Antibacterial Activity and Mode of Action of Lactoquinomycin A from Streptomyces bacillaris
Abstract
:1. Introduction
2. Results
2.1. Taxonomy of MBTC38
2.2. Isolation and Structural Elucidation of Compounds 1–4
2.3. Antibacterial Activities of Compounds 1–4
2.4. Multi-Step Resistance Development and Time-Kill Kinetics
2.5. Mode of Action of LQM-A
2.6. DNA Intercalation Effects of LQM-A
3. Discussion
4. Materials and Methods
4.1. General Experimental Equipment
4.2. Taxonomic Identification of the Lactoquinomycin-Producing Microorganism
4.3. Cultivation, Extraction, and Isolation of Compounds
4.4. Antibacterial Activity Assays
4.5. Multi-Step Resistance Development Assay
4.6. Time-Kill Kinetics Assay
4.7. Membrane Permeabilization Assay
4.8. Detection of the Mode of Action with the Dual-Reporter System
4.9. Ethidium Bromide (EtBr) Displacement Assay
4.10. DNA Mobility Shift Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zaman, S.B.; Hussain, M.A.; Nye, R.; Mehta, V.; Mamun, K.T.; Hossain, N. A review on antibiotic resistance: Alarm bells are ringing. Cureus 2017, 9, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, S.B.; Marshall, B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med. 2004, 10, S122–S129. [Google Scholar] [CrossRef]
- Levy, S.B. The Antibiotic Paradox; Springer: Berlin, Germany, 1992. [Google Scholar]
- Aminov, R.I. A brief history of the antibiotic era: Lessons learned and challenges for the future. Front. Microbiol. 2010, 1, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Zhang, R.; Chen, X.; Sun, X.; Yan, Y.; Shen, X.; Yuan, Q. Biosynthesis of aromatic polyketides in microorganisms using type II polyketide synthases. Microb. Cell Fact. 2020, 19, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Katz, L.; Baltz, R.H. Natural product discovery: Past, present, and future. J. Ind. Microbiol. Biotechnol. 2016, 43, 155–176. [Google Scholar] [CrossRef]
- Wilson, D.N. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat. Rev. Microbiol. 2014, 12, 35–48. [Google Scholar] [CrossRef]
- Agudelo, D.; Bourassa, P.; Berube, G.; Tajmir-Riahi, H.A. Review on the binding of anticancer drug doxorubicin with DNA and tRNA: Structural models and antitumor activity. J. Photochem. Photobiol. B 2016, 158, 274–279. [Google Scholar] [CrossRef]
- Agudelo, D.; Berube, G.; Tajmir-Riahi, H.A. An overview on the delivery of antitumor drug doxorubicin by carrier proteins. Int. J. Biol. Macromol. 2016, 88, 354–360. [Google Scholar] [CrossRef]
- Takano, S.; Hasuda, K.; Ito, A.; Koide, Y.; Ishii, F.; Haneda, I.; Chihara, S.; Koyama, Y. A new antibiotic, medermycin. J. Antibiot. 1976, 29, 765–768. [Google Scholar] [CrossRef] [Green Version]
- Okabe, T.; Nomoto, K.; Funabashi, H.; Okuda, S.; Suzuki, H.; Tanaka, N. Lactoquinomycin, a novel anticancer antibiotic. II. Physico-chemical properties and structure assignment. J. Antibiot. 1985, 38, 1333–1336. [Google Scholar] [CrossRef] [Green Version]
- Williamson, R.T.; McDonald, L.A.; Barbieri, L.R.; Carter, G.T. In support of the original medermycin/lactoquinomycin A structure. Org. Lett. 2002, 4, 4659–4662. [Google Scholar] [CrossRef] [PubMed]
- Pagmadulam, B.; Tserendulam, D.; Rentsenkhand, T.; Igarashi, M.; Sawa, R.; Nihei, C.I.; Nishikawa, Y. Isolation and characterization of antiprotozoal compound-producing Streptomyces species from Mongolian soils. Parasitol. Int. 2020, 74, 101961. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; MacMillan, J.B. A new peptide isolated from a marine derived Streptomyces bacillaris. Nat. Prod. Commun. 2012, 7, 211–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahaab, F.; Subramaniam, K. Bioprospecting marine actinomycetes for multidrug-resistant pathogen control from Rameswaram coastal area, Tamil Nadu, India. Arch. Microbiol. 2018, 200, 57–71. [Google Scholar] [CrossRef]
