Sulfo-Gambierones, Two New Analogs of Gambierone Produced by Gambierdiscus excentricus
Abstract
:1. Introduction
2. Results and Discussion
2.1. Revisiting the Toxin Profile of G. excentricus
- A putative 44-methylgambierone (Figure 1A, peak (3)), was found on the HRMS system at 6.7 min (Figure S2A) with a monoisotopic mass of m/z 1037.4599 (Figure S2B), which corresponded to a mass error of −17.9 ppm compared to the theoretical mass of the [M-H]− ion of 44-methylgambierone. In positive ionization mode (ESI+), the chromatographic peak at 6.7 min did not present any ions with a mass related to the expected [M+H]+ at m/z 1039.4931 (Figure S2C) but the ion m/z 1056.5047 could correspond to the ammonium adduct [M+NH4]+ of 44-methylgambierone, however, with a mass error of −14.1 ppm. In addition, the protonated molecule, sodium adducts and several in-source water losses commonly observed for gambierones, ciguatoxins or related cyclic polyethers [20,45] were not observed for this compound, which also suggests a weak structural resemblance with 44-methylgambierone.
- Finally, the putative gambierone, compound (1) was observed in HRMS at 6.2 min in both ESI+ and ESI− modes (Figure S7). Interestingly, the exact mass of the mono-isotopic ion (m/z 1023.4596) was close to the one of the [M–H]− of gambierone with a mass error of −3.2 ppm. The same observation was made in ESI+ mode with three ions reported as the water loss [M–H2O+H]+ (i.e., m/z 1007.4684, +1.6 ppm), the molecular ion [M+H]+ (m/z 1025.4849, +7.3 ppm) and the ammonium adduct [M+NH4]+ (m/z 1042.5034, −0.6 ppm) of gambierone.
- Peak (1) eluted 1.30 min earlier than the standard of gambierone (Figure 1A,B) in both systems (method 1 and 2), suggesting it to be a polar analog of gambierone. However, the low intensity of the signal observed in this G. excentricus extract (i.e., 250,000 cell mL−1), prevented further investigation. Therefore, we purified this compound from a higher biomass, and performed several HRMS and HRMS/MS analyses to better characterize this unknown analog.
2.2. Characterization of the Putative Gambierone Analogs by HRMS
2.2.1. Effect of Ionization Parameters on In-Source Fragmentation and Adduct Formation
2.2.2. Discovery of a Second Analogue
2.2.3. Fragmentation Pathways of Sulfo-Gambierone
2.2.4. Fragmentation Pathways of Dihydro-Sulfo-Gambierone
2.3. Toxicity of the New Analogues
3. Materials and Methods
3.1. Chemicals
3.2. Culture of Gambierdiscus Excentricus
3.3. Cell Extraction
3.4. Liquid-Liquid Partitioning
3.5. Size Exclusion Fractionation
3.6. Reversed Phase Semi-Preparative Chromatography
3.7. Instrumental Conditions for Liquid Chromatography-LRMS: Screening of Compounds Produced by Gambierdiscus Species
3.8. Instrumental Conditions for Liquid Chromatography-HRMS: Discovery and Characterisation of Gambierone Analogs
3.9. Toxicity Assessment with Neuroblastoma Cell-Based Assay (CBA-N2a)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chinain, M.; Gatti, C.M.I.; Darius, H.T.; Quod, J.P.; Tester, P.A. Ciguatera poisonings: A global review of occurrences and trends. Harmful Algae 2021, 102, 101873. [Google Scholar] [CrossRef]
