Surfaces with the Marine-Derived Polymer Fucoidan. Macromol. Biosci. 2018, 18, e1800137. [Google Scholar] [CrossRef]
- Corban, M.; Ambrose, M.; Pagnon, J.; Stringer, D.; Karpiniec, S.; Park, A.; Eri, R.; Fitton, J.H.; Gueven, N. Pathway Analysis of Fucoidan Activity Using a Yeast Gene Deletion Library Screen. Mar. Drugs 2019, 17, 54. [Google Scholar] [CrossRef] [Green Version]
- Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef] [Green Version]
- Mori, M.A.; Ludwig, R.G.; Garcia-Martin, R.; Brandao, B.B.; Kahn, C.R. Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease. Cell Metab. 2019, 30, 656–673. [Google Scholar] [CrossRef]
- Cui, J.; Zhou, B.; Ross, S.A.; Zempleni, J. Nutrition, microRNAs, and Human Health. Adv. Nutr. 2017, 8, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Yan, M.D.; Yao, C.J.; Chow, J.M.; Chang, C.L.; Hwang, P.A.; Chuang, S.E.; Whang-Peng, J.; Lai, G.M. Fucoidan Elevates MicroRNA-29b to Regulate DNMT3B-MTSS1 Axis and Inhibit EMT in Human Hepatocellular Carcinoma Cells. Mar. Drugs 2015, 13, 6099–6116. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.Y.; Wu, A.T.; Yuan, K.S.; Liu, S.H. Brown Seaweed Fucoidan Inhibits Cancer Progression by Dual Regulation of mir-29c/ADAM12 and miR-17-5p/PTEN Axes in Human Breast Cancer Cells. J. Cancer 2016, 7, 2408–2419. [Google Scholar] [CrossRef] [Green Version]
- Reid, S.N.S.; Ryu, J.K.; Kim, Y.; Jeon, B.H. The Effects of Fermented Laminaria japonica on Short-Term Working Memory and Physical Fitness in the Elderly. Evid. Complement. Altern. Med. 2018, 2018, 8109621. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.; Shim, I.; Lee, H.; Hahm, D.H. Fucoidan prevents depression-like behavior in rats exposed to repeated restraint stress. J. Nat. Med. 2013, 67, 534–544. [Google Scholar] [CrossRef]
- Wang, W.; Wu, J.; Zhang, X.; Hao, C.; Zhao, X.; Jiao, G.; Shan, X.; Tai, W.; Yu, G. Inhibition of Influenza A Virus Infection by Fucoidan Targeting Viral Neuraminidase and Cellular EGFR Pathway. Sci. Rep. 2017, 7, 40760. [Google Scholar] [CrossRef]
- Thakur, V.; Lu, J.; Roscilli, G.; Aurisicchio, L.; Cappelletti, M.; Pavoni, E.; White, W.L.; Bedogni, B. The natural compound fucoidan from New Zealand Undaria pinnatifida synergizes with the ERBB inhibitor lapatinib enhancing melanoma growth inhibition. Oncotarget 2017. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H.; Li, N.; Zhang, Q.; Zhang, H. The protective effect of fucoidan in rats with streptozotocin-induced diabetic nephropathy. Mar. Drugs 2014, 12, 3292–3306. [Google Scholar] [CrossRef]
- Sim, S.Y.; Shin, Y.E.; Kim, H.K. Fucoidan from Undaria pinnatifida has anti-diabetic effects by stimulation of glucose uptake and reduction of basal lipolysis in 3T3-L1 adipocytes. Nutr. Res. 2019, 65, 54–62. [Google Scholar] [CrossRef]
