Optimisation of Healthy-Lipid Content and Oxidative Stability during Oil Extraction from Squid (Illex argentinus) Viscera by Green Processing
Abstract
:1. Introduction
2. Results and Discussion
2.1. Moisture Loss during the Drying Process and Pressed Liquor Yield
2.2. Oil Yield from Squid Viscera
2.3. DHA and EPA Recovery from Squid Viscera
2.4. Quality Degree of the Extracted Oil
2.5. Optimisation of the Process Variables by Means of the RSM
2.5.1. Predictive Second-Order Polynomial Model for the Different Response Variables (Y) and Optimised Response
2.5.2. Effect of Drying Time and Drying Temperature on Response Variables
2.5.3. Multiple Response Optimisation of the Response Variables
3. Materials and Methods
3.1. Raw Material Preparation and Analysis
3.2. Green Extraction of Oil from Squid Viscera
3.3. Determination of Moisture and Oil Yield
3.4. FA Analysis of Starting Oil and Oil Obtained from Pressed Viscera
3.5. Lipid Damage Assessment of Starting Oil and Oil Obtained from Pressed Viscera
3.6. Optimisation of Response Variables
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tilami, S.K.; Sampels, S. Nutritional value of fish: Lipids, proteins, vitamins, and minerals. Rev. Fish. Sci. 2018, 26, 242–253. [Google Scholar]
- Aubourg, S.P. Lipid compounds. In Handbook of Seafood and Seafood Products Analysis; Nollet, L., Toldrá, F., Eds.; CRC Press, Francis and Taylor Group: Boca Raton, FL, USA, 2010; pp. 69–86. [Google Scholar]
- Swanson, S.; Block, R.; Mousa, S. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef]
- Ofosu, F.K.; Daliri, E.B.M.; Lee, B.H.; Yu, X. Current trends and future perspectives on omega-3 fatty acids. Res. J. Biol. 2017, 5, 11–20. [Google Scholar]
- Moffat, C.F.; McGill, A.S.; Hardy, R.; Anderson, R.S. The production of fish oils enriched in polyunsaturated fatty acid-containing triglycerides. J. Am. Oil Chem. Soc. 1993, 70, 133–1338. [Google Scholar] [CrossRef]
- Gigliotti, J.C.; Davenport, M.P.; Beamer, S.K.; Tou, J.C.; Jaczynski, J. Extraction and characterisation of lipids from Antarctic krill (Euphausia superba). Food Chem. 2011, 125, 1028–1036. [Google Scholar] [CrossRef]
- Rubio-Rodríguez, N.; de Diego, S.M.; Beltrán, S.; Jaime, I.; Sanz, M.T.; Rovira, J. Supercritical fluid extraction of fish oil from fish by-products: A comparison with other extraction methods. J. Food Eng. 2012, 109, 238–248. [Google Scholar] [CrossRef] [Green Version]
- Okada, T.; Morrisey, M.T. Recovery and characterization of sardine oil extracted by pH adjustment. J. Agric. Food Chem. 2007, 55, 1808–1813. [Google Scholar] [CrossRef]
- Rustad, T.; Storro, I.; Slizyte, R. Possibilities for the utilisation of marine by-products. Int. J. Food Sci. Technol. 2011, 46, 2001–2014. [Google Scholar] [CrossRef]
- Chakraborty, K.; Joseph, D. Cooking and pressing is an effective and eco-friendly technique for obtaining high quality oil from Sardinella longiceps. Eur. J. Lipid Sci. Technol. 2015, 117, 837–850. [Google Scholar] [CrossRef]
- Pudtikajorn, K.; Benjakul, S. Simple wet rendering method for extraction of prime quality oil from skipjack tuna eyeballs. Eur. J. Lipid Sci. Technol. 2020, 122, 2000077. [Google Scholar] [CrossRef]