- Litaker, R.W.; Vandersea, M.W.; Faust, M.A.; Kibler, S.R.; Nau, A.W.; Holland, W.C.; Chinain, M.; Holmes, M.J.; Tester, P.A. Global distribution of ciguatera causing dinoflagellates in the genus Gambierdiscus. Toxicon 2010, 56, 711–730. [Google Scholar] [CrossRef] [PubMed]
- Chinain, M.; Faust, M.A.; Pauillac, S. Morphology and molecular analyses of three toxic species of Gambierdiscus (Dinophyceae): G. pacificus, sp. nov., G. australes, sp. nov., and G. polynesiensis, sp. nov. J. Phycol. 1999, 35, 1282–1296. [Google Scholar] [CrossRef]
- FAO; WHO. Report of the Expert Meeting on Ciguatera Poisoning. Rome, 19–23 November 2018; Food Safety and Quality No. 9; FAO and WHO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Adachi, R.; Fukuyo, Y. The thecal structure of a toxic marine dinoflagellate Gambierdiscus toxicus gen. et spec. nov. collected in a ciguatera-endemic area. Bull. Jpn. Soc. Sci. Fish 1979, 45, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Bagnis, R.; Chanteau, S.; Chungue, E.; Hurtel, J.M.; Yasumoto, T.; Inoue, A. Origins of ciguatera fish poisoning: A new dinoflagellate, Gambierdiscus toxicus Adachi and Fukuyo, definitively involved as a causal agent. Toxicon 1980, 18, 199–208. [Google Scholar] [CrossRef]
- Jang, S.H.; Jeong, H.J.; Yoo, Y.D. Gambierdiscus jejuensis sp. nov., an epiphytic dinoflagellate from the waters of Jeju Island, Korea, effect of temperature on the growth, and its global distribution. Harmful Algae 2018, 80, 149–157. [Google Scholar] [CrossRef]
- Tester, P.A.; Faust, M.A.; Vandersea, M.W.; Kibler, S.R.; Chinain, M.; Holmes, M.; Holland, W.C.; Litaker, R.W. Taxonomic uncertainties concerning Gambierdiscus toxicus: Proposed epitype. In Proceedings of the 12th International Conference on Harmful Algae, Copenhagen, Denmark, 4–8 September 2006; pp. 269–271. [Google Scholar]
- Guiry, M.D.G.A.G.M. AlgaeBase. Available online: http://www.algaebase.org/search/genus/detail/?genus_id=45535 (accessed on 10 October 2021).
- Yasumoto, T.; Hashimoto, Y.; Bagnis, R.; Randall, J.E.; Banner, A.H. Toxicity of the surgeonfishes I. Bull. Jpn. Soc. Sci. Fish 1971, 37, 724–734. [Google Scholar] [CrossRef]
- Yasumoto, T.; Bagnis, R.; Vernoux, J. Toxicity of the surgeonfishes II. Properties of the principal water-soluble toxin. Bull. Jpn. Soc. Sci. Fish 1976, 42, 359–365. [Google Scholar] [CrossRef]
- Scheuer, P.J.; Takahashi, W.; Tsutsumi, J.; Yoshida, T. Ciguatoxin: Isolation and chemical nature. Science 1967, 155, 1267–1268. [Google Scholar] [CrossRef]
- Yang, Z.Y.; Luo, Q.; Liang, Y.; Mazumder, A. Processes and pathways of ciguatoxin in aquatic food webs and fish poisoning of seafood consumers. Environ. Rev. 2016, 24, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Hidalgo, J.; Liberona, J.L.; Molgó, J.; Jaimovich, E. Pacific ciguatoxin-1b effect over Na+ and K+ currents, inositol 1,4,5-triphosphate content and intracellular Ca2+ signals in cultured rat myotubes. Br. J. Pharmacol. 2002, 137, 1055–1062. [Google Scholar] [CrossRef] [Green Version]