- Wright, C.M.; Bezabhe, W.; Fitton, J.H.; Stringer, D.N.; Bereznicki, L.R.E.; Peterson, G.M. Effect of a Fucoidan Extract on Insulin Resistance and Cardiometabolic Markers in Obese, Nondiabetic Subjects: A Randomized, Controlled Trial. J. Altern. Complement. Med. 2019, 25, 346–352. [Google Scholar] [CrossRef]
- Hernandez-Corona, D.M.; Martinez-Abundis, E.; Gonzalez-Ortiz, M. Effect of fucoidan administration on insulin secretion and insulin resistance in overweight or obese adults. J. Med. Food 2014, 17, 830–832. [Google Scholar] [CrossRef]
- Sharma, G.; Kar, S.; Basu Ball, W.; Ghosh, K.; Das, P.K. The curative effect of fucoidan on visceral leishmaniasis is mediated by activation of MAP kinases through specific protein kinase C isoforms. Cell. Mol. Immunol. 2014, 11, 263–274. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Sun, J.; Song, B.; Zhang, L.; Shao, Q.; Liu, Y.; Yuan, D.; Zhang, Y.; Qu, X. Fucoidan inhibits CCL22 production through NF-kappaB pathway in M2 macrophages: A potential therapeutic strategy for cancer. Sci. Rep. 2016, 6, 35855. [Google Scholar] [CrossRef]
- Che, N.; Ma, Y.; Xin, Y. Protective Role of Fucoidan in Cerebral Ischemia-Reperfusion Injury through Inhibition of MAPK Signaling Pathway. Biomol. Ther. (Seoul) 2017, 25, 272–278. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Riby, J.E.; Conde, L.; Grizzle, W.E.; Cui, X.; Skibola, C.R. A Fucus vesiculosus extract inhibits estrogen receptor activation and induces cell death in female cancer cell lines. BMC Complement. Altern. Med. 2016, 16. [Google Scholar] [CrossRef] [Green Version]
- Zhang, E.; Chu, F.; Xu, L.; Liang, H.; Song, S.; Ji, A. Use of fluorescein isothiocyanate isomer I to study the mechanism of intestinal absorption of fucoidan sulfate in vivo and in vitro. Biopharm. Drug Dispos. 2018, 39, 298–307. [Google Scholar] [CrossRef]
- Wu, H.; Gao, S.-B.; Sakurai, T.; Terakawa, S. Fucoidan suppresses endocytosis in cultured HeLa cells. Chin. J. Integr. Med. 2011. [Google Scholar] [CrossRef]
- Carson, M.A.; Clarke, S.A. Bioactive Compounds from Marine Organisms: Potential for Bone Growth and Healing. Mar. Drugs 2018, 16, 340. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Ding, Y.; Cai, L.; Wang, Y.; Lin, C.; Shi, Z. Low molecular weight fucoidan attenuates experimental abdominal aortic aneurysm through interfering the leukocyte-endothelial cells interaction. Mol. Med. Rep. 2018, 17, 7089–7096. [Google Scholar] [CrossRef]
- Park, H.S.; Kim, G.Y.; Nam, T.J.; Deuk Kim, N.; Hyun Choi, Y. Antiproliferative activity of fucoidan was associated with the induction of apoptosis and autophagy in AGS human gastric cancer cells. J. Food Sci. 2011, 76. [Google Scholar] [CrossRef]
- Ustyuzhanina, N.E.; Bilan, M.I.; Ushakova, N.A.; Usov, A.I.; Kiselevskiy, M.V.; Nifantiev, N.E. Fucoidans: Pro- or antiangiogenic agents? Glycobiology 2014, 24, 1265–1274. [Google Scholar] [CrossRef] [Green Version]