- Okabe, T.; Nomoto, K.; Tanaka, N. Lactoquinomycin B, a novel antibiotic. J. Antibiot. 1986, 39, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Jiang, Q.; Chen, Y.H.; Zhang, D.S.; Ding, W.J.; Ma, Z.J. A new medermycin analog from the marine-derived actinomycetes Streptomyces sp. ZS-A45. J. Asian Nat. Prod. Res. 2018, 21, 826–831. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, Y.; Ishigami, K.; Shin-Ya, K.; Seto, H. Menoxymycins A and B, antitumor antibiotics generating active oxygen in tumor cells. J. Antibiot. 1994, 47, 1344–1347. [Google Scholar] [CrossRef] [Green Version]
- Clark, C.; Kosowska-Shick, K.; McGhee, P.; Dewasse, B.; Beachel, L.; Appelbaum, P.C. Resistance selection studies comparing the activity of razupenem (PTZ601) to vancomycin and linezolid against eight methicillin-resistant and two methicillin-susceptible Staphylococcus aureus strains. Antimicrob. Agents Chemother. 2009, 53, 3118–3121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosowska-Shick, K.; Clark, C.; Pankuch, G.A.; McGhee, P.; Dewasse, B.; Beachel, L.; Appelbaum, P.C. Activity of telavancin against staphylococci and enterococci determined by MIC and resistance selection studies. Antimicrob. Agents Chemother. 2009, 53, 4217–4224. [Google Scholar] [CrossRef] [Green Version]
- Osterman, I.A.; Komarova, E.S.; Shiryaev, D.I.; Korniltsev, I.A.; Khven, I.M.; Lukyanov, D.A.; Tashlitsky, V.N.; Serebryakova, M.V.; Efremenkova, O.V.; Ivanenkov, Y.A.; et al. Sorting out antibiotics’ mechanisms of action: A double fluorescent protein reporter for high-throughput screening of ribosome and DNA biosynthesis inhibitors. Antimicrob. Agents Chemother. 2016, 60, 7481–7489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osterman, I.A.; Wieland, M.; Maviza, T.P.; Lashkevich, K.A.; Lukianov, D.A.; Komarova, E.S.; Zakalyukina, Y.V.; Buschauer, R.; Shiriaev, D.I.; Leyn, S.A.; et al. Tetracenomycin X inhibits translation by binding within the ribosomal exit tunnel. Nat. Chem. Biol. 2020, 16, 1071–1077. [Google Scholar] [CrossRef] [PubMed]
- Nomoto, K.; Okabe, T.; Suzuki, H.; Tanaka, N. Mechanism of action of lactoquinomycin A with special reference to the radical formation. J. Antibiot. 1988, 41, 1124–1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nass, N.M.; Farooque, S.; Hind, C.; Wand, M.E.; Randall, C.P.; Sutton, J.M.; Seipke, R.F.; Rayner, C.M.; O’Neill, A.J. Revisiting unexploited antibiotics in search of new antibacterial drug candidates: The case of γ-actinorhodin. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tse, W.C.; Boger, D.L. A fluorescent intercalator displacement assay for establishing DNA binding selectivity and affinity. Acc. Chem. Res. 2004, 37, 61–69. [Google Scholar] [CrossRef] [PubMed]
- McNaught, A.D. Compendium of Chemical Terminology, 2nd ed.; Blackwell Science: Oxford, UK, 1997. [Google Scholar]
- Shen, B. Biosynthesis of Aromatic Polyketides; Springer: Berlin, Germany, 2000. [Google Scholar]
- Jiang, Z.K.; Guo, L.; Chen, C.; Liu, S.W.; Zhang, L.; Dai, S.J.; He, Q.Y.; You, X.F.; Hu, X.X.; Tuo, L.; et al. Xiakemycin A, a novel pyranonaphthoquinone antibiotic, produced by the Streptomyces sp. CC8-201 from the soil of a karst cave. J. Antibiot. 2015, 68, 771–774. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.J.; Zhang, D.S.; Zhang, H.J.; Li, J.Q.; Ding, W.J.; Xu, C.D.; Ma, Z.J. Medermycin-type naphthoquinones from the marine-derived Streptomyces sp. XMA39. J. Nat. Prod. 2018, 81, 2120–2124. [Google Scholar] [CrossRef]
- Tanaka, N.; Okabe, T.; Isono, F.; Kashiwagi, M.; Nomoto, K.; Takahashi, M.; Shimazu, A.; Nishimura, T. Lactoquinomycin, a novel anticancer antibiotic. Ι. Taxonomy, isolation and biological activity. J. Antibiot. 1985, 38, 1327–1332. [Google Scholar] [CrossRef]
- Ng, E.Y.; Trucksis, M.; Hooper, D.C. Quinolone resistance mutations in topoisomerase IV: Relationship to the flqA locus and genetic evidence that topoisomerase IV is the primary target and DNA gyrase is the secondary target of fluoroquinolones in Staphylococcus aureus. Antimicrob. Agents Chemother. 1996, 40, 1881–1888. [Google Scholar] [CrossRef] [Green Version]
- Ferrero, L.; Cameron, B.; Crouzet, J. Analysis of gyrA and grlA mutations in stepwise-selected ciprofloxacin-resistant mutants of Staphylococcus aureus. Antimicrob. Agents Chemother. 1995, 39, 1554–1558. [Google Scholar] [CrossRef] [Green Version]