- Birinyi-Strachan, L.C.; Gunning, S.J.; Lewis, R.J.; Nicholson, G.M. Block of voltage-gated potassium channels by Pacific ciguatoxin-1 contributes to increased neuronal excitability in rat sensory neurons. Toxicol. Appl. Pharmacol. 2005, 204, 175–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlumberger, S.; Mattei, C.; Molgó, J.; Benoit, E. Dual action of a dinoflagellate-derived precursor of Pacific ciguatoxins (P-CTX-4B) on voltage-dependent K+ and Na+ channels of single myelinated axons. Toxicon 2010, 56, 768–775. [Google Scholar] [CrossRef]
- Reyes, J.G.; Sánchez-Cárdenas, C.; Acevedo-Castillo, W.; Leyton, P.; López-González, I.; Felix, R.; Gandini, M.A.; Treviño, M.B.; Treviño, C.L. Maitotoxin: An enigmatic toxic molecule with useful applications in the biomedical sciences. In Seafood and Freshwater Toxins: Pharmacology, Physiology and Detection, 3rd ed.; Botana, L.M., Ed.; CRC Press, Taylor & Francis: London, UK, 2014; pp. 677–694. [Google Scholar]
- Kohli, G.S.; Papiol, G.G.; Rhodes, L.L.; Harwood, D.T.; Selwood, A.; Jerrett, A.; Murray, S.A.; Neilan, B.A. A feeding study to probe the uptake of maitotoxin by snapper (Pagrus auratus). Harmful Algae 2014, 37, 125–132. [Google Scholar] [CrossRef]
- Chinain, M.; Darius, H.T.; Ung, A.; Cruchet, P.; Wang, Z.; Ponton, D.; Laurent, D.; Pauillac, S. Growth and toxin production in the ciguatera-causing dinoflagellate Gambierdiscus polynesiensis (Dinophyceae) in culture. Toxicon 2010, 56, 739–750. [Google Scholar] [CrossRef] [PubMed]
- Yon, T.; Sibat, M.; Réveillon, D.; Bertrand, S.; Chinain, M.; Hess, P. Deeper insight into Gambierdiscus polynesiensis toxin production relies on specific optimization of high-performance liquid chromatography-high resolution mass spectrometry. Talanta 2021, 232, 122400. [Google Scholar] [CrossRef]
- Murata, M.; Legrand, A.M.; Ishibashi, Y.; Fukui, M.; Yasumoto, T. Structures and configurations of ciguatoxin from the moray eel Gymnothorax javanicus and its likely precursor from the dinoflagellate Gambierdiscus toxicus. J. Am. Chem. Soc. 1990, 112, 4380–4386. [Google Scholar] [CrossRef]
- Satake, M.; Ishibashi, Y.; Legrand, A.M.; Yasumoto, T. Isolation and structure of ciguatoxin-4A, a new ciguatoxin precursor, from cultures of dinoflagellate Gambierdiscus toxicus and parrotfish Scarus gibbus. Biosci. Biotechnol. Biochem. 1997, 60, 2103–2105. [Google Scholar] [CrossRef] [Green Version]
- Ikehara, T.; Kuniyoshi, K.; Oshiro, N.; Yasumoto, T. Biooxidation of ciguatoxins leads to species-specific toxin profiles. Toxins 2017, 9, 205. [Google Scholar] [CrossRef] [Green Version]
- Vernoux, J.-P.; Lewis, R.J. Isolation and characterisation of Caribbean ciguatoxins from the horse-eye jack (Caranx latus). Toxicon 1997, 35, 889–900. [Google Scholar] [CrossRef]
- Lewis, R.J.; Vernoux, J.-P.; Brereton, I.M. Structure of caribbean ciguatoxin isolated from Caranx latus. J. Am. Chem. Soc. 1998, 120, 5914–5920. [Google Scholar] [CrossRef]
- Satake, M.; Murata, M.; Yasumoto, T. Gambierol—A new toxic polyether compound isolated from the marine dinoflagellate Gambierdiscus toxicus. J. Am. Chem. Soc. 1993, 115, 361–362. [Google Scholar] [CrossRef]