- Boo, H.J.; Hong, J.Y.; Kim, S.C.; Kang, J.I.; Kim, M.K.; Kim, E.J.; Hyun, J.W.; Koh, Y.S.; Yoo, E.S.; Kwon, J.M.; et al. The anticancer effect of fucoidan in PC-3 prostate cancer cells. Mar. Drugs 2013, 11, 2982–2999. [Google Scholar] [CrossRef] [Green Version]
- Choo, G.S.; Lee, H.N.; Shin, S.A.; Kim, H.J.; Jung, J.Y. Anticancer Effect of Fucoidan on DU-145 Prostate Cancer Cells through Inhibition of PI3K/Akt and MAPK Pathway Expression. Mar. Drugs 2016, 14, 126. [Google Scholar] [CrossRef] [Green Version]
- Do, H.; Pyo, S.; Sohn, E.H. Suppression of iNOS expression by fucoidan is mediated by regulation of p38 MAPK, JAK/STAT, AP-1 and IRF-1, and depends on up-regulation of scavenger receptor B1 expression in TNF-alpha- and IFN-gamma-stimulated C6 glioma cells. J. Nutr. Biochem. 2009. [Google Scholar] [CrossRef]
- Jin, J.O.; Song, M.G.; Kim, Y.N.; Park, J.I.; Kwak, J.Y. The mechanism of fucoidan-induced apoptosis in leukemic cells: Involvement of ERK1/2, JNK, glutathione, and nitric oxide. Mol. Carcinog. 2010, 49, 771–782. [Google Scholar] [CrossRef]
- Atashrazm, F.; Lowenthal, R.M.; Woods, G.M.; Holloway, A.F.; Karpiniec, S.S.; Dickinson, J.L. Fucoidan Suppresses the Growth of Human Acute Promyelocytic Leukemia Cells In Vitro and In Vivo. J. Cell. Physiol. 2016, 231, 688–697. [Google Scholar] [CrossRef]
- Lv, Y.; Song, Q.; Shao, Q.; Gao, W.; Mao, H.; Lou, H.; Qu, X.; Li, X. Comparison of the effects of marchantin C and fucoidan on sFlt-1 and angiogenesis in glioma microenvironment. J. Pharm. Pharmacol. 2012, 64, 604–609. [Google Scholar] [CrossRef]
- Liu, J.M.; Bignon, J.; Haroun-Bouhedja, F.; Bittoun, P.; Vassy, J.; Fermandjian, S.; Wdzieczak-Bakala, J.; Boisson-Vidal, C. Inhibitory effect of fucoidan on the adhesion of adenocarcinoma cells to fibronectin. Anticancer Res. 2005, 25, 2129–2133. [Google Scholar] [PubMed]
- Van Weelden, G.; Bobiński, M.; Okła, K.; Van Weelden, W.J.; Romano, A.; Pijnenborg, J.M.A. Fucoidan Structure and Activity in Relation to Anti-Cancer Mechanisms. Mar. Drugs 2019, 17, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Filisetti-Cozzi, T.M.C.C.; Carpita, N.C. Measurement of uronic acids without interference from neutral sugars. Anal. Biochem. 1991, 197, 157–162. [Google Scholar] [CrossRef]
- Dogson, K.S. Determination of inorganic sulphate in studies on the enzymic and non-enzymic hydrolysis of carbohydrate and other sulphate esters. Biochem. J. 1961, 78, 312–319. [Google Scholar]
- Preusse, M.; Theis, F.J.; Mueller, N.S. miTALOS v2: Analyzing Tissue Specific microRNA Function. PLoS ONE 2016. [Google Scholar] [CrossRef] [PubMed]
Placebo | UPF | ||||||
---|---|---|---|---|---|---|---|
Up-regulated | Down-regulated | Up-regulated | Down-regulated | ||||
Name | fold * | Name | fold * | Name | fold * | Name | fold * |
hsa-miR-584 | 14.068 | hsa-miR-193b# | 13.219 | hsa-miR-1247 | 13.767 | hsa-miR-183# | 17.262 |
hsa-miR-9 | 13.72 | hsa-miR-500 | 13.17 | hsa-miR-200b | 12.888 | hsa-miR-107 | 16.182 |