- Šimat, V.; Vlahović, J.; Soldo, B.; Mekinić, I.G.; Čagalj, M.; Hamed, I.; Skroza, D. Production and characterization of crude oils from seafood processing by-products. Food Biosci. 2020, 33, 100484. [Google Scholar] [CrossRef]
- Linder, M.; Fanni, J.; Parmentier, M. Proteolytic extraction of salmon oil and PUFA concentration by lipases. Mar. Biotechnol. 2005, 15, 70–76. [Google Scholar] [CrossRef]
- Chantachum, S.; Benjakul, S.; Sriwirat, N. Separation and quality of fish oil from precooked and non-precooked tuna heads. Food Chem. 2000, 69, 289–294. [Google Scholar] [CrossRef]
- Głowacz-Rozynska, A.; Tynek, M.; Malinowska-Panczyk, E.; Martysiak-Zurowska, D.; Pawłowicz, R.; Kołodziejsk, I. Comparison of oil yield and quality obtained by different extraction procedures from salmon (Salmo salar) processing byproducts. Eur. J. Lipid Sci. Technol. 2016, 118, 1759–1767. [Google Scholar] [CrossRef]
- Honold, P.J.; Nouard, M.L.; Jacobsen, C. Fish oil extracted from fish-fillet by-products is weakly linked to the extraction temperatures but strongly linked to the omega-3 content of the raw material. Eur. J. Lipid Sci. Technol. 2016, 118, 874–884. [Google Scholar] [CrossRef]
- Ferraro, V.; Cruz, I.B.; Jorge, R.F.; Malcata, F.X.; Pintado, M.E.; Castro, P.M.L. Valorisation of natural extracts from marine source focused on marine by-products: A review. Food Res. Int. 2010, 43, 2221–2223. [Google Scholar] [CrossRef]
- Rubio-Rodríguez, N.; Beltrán, S.; Jaime, I.; de Diego, S.M.; Sanz, M.T.; Carballido, J.R. Production of omega-3 polyunsaturated fatty acid concentrates: A review. Innov. Food Sci. Emerg. Technol. 2010, 11, 1–12. [Google Scholar] [CrossRef]
- Atef, M.; Ojagh, M. Health benefits and food applications of bioactive compounds from fish byproducts: A review. J. Funct. Foods 2017, 35, 673–681. [Google Scholar] [CrossRef]
- Ezquerra-Brauer, J.M.; Aubourg, S.P. Recent trends for the employment of jumbo squid (Dosidicus gigas) by-products as a source of bioactive compounds with nutritional, functional and preservative applications: A review. Int. J. Food Sci. Technol. 2019, 54, 987–998. [Google Scholar] [CrossRef] [Green Version]
- Vázquez, J.A.; Meduiña, A.; Durán, A.I.; Nogueira, M.; Fernández-Compás, A.; Pérez-Martín, R.I.; Rodríguez-Amado, I. Production of valuable compounds and bioactive metabolites from by-products of fish discards using chemical processing, enzymatic hydrolysis, and bacterial fermentation. Mar. Drugs 2019, 17, 139. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.; Xie, J.; Xu, X. The components of cuttlefish (Sepiella maindroni de Rochebruns) oil. Food Chem. 2007, 102, 210–214. [Google Scholar] [CrossRef]
- Rincón Cervera, M.A.; Venegas, E.; Ramos Bueno, R.P.; Suárez Medina, M.D.; Guil Guerrero, J.L. Docosahexaenoic acid purification from fish processing industry by-products. Eur. J. Lipid Sci. Technol. 2015, 117, 724–729. [Google Scholar] [CrossRef]
- EC. Official Web Page of the E.C. Illex argentinus (Castellanos, 1960). Available online: https://fish-commercial-names.ec.europa.eu/fish-names/species_es?sn=19121 (accessed on 14 September 2021).