- Nagai, H.; Murata, M.; Torigoe, K.; Satake, M.; Yasumoto, T. Gambieric acids, new potent antifungal substances with unprecedented polyether structures from a marine dinoflagellate Gambierdiscus toxicus. J. Org. Chem. 1992, 57, 5448–5453. [Google Scholar] [CrossRef]
- Cuypers, E.; Abdel-Mottaleb, Y.; Kopljar, I.; Rainier, J.D.; Raes, A.L.; Snyders, D.J.; Tytgat, J. Gambierol, a toxin produced by the dinoflagellate Gambierdiscus toxicus, is a potent blocker of voltage-gated potassium channels. Toxicon 2008, 51, 974–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, R.; Uchida, H.; Suzuki, T.; Matsushima, R.; Nagae, M.; Toyohara, Y.; Satake, M.; Oshima, Y.; Inoue, A.; Yasumoto, T. Gambieroxide, a novel epoxy polyether compound from the dinoflagellate Gambierdiscus toxicus GTP2 strain. Tetrahedron 2013, 69, 10299–10303. [Google Scholar] [CrossRef]
- Rodriguez, I.; Genta-Jouve, G.; Alfonso, C.; Calabro, K.; Alonso, E.; Sanchez, J.A.; Alfonso, A.; Thomas, O.P.; Botana, L.M. Gambierone, a ladder-shaped polyether from the dinoflagellate Gambierdiscus belizeanus. Org. Lett. 2015, 17, 2392–2395. [Google Scholar] [CrossRef] [PubMed]
- Boente-Juncal, A.; Alvarez, M.; Antelo, A.; Rodriguez, I.; Calabro, K.; Vale, C.; Thomas, O.P.; Botana, L.M. Structure elucidation and biological evaluation of maitotoxin-3, a homologue of gambierone, from Gambierdiscus belizeanus. Toxins 2019, 11, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, J.S.; Selwood, A.I.; Harwood, D.T.; van Ginkel, R.; Puddick, J.; Rhodes, L.L.; Rise, F.; Wilkins, A.L. 44-Methylgambierone, a new gambierone analogue isolated from Gambierdiscus australes. Tetrahedron Lett. 2019, 60, 621–625. [Google Scholar] [CrossRef]
- Murray, J.S.; Nishimura, T.; Finch, S.C.; Rhodes, L.L.; Puddick, J.; Harwood, D.T.; Larsson, M.E.; Doblin, M.A.; Leung, P.; Yan, M.; et al. The role of 44-methylgambierone in ciguatera fish poisoning: Acute toxicity, production by marine microalgae and its potential as a biomarker for Gambierdiscus spp. Harmful Algae 2020, 97, 101853. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.S.; Finch, S.C.; Puddick, J.; Rhodes, L.L.; Harwood, D.T.; van Ginkel, R.; Prinsep, M.R. Acute toxicity of gambierone and quantitative analysis of gambierones produced by cohabitating benthic dinoflagellates. Toxins 2021, 13, 333. [Google Scholar] [CrossRef]
- Pisapia, F.; Sibat, M.; Herrenknecht, C.; Lhaute, K.; Gaiani, G.; Ferron, P.J.; Fessard, V.; Fraga, S.; Nascimento, S.M.; Litaker, R.W.; et al. Maitotoxin-4, a novel MTX analog produced by Gambierdiscus excentricus. Marine Drugs 2017, 15, 220. [Google Scholar] [CrossRef]
- Tibiriçá, C.E.J.d.A.; Sibat, M.; Fernandes, L.F.; Bilien, G.; Chomérat, N.; Hess, P.; Mafra, L.L., Jr. Diversity and Toxicity of the Genus Coolia Meunier in Brazil, and Detection of 44-methyl gambierone in Coolia tropicalis. Toxins 2020, 12, 327. [Google Scholar] [CrossRef]
- Litaker, R.W.; Holland, W.C.; Hardison, D.R.; Pisapia, F.; Hess, P.; Kibler, S.R.; Tester, P.A. Ciguatoxicity of Gambierdiscus and Fukuyoa species from the Caribbean and Gulf of Mexico. PLoS ONE 2017, 12, e0185776. [Google Scholar] [CrossRef]