hsa-miR-656 | 13.528 | hsa-miR-199a | 13.12 | hsa-miR-1180 | 12.714 | hsa-miR-339-5p | 15.277 |
hsa-miR-485-3p | 12.983 | hsa-miR-326 | 12.827 | hsa-miR-623 | 11.927 | hsa-miR-335# | 13.787 |
hsa-miR-34b | 11.862 | hsa-miR-502 | 12.712 | hsa-miR-135a | 11.879 | hsa-miR-299-5p | 12.97 |
hsa-miR-605 | 11.565 | hsa-miR-381 | 12.058 | hsa-miR-1303 | 11.094 | hsa-miR-199b | 12.227 |
rno-miR-29c# | 10.092 | hsa-miR-213 | 11.713 | hsa-miR-380-5p | 9.369 | hsa-miR-369-3p | 11.453 |
hsa-miR-99a# | 10.085 | hsa-miR-369-3p | 11.527 | hsa-miR-518e | 7.745 | hsa-miR-29b-2# | 11.401 |
hsa-miR-361-3p | 10.017 | hsa-miR-1 | 11.215 | hsa-miR-454# | 6.642 | hsa-miR-27a# | 11.007 |
hsa-miR-30d# | 9.587 | hsa-miR-886-3p | 11.196 | hsa-miR-34b | 3.802 | hsa-miR-520h | 10.762 |
hsa-miR-196b | 8.419 | hsa-miR-424 | 10.948 | hsa-miR-638 | 3.667 | hsa-miR-500 | 10.741 |
hsa-miR-651 | 7.135 | hsa-miR-363# | 10.611 | hsa-miR-517c | 3.016 | hsa-miR-9# | 10.691 |
hsa-miR-18a# | 5.996 | hsa-miR-301b | 10.506 | hsa-miR-502-3p | 2.934 | hsa-miR-886-3p | 10.258 |
hsa-miR-9# | 5.242 | hsa-miR-337-5p | 10.262 | hsa-miR-662 | 2.427 | hsa-miR-487a | 10.243 |
hsa-miR-452 | 5.228 | hsa-miR-362-3p | 10.232 | hsa-miR-512-3p | 2.411 | hsa-miR-20a# | 9.263 |
hsa-miR-324-3p | 5.154 | hsa-miR-184 | 10.091 | hsa-miR-542-5p | 9.079 | ||
hsa-miR-365 | 3.769 | hsa-miR-876-5p | 10.011 | hsa-miR-548a | 7.654 | ||
hsa-miR-454 | 3.625 | hsa-miR-376b | 9.925 | hsa-miR-548d-5p | 7.262 | ||
hsa-miR-494 | 2.905 | hsa-miR-548d-5p | 9.678 | hsa-miR-520f | 6.821 | ||
hsa-miR-450a | 9.491 | hsa-miR-486-3p | 5.978 | ||||
hsa-miR-362 | 8.547 | hsa-miR-590-3P | 3.606 | ||||
hsa-miR-1285 | 8.325 | hsa-miR-296 | 3.308 | ||||
hsa-miR-545# | 8.313 | hsa-miR-509-5p | 3.284 | ||||
hsa-miR-517c | 8.044 | hsa-miR-125a-5p | 3.194 | ||||
hsa-miR-517b | 7.977 | hsa-miR-28-3p | 3.083 | ||||
hsa-miR-454# | 7.972 | hsa-miR-342-5p | 3.071 | ||||
hsa-miR-214# | 7.444 | hsa-miR-489 | 2.897 | ||||
hsa-miR-519e# | 7.373 | mmu-let-7d# | 2.741 | ||||
hsa-miR-579 | 3.677 | hsa-miR-34a | 2.505 | ||||
hsa-miR-135a | 3.402 | hsa-miR-203 | 2.487 | ||||
hsa-miR-501-3p | 3.177 | mmu-miR-374-5p | 2.410 | ||||
hsa-miR-29c | 3.123 | hsa-miR-652 | 2.388 | ||||
hsa-miR-218 | 2.999 | hsa-miR-339-3p | 2.197 | ||||
hsa-miR-512-3p | 2.908 | hsa-miR-1249 | 2.193 | ||||
hsa-miR-520e | 2.54 | hsa-miR-31 | 2.174 | ||||
hsa-miR-1180 | 2.488 | hsa-miR-551b | 2.114 | ||||
hsa-miR-522 | 2.46 | hsa-miR-145# | 2.029 | ||||
hsa-miR-133a | 2.456 | hsa-miR-411 | 2.024 | ||||
hsa-miR-548a | 2.439 | ||||||
hsa-miR-425# | 2.438 | ||||||
hsa-miR-664 | 2.403 | ||||||
hsa-miR-93# | 2.173 | ||||||
mmu-miR-491 | 2.145 | ||||||
hsa-miR-625# | 2.074 |
Placebo | |||
Source | Name | E | p-Value |
kegg | Signaling pathways regulating pluripotency of stem cells | 1.770 | 9.1 × 10−4 |
wp | Nuclear Receptors | 2.871 | 1.5 × 10−3 |
kegg | Axon guidance | 1.761 | 1.9 × 10−3 |