- Toral-Barza, L.; Zhang, W.G.; Huang, X.; McDonald, L.A.; Salaski, E.J.; Barbieri, L.R.; Ding, W.; Krishnamurthy, G.; Hu, Y.B.; Lucas, J.; et al. Discovery of lactoquinomycin and related pyranonaphthoquinones as potent and allosteric inhibitors of AKT/PKB: Mechanistic involvement of AKT catalytic activation loop cysteines. Mol. Cancer Ther. 2007, 6, 3028–3038. [Google Scholar] [CrossRef] [Green Version]
- Janda, J.M.; Abbott, S.L. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls. J. Clin. Microbiol. 2007, 45, 2761–2764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Test for Bacteria That Grow Aerobically, 11th ed.; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- Friedman, L.; Alder, J.D.; Silverman, J.A. Genetic changes that correlate with reduced susceptibility to daptomycin in Staphylococcus aureus. Antimicrob. Agents Chemother. 2006, 50, 2137–2145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuji, B.T.; Yang, J.C.; Forrest, A.; Kelchlin, P.A.; Smith, P.F. In vitro pharmacodynamics of novel rifamycin ABI-0043 against Staphylococcus aureus. J. Antimicrob. Chemother. 2008, 62, 156–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, M.; Hancock, R.E. Interaction of the cyclic antimicrobial cationic peptide bactenecin with the outer and cytoplasmic membrane. J. Biol. Chem. 1999, 274, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Froger, A.; Hall, J.E. Transformation of plasmid DNA into E. coli using the heat shock method. J. Vis. Exp. 2007, 6, 253. [Google Scholar] [CrossRef] [PubMed]
- Hassanzadeh, S.; Pourmand, M.R.; Afshar, D.; Dehbashi, S.; Mashhadi, R. TENT: A rapid DNA extraction method of Staphylococcus aureus. Iran J. Public Health 2016, 45, 1093. [Google Scholar] [PubMed]
- Furlan, R.L.A.; Garrido, L.M.; Brumatti, G.; Amarante-Mendes, G.P.; Martins, R.A.; Facciotti, M.C.R.; Padilla, G. A rapid and sensitive method for the screening of DNA intercalating antibiotics. Biotechnol. Lett. 2002, 24, 1807–1813. [Google Scholar] [CrossRef]
Microorganism | MIC (μg/mL) | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | Amp a | Tet a | |
Staphylococcus aureus ATCC25923 | 0.06 | 2 | 0.5 | 1 | 0.06 | 0.25 |
Enterococcus faecalis ATCC19433 | 2 | >32 | 2 | 4 | 0.5 | 0.5 |
Enterococcus faecium ATCC19434 | 2 | 32 | 2 | 4 | 0.5 | 0.5 |
Salmonella enterica ATCC14028 | 0.03 | 1 | 0.25 | 0.13 | 0.03 | 0.13 |
Klebsiella pneumoniae ATCC10031 | >32 | >32 | 32 | >32 | >32 | 0.25 |
Escherichia coli ATCC25922 | 16 | >32 | 32 | >32 | 8 | 0.5 |
Microorganism | MIC (μg/mL) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dap | Van | Pla | Lin | Cip | 1 | 2 | 3 | 4 | |
CCARM0027 a | 4 | 0.5 | 4 | 2 | 0.25 | 0.25 | 2 | 1 | 1 |
CCARM0204 a | 1 | 0.5 | 4 | 1 | 0.25 | 0.13 | 1 | 0.25 | 0.5 |
CCARM0205 a | 0.5 | 0.5 | 2 | 1 | 0.25 | 0.06 | 1 | 0.25 | 0.5 |
CCARM3640 a | 8 | 0.25 | 4 | 2 | 0.25 | 0.13 | 2 | 1 | 1 |
CCARM3089 b | >32 | 0.5 | 8 | 2 | >32 | 0.25 | 4 | 1 | 2 |
CCARM3090 b | 32 | 0.06 | 8 | 1 | >32 | 0.5 | 8 | 1 | 2 |
CCARM3634 b | 32 | 0.25 | 8 | 2 | >32 | 0.25 | 4 | 1 | 1 |
CCARM3635 b | >32 | 0.06 | 8 | 2 | >32 | 0.25 | 4 | 0.5 | 0.5 |
ATCC43300 b | >32 | 1 | 4 | 2 | 0.25 | 0.25 | 4 | 0.5 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, B.; Kwon, O.-S.; Shin, J.; Oh, K.-B. Antibacterial Activity and Mode of Action of Lactoquinomycin A from Streptomyces bacillaris. Mar. Drugs 2021, 19, 7. https://doi.org/10.3390/md19010007
Chung B, Kwon O-S, Shin J, Oh K-B. Antibacterial Activity and Mode of Action of Lactoquinomycin A from Streptomyces bacillaris. Marine Drugs. 2021; 19(1):7. https://doi.org/10.3390/md19010007
Chicago/Turabian StyleChung, Beomkoo, Oh-Seok Kwon, Jongheon Shin, and Ki-Bong Oh. 2021. "Antibacterial Activity and Mode of Action of Lactoquinomycin A from Streptomyces bacillaris" Marine Drugs 19, no. 1: 7. https://doi.org/10.3390/md19010007
APA StyleChung, B., Kwon, O. -S., Shin, J., & Oh, K. -B. (2021). Antibacterial Activity and Mode of Action of Lactoquinomycin A from Streptomyces bacillaris. Marine Drugs, 19(1), 7. https://doi.org/10.3390/md19010007