- Pisapia, F.; Holland, W.C.; Hardison, D.R.; Litaker, R.W.; Fraga, S.; Nishimura, T.; Adachi, M.; Nguyen-Ngoc, L.; Séchet, V.; Amzil, Z.; et al. Toxicity screening of 13 Gambierdiscus strains using neuro-2a and erythrocyte lysis bioassays. Harmful Algae 2017, 63, 173–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossignoli, A.E.; Tudó, A.; Bravo, I.; Díaz, P.A.; Diogène, J.; Riobó, P. Toxicity characterisation of Gambierdiscus species from the Canary Islands. Toxins 2020, 12, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraga, S.; Rodríguez, F.; Caillaud, A.; Diogène, J.; Raho, N.; Zapata, M. Gambierdiscus excentricus sp. nov. (Dinophyceae), a benthic toxic dinoflagellate from the Canary Islands (NE Atlantic Ocean). Harmful Algae 2011, 11, 10–22. [Google Scholar] [CrossRef] [Green Version]
- Pisapia, F.; Sibat, M.; Watanabe, R.; Roullier, C.; Suzuki, T.; Hess, P.; Herrenknecht, C. Characterization of maitotoxin-4 (MTX4) using electrospray positive mode ionization high-resolution mass spectrometry and UV spectroscopy. Rapid Commun Mass Spectrom. 2020, 34, e8859. [Google Scholar] [CrossRef]
- Lewis, R.J.; Holmes, M.J.; Alewood, P.F.; Jones, A. Lonspray mass spectrometry of ciguatoxin-1, maitotoxin-2 and -3, and related marine polyether toxins. Nat. Toxins 1994, 2, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Sibat, M.; Herrenknecht, C.; Darius, H.T.; Roué, M.; Chinain, M.; Hess, P. Detection of Pacific ciguatoxins using liquid chromatography coupled to either low or high resolution mass spectrometry (LC-MS/MS). J. Chrom. A 2018, 1571, 16–28. [Google Scholar] [CrossRef]
- Nagai, H.; Torigoe, K.; Satake, M.; Murata, M.; Yasumoto, T.; Hirota, H. Gambieric acids: Unprecedented potent antifungal substances isolated from cultures of a marine dinoflagellate Gambierdiscus toxicus. J. Am. Chem. Soc. 1992, 114, 1102–1103. [Google Scholar] [CrossRef]
- Estevez, P.; Sibat, M.; Leão-Martins, J.; Tudó, À.; Rambla-Alegre, M.; Aligizaki, K.; Diogène, J.; Gago-Martinez, A.; Hess, P. Use of mass spectrometry to determine the diversity of toxins produced by Gambierdiscus and Fukuyoa species from Balearic Islands and Crete (Mediterranean Sea) and the Canary Islands (Northeast Atlantic). Toxins 2020, 12, 305. [Google Scholar] [CrossRef] [PubMed]
- Longo, S.; Sibat, M.; Viallon, J.; Darius, H.T.; Hess, P.; Chinain, M. Intraspecific variability in the toxin production and toxin profiles of in vitro cultures of Gambierdiscus polynesiensis (Dinophyceae) from French Polynesia. Toxins 2019, 11, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Low Resolution Mass Spectrometry (Method 1) | High Resolution Mass Spectrometry (Method 2) | ||||||
---|---|---|---|---|---|---|---|
Chromatographic Peak | Retention Time (min) | MRM Transition | Retention Time (min) | Monoisotopic m/z Measured | m/z Theoretical | Δppm | Confirmation Status |
(1) | 4.47 | 1023.5/1023.5 1023.5/97.0 | 6.2 | 1023.4596 | 1023.4629 [30] | −3.2 | Related |
(2) | 4.99 | 1126.2/1126.2 | 6.6 | 1126.6344 | 1125.5318 [41] | / | Not confirmed: Singly-charged ion |