wp | TGF Beta Signaling Pathway | 2.331 | 2.1 × 10−3 |
wp | Mesodermal Commitment Pathway | 1.657 | 2.4 × 10−3 |
wp | BMP Signalling and Regulation | 6.252 | 4.5 × 10−3 |
wp | Leptin signaling pathway | 1.875 | 9.1 × 10−3 |
wp | Endoderm Differentiation | 1.576 | 9.4 × 10−3 |
kegg | Thyroid cancer | 2.566 | 1.6 × 10−2 |
kegg | Pancreatic cancer | 1.849 | 1.7 × 10−2 |
wp | Wnt Signaling Pathway and Pluripotency | 1.613 | 2.2 × 10−2 |
wp | Serotonin Receptor 4-6-7 and NR3C Signaling | 2.865 | 3.4 × 10−2 |
kegg | Non-small cell lung cancer | 1.808 | 3.6 × 10−2 |
UPF-treated | |||
Source | Name | E | p-Value |
wp | BDNF signaling pathway | 2.481 | 1.0 × 10−5 |
wp | EGF-EGFR Signaling Pathway | 2.271 | 1.6 × 10−5 |
kegg | Axon guidance | 2.208 | 2.2 × 10−4 |
kegg | ErbB signaling pathway | 2.568 | 4.7 × 10−4 |
kegg | Endocytosis | 1.671 | 1.1 × 10−3 |
wp | Insulin Signaling | 1.812 | 1.2 × 10−3 |
kegg | Signaling pathways regulating pluripotency of stem cells | 1.837 | 1.9 × 10−3 |
wp | Endochondral Ossification | 2.699 | 2.0 × 10−3 |
kegg | Focal adhesion | 1.605 | 2.8 × 10−3 |
kegg | Prostate cancer | 2.150 | 3.0 × 10−3 |
wp | ErbB Signaling Pathway | 2.801 | 3.3 × 10−3 |
wp | TSH signaling pathway | 2.491 | 3.6 × 10−3 |
kegg | Renal cell carcinoma | 2.312 | 6.3 × 10−3 |
wp | TGF beta Signaling Pathway | 1.728 | 6.8 × 10−3 |
kegg | Glioma | 2.267 | 7.9 × 10−3 |
kegg | Rap1 signaling pathway | 1.500 | 9.1 × 10−3 |
wp | Leptin signaling pathway | 2.087 | 9.4 × 10−3 |
kegg | Adherens junction | 2.050 | 1.2 × 10−2 |
wp | MAPK Cascade | 3.885 | 1.2 × 10−2 |
kegg | Chronic myeloid leukemia | 2.050 | 1.2 × 10−2 |
wp | Wnt Signaling Pathway and Pluripotency | 1.797 | 1.2 × 10−2 |
wp | Regulation of Microtubule Cytoskeleton | 2.557 | 1.4 × 10−2 |
kegg | Proteoglycans in cancer | 1.462 | 1.6 × 10−2 |
wp | Mesodermal Commitment Pathway | 1.558 | 1.6 × 10−2 |
wp | Oncostatin M Signaling Pathway | 2.074 | 1.6 × 10−2 |
wp | Signaling Pathways in Glioblastoma | 1.868 | 1.6 × 10−2 |
wp | Angiogenesis | 5.592 | 1.8 × 10−2 |
kegg | Circadian rhythm | 3.232 | 1.9 × 10−2 |
kegg | Neurotrophin signaling pathway | 1.642 | 1.9 × 10−2 |
kegg | FoxO signaling pathway | 1.574 | 2.2 × 10−2 |
kegg | Acute myeloid leukemia | 2.105 | 2.3 × 10−2 |
kegg | Pathways in cancer | 1.273 | 2.9 × 10−2 |
kegg | TGF-beta signaling pathway | 1.748 | 3.5 × 10−2 |
wp | Androgen receptor signaling pathway | 1.685 | 3.6 × 10−2 |
kegg | Hippo signaling pathway | 1.462 | 3.8 × 10−2 |
kegg | Long-term potentiation | 1.829 | 4.0 × 10−2 |
kegg | Estrogen signaling pathway | 1.600 | 4.3 × 10−2 |
wp | Physiological and Pathological Hypertrophy of the Heart | 3.106 | 4.9 × 10−2 |
wp | Wnt Signaling Pathway | 1.793 | 4.9 × 10−2 |
Pathways Affected by UPF-treatment | ||||
---|---|---|---|---|
Source | Signaling Pathways | Prior Evidence | References | p-Value |