- Singh, A.; Benjakul, S.; Kishimura, H. Characteristics and functional properties of ovary from squid Loligo formosana. J. Aquat. Food Prod. Technol. 2017, 26, 1083–1092. [Google Scholar] [CrossRef]
- Toyes-Vargas, E.; Robles-Romo, A.; Méndez, L.; Palacios, E.; Civera, R. Changes in fatty acids, sterols, pigments, lipid classes, and heavy metals of cooked or dried meals, compared to fresh marine by-products. Anim. Feed Sci. Technol. 2016, 221, 195–205. [Google Scholar] [CrossRef]
- Kacem, M.; Sellami, M.; Kammoun, W.; Frikh, F.; Miled, N.; Rebah, F.B. Seasonal variations in proximate and fatty acid composition of viscera of Sardinella aurita, Sarpa salpa, and Sepia officinalis from Tunisia. J. Aquat. Food Prod. Technol. 2011, 20, 233–246. [Google Scholar] [CrossRef]
- Sieiro, M.P.; Aubourg, S.P.; Rocha, F. Seasonal study of the lipid composition in different tissues of the common octopus (Octopus vulgaris). Eur. J. Lipid Sci. Technol. 2006, 108, 479–487. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Mujumdar, A.S. Trends in processing technologies for dried aquatic products. Drying Technol. 2011, 29, 382–394. [Google Scholar] [CrossRef]
- Uribe, E.; Pardo-Orellana, C.M.; Vega-Gálvez, A.; Ah-Ken, K.S.; Pastén, A.; García, V.; Aubourg, S.P. Effect of drying methods on bioactive compounds, nutritional, antioxidant, and antidiabetic potential of brown alga Durvillaea antarctica. Drying Technol. 2020, 38, 1915–1928. [Google Scholar] [CrossRef]
- Piclet, G. Le poisson aliment. Composition-Intérêt nutritionnel. Cah. Nutr. Diét. 1987, XXII, 317–335. [Google Scholar]
- Saito, H.; Sakai, M.; Wakabayashi, T. Characteristics of the lipid and fatty acid compositions of the Humboldt squid, Dosidicus gigas: The trophic relationship between the squid and its prey. Eur. J. Lipid Sci. Technol. 2014, 116, 360–366. [Google Scholar] [CrossRef]
- Hayashi, K.; Kishimura, H. Amount and composition of diacyl glyceryl ethers in various tissue lipids of the deep-sea squid Berryteuthis magister. J. Oleo Sci. 2002, 51, 523–529. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, X.; Zhang, T.; Huang, Z.; Luo, X.; Deng, Y. A review on phospholipids and their main applications in drug delivery systems. Asian J. Pharm. Sci. 2015, 10, 81–98. [Google Scholar] [CrossRef]
- Immanuel, G.; Sathasivan, S.; Selva Shankar, V.; Punitha Peter, M.J.; Palavesam, A. Processing and characterization of low cost Balistid fish Sufflamen capistratus liver oil for edible purpose. Food Chem. 2009, 115, 430–435. [Google Scholar] [CrossRef]
- Uauy, R.; Valenzuela, A. Marine oils: The health benefits of n-3 fatty acids. Nutrition 2000, 16, 680–684. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Kumari, P.; Kumar, M.; Reddy, C.R.; Jha, B. Algal lipids, fatty acids and sterols. In Functional Ingredients from Algae for Foods and Nutraceuticals; Domínguez, H., Ed.; Woodhead Publishing: Cambridge, UK, 2013; pp. 87–134. [Google Scholar]
- Aubourg, S.P. Effect of lipid damage on processed fish quality. Grasas Aceites 1999, 50, 218–224. [Google Scholar]
- Barbosa, R.G.; Trigo, M.; Campos, C.A.; Aubourg, S.P. Preservative effect of algae extracts on lipid composition and rancidity development in brine-canned Atlantic chub mackerel (Scomber colias). Eur. J. Lipid Sci. Technol. 2019, 121, 1900129. [Google Scholar] [CrossRef]
- Aubourg, S.P. Fluorescence study of the prooxidant activity of free fatty acids on marine lipids. J. Sci. Food Agric. 2001, 81, 385–390. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, V.; Medina, I.; Prego, R.; Aubourg, S.P. Lipid and mineral distribution in different zones of farmed and wild blackspot seabream (Pagellus bogaraveo). Eur. J. Lipid Sci. Technol. 2009, 111, 957–966. [Google Scholar] [CrossRef]
- Sathivel, S.H.; Yin, W.; King, J.M. Comparisons of chemical and physical properties of catfish oils prepared from different extracting processes. J. Food Sci. 2009, 74, 70–76. [Google Scholar] [CrossRef]
- Crexi, V.T.; Monte, M.L.; Soares, L.A.S.; Pinto, L.A.A. Production and refinement of oil from carp (Cyprinus carpio) viscera. Food Chem. 2010, 119, 945–950. [Google Scholar] [CrossRef]
- Aryee, A.N.A.; Simpson, B.K. Comparative studies on the yield and quality of solvent-extracted oil from salmon skin. J. Food Eng. 2009, 92, 353–358. [Google Scholar] [CrossRef]
- FDA GRAS Notification. Tailored Triglycerides Enriched in Omega-3 Fatty Acids from Fish Oil. Notice 000200. 2006. Available online: https://www.cfsanappsexternal.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=200 (accessed on 1 September 2021).