(3) | 5.03 | 1037.5/1037.5 1037.5/97.0 | 6.72 | 1037.4599 | 1037.4780 [32] | −17.9 | Putatively related Low mass accuracy |
(4) | 5.72 | 1183/1183 1069/1069 | 7.4 | 1181.8103 | 1183.6786 [27,44] | / | Not confirmed: Isotope M+3 |
(5) | 5.99 | 1646.2/1646.2 1646.2/96.9 | 7.5 | 1645.2315 | 1645.2363 [41] | −2.9 | Confirmed |
(6) | 6.99 | 1091.8/96.3 | 8.5 | 1091.5251 | / | Not confirmed: Singly-charged ion | |
(7) | 7.08 | 1023.5/1023.5 | ND | ND | ND | ||
(8) | 7.82 | 1037.5/1037.5 | 9.5 | 1036.6185 | 1037.4780 [32] | / | Not confirmed: Isotope |
Full scan ESI+ Method 2 (Δppm) | Full scan ESI+ Method 3 (Δppm) | Gambierone (C51H76O19S) | Sulfo-gambierone (C51H76O22S2) | ||
---|---|---|---|---|---|
Adduct Annotation | Theoretical Mono-Isotopic Mass (Da) | Adduct Annotation | Theoretical Mono-Isotopic Mass (Da) | ||
1139.4882 (+0.7) | [M+2NH4]+ | 1139.4874 | |||
1122.4607 (-0.1) | 1122.4635 (+2.4) | [M+NH4]+ | 1122.4608 | ||
1105.4384 (-4.4) | 1105.4444 (+9.2) | [M+H]+ | 1105.4342 | ||
1087.4243 (+0.6) | [M-H2O+H]+ | 1087.4237 | |||
1069.4196 (+6.1) | [M-2H2O+H]+ | 1069.4131 | |||
1042.5072 (+3.1) | 1042.5061 (+2.0) | [M+NH4]+ | 1042.5040 | [M-SO3+NH4]+ | 1042.5040 |
1025.4857 (+8.1) | 1025.4870 (+9.4) | [M+H]+ | 1025.4774 | [M-SO3+H]+ | 1025.4774 |
1007.4702 (+3.4) | 1007.4679 (+1.1) | [M-H2O+H]+ | 1007.4668 | [M-SO3-H2O+H]+ | 1007.4668 |
989.4590 (+2.7) | 989.4557 (-0.6) | [M-2H2O+H]+ | 989.4563 | [M-SO3-2H2O+H]+ | 989.4563 |
962.5498 (+2.7) | 962.5477 (+0.5) | [M-2SO3+NH4]+ | 962.5472 | ||
945.5296 (+9.5) | 945.5242 (+3.8) | [M-SO3+H]+ | 945.5206 | [M-2SO3+H]+ | 945.5206 |
927.5137 (+4.0) | 927.5102 (+0.2) | [M-SO3-H2O+H]+ | 927.5100 | [M-2SO3-H2O+H]+ | 927.5100 |
909.5030 (+3.8) | 909.4992 (-0.3) | [M-SO3-2H2O+H]+ | 909.4995 | [M-2SO3-2H2O+H]+ | 909.4995 |
891.4921 (+3.6) | 891.4883 (-0.7) | [M-SO3-3H2O+H]+ | 891.4889 | [M-2SO3-3H2O+H]+ | 891.4889 |
873.4808 (+2.9) | 873.4764 (-2.2) | [M-SO3-4H2O+H]+ | 873.4783 | [M-2SO3-4H2O+H]+ | 873.4783 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yon, T.; Sibat, M.; Robert, E.; Lhaute, K.; Holland, W.C.; Litaker, R.W.; Bertrand, S.; Hess, P.; Réveillon, D. Sulfo-Gambierones, Two New Analogs of Gambierone Produced by Gambierdiscus excentricus. Mar. Drugs 2021, 19, 657. https://doi.org/10.3390/md19120657
Yon T, Sibat M, Robert E, Lhaute K, Holland WC, Litaker RW, Bertrand S, Hess P, Réveillon D. Sulfo-Gambierones, Two New Analogs of Gambierone Produced by Gambierdiscus excentricus. Marine Drugs. 2021; 19(12):657. https://doi.org/10.3390/md19120657
Chicago/Turabian StyleYon, Thomas, Manoëlla Sibat, Elise Robert, Korian Lhaute, William C. Holland, R. Wayne Litaker, Samuel Bertrand, Philipp Hess, and Damien Réveillon. 2021. "Sulfo-Gambierones, Two New Analogs of Gambierone Produced by Gambierdiscus excentricus" Marine Drugs 19, no. 12: 657. https://doi.org/10.3390/md19120657
APA StyleYon, T., Sibat, M., Robert, E., Lhaute, K., Holland, W. C., Litaker, R. W., Bertrand, S., Hess, P., & Réveillon, D. (2021). Sulfo-Gambierones, Two New Analogs of Gambierone Produced by Gambierdiscus excentricus. Marine Drugs, 19(12), 657. https://doi.org/10.3390/md19120657