wp | BDNF signaling pathway | Yes | Reid and Lee [10,11] | 1.0 × 10−5 |
wp | EGF-EGFR Signaling Pathway | Yes | Wang [12] | 1.6 × 10−4 |
kegg | ErbB signaling pathway | Yes | Thakur [13] | 4.7 × 10−4 |
wp | Insulin Signaling | Yes | Wang, Sim [14,15], Wright [16], Hernadez [17] | 1.2 × 10−3 |
wp | TSH signaling pathway | No | - | 3.6 × 10−3 |
kegg | Rap1 signaling pathway | No | - | 9.1 × 10−3 |
wp | MAPK Cascade | Yes | Sharma [18] Sun [19] Che [20] | 1.2 × 10−2 |
wp | Oncostatin M Signaling Pathway | No | - | 1.6 × 10−2 |
kegg | Neurotrophin signaling pathway | No | - | 1.9 × 10−2 |
kegg | FoxO signaling pathway | No | - | 2.2 × 10−2 |
kegg | Hippo signaling pathway | No | - | 3.8 × 10−2 |
kegg | Estrogen signaling pathway | Yes | Zhang [21] | 4.3 × 10−2 |
Cellular Processes | ||||
kegg | Endocytosis | Yes | Zhang [22], Wu [23] | 1.1 × 10−3 |
wp | Endochondral Ossification | Yes | Carson [24] | 2.0 × 10−3 |
kegg | Focal adhesion | Yes | Zhou [25] | 2.8 × 10−3 |
kegg | Adherens junction | No | - | 1.2 × 10−2 |
wp | Regulation of Microtubule Cytoskeleton | Yes | Park (query) [26] | 1.4 × 10−2 |
wp | Angiogenesis | Yes | Ustyuzhanina [27] | 1.8 × 10−2 |
kegg | Circadian rhythm | No | - | 1.9 × 10−2 |
kegg | Long-term potentiation | No | - | 4.0 × 10−2 |
Cancer related pathway | ||||
kegg | Prostate cancer | Yes | Boo [28] and Choo [29] | 3.0 × 10−3 |
kegg | Renal cell carcinoma | No | - | 6.3 × 10−3 |
kegg | Glioma | Yes | Ko [30] | 7.9 × 10−3 |
kegg | Chronic myeloid leukemia | Yes | Jin [31], Astashrazm [32] | 1.2 × 10−2 |
wp | Signaling Pathways in Glioblastoma | Yes | Ko [30], lv [33] | 1.6 × 10−2 |
kegg | Proteoglycans in cancer | Yes | Liu [34] | 1.6 × 10−2 |
kegg | Acute myeloid leukemia | Yes | Jin [31], Astashrazm [32] | 2.3 × 10−2 |
kegg | Pathways in cancer | Yes | Corban [4], Van Weelden [35] | 2.9 × 10−2 |
Other disease states | ||||
wp | Physiological and Pathological Hypertrophy of the Heart | No | - | 4.9 × 10−2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gueven, N.; Spring, K.J.; Holmes, S.; Ahuja, K.; Eri, R.; Park, A.Y.; Fitton, J.H. Micro RNA Expression after Ingestion of Fucoidan; A Clinical Study. Mar. Drugs 2020, 18, 143. https://doi.org/10.3390/md18030143
Gueven N, Spring KJ, Holmes S, Ahuja K, Eri R, Park AY, Fitton JH. Micro RNA Expression after Ingestion of Fucoidan; A Clinical Study. Marine Drugs. 2020; 18(3):143. https://doi.org/10.3390/md18030143
Chicago/Turabian StyleGueven, Nuri, Kevin J. Spring, Sandra Holmes, Kiran Ahuja, Raj Eri, Ah Young Park, and J Helen Fitton. 2020. "Micro RNA Expression after Ingestion of Fucoidan; A Clinical Study" Marine Drugs 18, no. 3: 143. https://doi.org/10.3390/md18030143
APA StyleGueven, N., Spring, K. J., Holmes, S., Ahuja, K., Eri, R., Park, A. Y., & Fitton, J. H. (2020). Micro RNA Expression after Ingestion of Fucoidan; A Clinical Study. Marine Drugs, 18(3), 143. https://doi.org/10.3390/md18030143