- Global Organization for EPA and DHA Omega-3. Voluntary Monograph; GOED: Salt Lake City, UT, USA, 2016; Available online: http://www.goedomega3.com/storage/app/media/annual%20reports/GOED%20Annual%20Report%20-%202016-pdf (accessed on 1 February 2020).
- Codex Alimentarius. Standard for Fish Oils; Faculty of Chemical and Pharmaceutical Science CODEX STAN 329: Rome, Italy, 2017. [Google Scholar]
- De Boer, A.; Ismail, A.; Marshall, K.; Bannenberg, G.; Yan, K.L.; Rowe, W.J. Examination of marine and vegetable oil oxidation data from a multi-year third-party database. Food Chem. 2018, 254, 249–250. [Google Scholar] [CrossRef]
- Dovale-Rosabal, G.; Rodríguez, A.; Contreras, E.; Ortiz-Viedma, J.; Muñoz, M.; Trigo, M.; Aubourg, S.P.; Espinosa, A. Concentration of EPA and DHA from refined salmon oil by optimizing the urea-fatty acid adduction reaction conditions using response-surface methodology. Molecules 2019, 24, 1642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thammapat, P.; Siriamornpun, S.; Raviyan, P. Concentration of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) of Asian catfish oil by urea complexation: Optimization of reaction conditions. Songklanakarin J. Sci. Technol. 2016, 38, 163–170. [Google Scholar]
- Wanasundara, U.N.; Shahidi, F. Concentration of omega 3-polyunsaturated fatty acids of seal blubber oil urea complexation: Optimization of reaction conditions. Food Chem. 1999, 65, 41–49. [Google Scholar] [CrossRef]
- Berríos, M.M.; Rodriguez, A.; Rivera, M.; Pando, M.E.; Valenzuela, M.A.; Aubourg, S.P. Optimisation of rancidity stability in long-chain PUFA concentrates obtained from a rainbow trout (Oncorhynchus mykiss) by-product. Int. J. Food Sci. Technol. 2017, 52, 1463–1472. [Google Scholar] [CrossRef] [Green Version]
- Linder, L.; Kochanowski, N.; Fanni, J.; Parmentier, M. Response surface optimisation of lipase-catalysed esterification of glycerol and n-3 polyunsaturated fatty acids from salmon oil. Process. Biochem. 2005, 40, 273–279. [Google Scholar] [CrossRef]
- Pando, M.E.; Rodríguez, A.; Valenzuela, M.A.; Berríos, M.M.; Rivera, M.; Romero, N.; Barriga, A.; Aubourg, S.P. Acylglycerol synthesis including EPA and DHA from rainbow trout (Oncorhynchus mykiss) belly flap oil and caprylic acid catalyzed by Thermomyces lanuginosus lipase under supercritical carbon dioxide. Eur. Food Res. Technol. 2021, 247, 499–511. [Google Scholar] [CrossRef]
- Derringer, G.; Suich, R. Simultaneous optimization of several response variables. J. Food Qual. Technol. 1980, 12, 214–219. [Google Scholar] [CrossRef]
- Bligh, E.; Dyer, W. A rapid method of total extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AOAC. Official Methods for Analysis of the Association of Analytical Chemistry, 15th ed.; Association of Official Chemists, Inc.: Arlington, VA, USA, 1990; pp. 931–937. [Google Scholar]
- Herbes, S.E.; Allen, C.P. Lipid quantification of freshwater invertebrates: Method modification for microquantitation. Can. J. Fish. Aquat. Sci. 1983, 40, 1315–1317. [Google Scholar] [CrossRef]
- Vázquez, M.; Torres, J.A.; Gallardo, J.M.; Saraiva, J.A.; Aubourg, S.P. Lipid hydrolysis and oxidation development in frozen mackerel (Scomber scombrus): Effect of a high hydrostatic pressure pre-treatment. Innov. Food Sci. Emerg. Technol. 2013, 18, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Lowry, R.; Tinsley, I. Rapid colorimetric determination of free fatty acids. J. Am. Oil Chem. Soc. 1976, 53, 470–472. [Google Scholar] [CrossRef]
- Chapman, R.; McKay, J. The estimation of peroxides in fats and oils by the ferric thiocyanate method. J. Am. Oil Chem. Soc. 1949, 26, 360–363. [Google Scholar] [CrossRef]
- Kim, R.S.; Labella, F.S. Comparison of analytical methods for monitoring autoxidation profiles of authentic lipids. J. Lipid Res. 1987, 28, 1110–1117. [Google Scholar] [CrossRef]
- Hill, W.J.; Hunter, W.G. A review of response surface methodology: A literature survey. Technometrics 1966, 8, 571–590. [Google Scholar] [CrossRef]
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology, Process and Product Optimization Using Designed Experiments, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Myers, R.H.; Montgomery, D.C. Response Surface Methodology; A.E. Wiley-Interscience Publication; John Wiley & Sons, Inc.: New York, NY, USA, 1995. [Google Scholar]
Drying Time (min) | Drying Temperature (°C) | |||
---|---|---|---|---|
45 | 65 | 85 | ||
Moisture loss | 30 | 1.7 aA (0.4) | 3.9 bA (0.9) | 9.0 cA (3.2) |
60 | 9.1 aB (2.1) | 17.2 abB (6.7) | 28.0 bB (7.6) | |
90 | 8.7 aB (1.6) | 26.0 bB (7.5) | 51.1 cC (10.3) | |
Pressed liquor yield | 30 | 308.2 aA (30.5) | 341.8 aA (39.0) | 355.0 aA (40.1) |
60 | 410.5 aB (32.1) | 535.7 bB (67. 8) | 641.4 bB (72.0) | |
90 | 279.4 aA (28.8) | 616.1 bB (71.4) | 598.4 bB (64.5) |
Drying Time (min) | Drying Temperature (°C) | |||
---|---|---|---|---|
45 | 65 | 85 | ||
Oil yield (g·kg−1 viscera) | 30 | 0.5 aA (0.2) | 1.1 aA (0.2) | 59.9 bA (1.2) |
60 | 1.0 aA (0.2) | 79.4 cC (7.1) | 66.0 bB (2.8) | |
90 | 25.2 aB (2.8) | 29.3 aB (4.8) | 84.1 bC (1.0) | |
DHA content (g·kg−1 oil) | 30 | 159.9 aAB (8.3) | 149.6 aA (2.6) | 153.5 aA (5.7) |
60 | 149.2 aA (2.1) | 158.6 aB (3.9) | 149.5 aA (3.6) | |
90 | 166.3 bB (0.1) | 166.5 bC (2.1) | 156.9 aA (4.6) | |
EPA content (g·kg−1 oil) | 30 | 96.3 aA (4.8) | 93.0 aA (1.2) | 92.4 aA (3.4) |
60 | 91.3 aA (0.7) | 93.3 aAB (4.0) | 88.7 aA (2.2) | |
90 | 102.4 cB (0.3) | 98.5 bB (1.3) | 90.8 aA (2.7) |
Drying Time (min) | Drying Temperature (°C) | |||
---|---|---|---|---|
45 | 65 | 85 | ||
Free fatty acid (FFA) content (g·kg−1 oil) | 30 | 32.15 bB (1.12) | 28.99 aA (1.14) | 28.04 aA (0.90) |
60 | 30.52 aA (0.11) | 32.16 aB (1.90) | 35.51 bB (0.96) | |
90 | 37.79 cC (0.34) | 31.08 aB (0.68) | 34.67 bB (0.34) | |
Conjugated dienes (CD) value *** | 30 | 1.12 aAB (0.06) | 1.10 bA (0.00) | 0.99 aA (0.05) |
60 | 1.08 aA (0.01) | 1.12 aAB (0.08) | 1.06 aAB (0.05) | |
90 | 1.22 bB (0.04) | 1.21 bB (0.01) | 1.11 aB (0.01) | |
Peroxide value (PV; meq active oxygen·kg−1 oil) | 30 | 17.76 bC (1.25) | 19.85 bB (1.93) | 6.69 aB (0.91) |
60 | 3.14 bA (0.91) | 5.62 bA (1.85) | 1.85 aA (0.23) | |
90 | 7.42 cB (1.94) | 3.54 bA (0.80) | 1.44 aA (0.34) |
Response Variables (Y) | Process Variables ** | Optimised Response | ||||||
---|---|---|---|---|---|---|---|---|
β0 | β1 X1 | β2 X2 | β11 X12 | β12 X1×X2 | R2 | |||
(min) | (°C) | (min2) | (min × °C) | (%) | Stationary point | Optimum value | ||
Lipid yield | –183.93 | 4.53 (0.20) | 1.53 (0.01) | –0.03 (0.04) | - | 59.3 | Maximum | 95.99 |
Polyene index | 2.44 | –0.01 (0.00) | 0.01 (0.00) | 0.00 (0.00) | –0.00 (0.01) | 92.6 | Maximum | 2.11 |
Peroxide value | 44.62 | –0.83 (0.00) | –0.15 (0.05) | 0.01 (0.03) | - | 69.0 | Minimum | 0.07 |
EPA content | 10.03 | 0.01 (0.30) | –0.02 (0.08) | - | - | 22.4 | Maximum | 9.86 |
DHA content | 15.67 | 0.02 (0.08) | –0.01 (0.27) | - | - | 23.4 | Maximum | 16.40 |
Conjugated dienes | 1.12 | 0.00 (0.04) | –0.00 (0.15) | - | - | 37.5 | Minimum | 1.21 |
FFA content | 28.71 | 0.08 (0.04) | –0.02 (0.72) | - | - | 25.2 | Minimum | 29.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez, A.; Trigo, M.; Aubourg, S.P.; Medina, I. Optimisation of Healthy-Lipid Content and Oxidative Stability during Oil Extraction from Squid (Illex argentinus) Viscera by Green Processing. Mar. Drugs 2021, 19, 616. https://doi.org/10.3390/md19110616
Rodríguez A, Trigo M, Aubourg SP, Medina I. Optimisation of Healthy-Lipid Content and Oxidative Stability during Oil Extraction from Squid (Illex argentinus) Viscera by Green Processing. Marine Drugs. 2021; 19(11):616. https://doi.org/10.3390/md19110616
Chicago/Turabian StyleRodríguez, Alicia, Marcos Trigo, Santiago P. Aubourg, and Isabel Medina. 2021. "Optimisation of Healthy-Lipid Content and Oxidative Stability during Oil Extraction from Squid (Illex argentinus) Viscera by Green Processing" Marine Drugs 19, no. 11: 616. https://doi.org/10.3390/md19110616
APA StyleRodríguez, A., Trigo, M., Aubourg, S. P., & Medina, I. (2021). Optimisation of Healthy-Lipid Content and Oxidative Stability during Oil Extraction from Squid (Illex argentinus) Viscera by Green Processing. Marine Drugs, 19(11), 616. https://doi.org/10.3390/md19110616