A Collagen Basketweave from the Giant Squid Mantle as a Robust Scaffold for Tissue Engineering
Abstract
:1. Introduction
2. Results
2.1. Collagen Is a Basic Component of the GSCM
2.1.1. Amino Acid Analysis
2.1.2. SDS-PAGE
2.2. Hydration and Thermal Properties of the GSCM
2.2.1. FTIR Spectroscopy
2.2.2. TGA/DSC Studies
2.2.3. Shrinkage Temperature
2.3. Morphological Properties of the GSCM
2.3.1. Histological Studies
2.3.2. Scanning Electronic Microscopy Studies (SEM)
2.3.3. Laser Scanning Microscopy (LSM) (Second Harmonics Generation Signal—SHG)
2.3.4. Atomic-Force Microscopy (AFM)
Type of Squid | DML, cm | T,µ m | W,µ m | E(w), MPa | UTS(w), MPa | Max ε(w), % | E(d), GPa | UTS(d), MPa | Max ε(d), % | E(w), MPa |
---|---|---|---|---|---|---|---|---|---|---|
Macromechanical Properties | Micromechanical Properties | |||||||||
Dosidigus gigas | 1500–2000 | 50–70 | 40–50 | 20 ± 6 | 20 ± 8 | 47 ± 9 | 1.5 ± 0.5 | 80 ± 20 | 20 ± 15 | 4.1 ± 0.5 |
Loligo peale [68] | 30–50 | 20–35 | 2–7 | No data | No data | No data | No data | No data | No data | No data |
Berryteuthis magister | 25 | 20 | 4–7 | 54 ± 17 | 10 ± 3 | 27 ± 7 | 0.4 ± 0.2 | 28 ± 9 | 16 ± 5 | 6.5 ± 0.5 |
2.4. Mechanical Properties of the GSCM
2.4.1. Uniaxial Stretching Tests
2.4.2. Micromechanical Properties Studied by AFM
2.5. Cytotoxicity and Biodegradability of the GSCM
2.5.1. Viability Test
2.5.2. Resistance to Collagenase
2.5.3. LAL Test
3. Discussion
4. Materials and Methods
4.1. Material
4.2. Amino Acid Analysis
4.3. Collagen Molecular Weight Estimation (SDS-PAGE)
4.4. IR-Spectroscopy
4.5. Differential Scanning Calorimetry (DSC)
4.6. Shrinkage Temperature
4.7. Histological Study
4.8. Scanning Electron Microscopy (SEM)
4.9. Laser Scanning Microscopy (Second Harmonics Generation, SHG Signal)
4.10. Atomic Force Microscopy (AFM)
4.11. Uniaxial Stretching Test
4.12. Micromechanics by AFM
4.13. In Vitro Cytotoxicity Assays
4.14. Resistance to Collagenase
4.15. LAL Test
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fayzullin, A.L.; Shekhter, A.B.; Istranov, L.P.; Istranova, E.V.; Rudenko, T.G.; Guller, A.E.; Aboyants, R.K.; Timashev, P.S.; Butnaru, D.V. Bioresorbable collagen materials in surgery: 50 years of success. Sechenov Med. J. 2020, 11, 59–70. [Google Scholar] [CrossRef]
- Cen, L.; Liu, W.; Cui, L.; Zhang, W.; Cao, Y. Collagen tissue engineering: Development of novel biomaterials and applications. Pediatr. Res. 2008, 63, 492–496. [Google Scholar] [CrossRef] [PubMed]
- Parenteau-Bareil, R.; Gauvin, R.; Berthod, F. Collagen-based biomaterials for tissue engineering applications. Materials 2010, 3, 1863–1887. [Google Scholar] [CrossRef] [Green Version]
- Rekulapally, R.; Udayachandrika, K.; Hamlipur, S.; Sasidharan Nair, A.; Pal, B.; Singh, S. Tissue engineering of collagen scaffolds crosslinked with plant based polysaccharides. Prog. Biomater. 2021, 10, 29–41. [Google Scholar] [CrossRef]
- Blackstone, B.N.; Gallentine, S.C.; Powell, H.M. Review collagen-based electrospun materials for tissue engineering: A systematic review. Bioengineering 2021, 8, 39. [Google Scholar] [CrossRef]
- Huang, J.; Chen, L.; Gu, Z.; Wu, J. Red Jujube-Incorporated Gelatin Methacryloyl (GelMA) Hydrogels with Anti-Oxidation and Immunoregulation Activity for Wound Healing. J. Biomed. Nanotechnol. 2019, 15, 1357–1370. [Google Scholar] [CrossRef]
- Nourissat, G.; Berenbaum, F.; Duprez, D. Tendon injury: From biology to tendon repair. Nat. Rev. Rheumatol. 2015, 11, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Kannus, P. Structure of the tendon connective tissue. Scand. J. Med. Sci. Sport. 2000, 10, 312–320. [Google Scholar] [CrossRef]
- Mienaltowski, M.J.; Birk, D.E. Structure, Physiology, and Biochemistry of Collagens. In Progress in Heritable Soft Connective Tissue Diseases; Halper, J., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 5–29. [Google Scholar]
- Amiel, D.; Frank, C.; Harwood, F.; Fronek, J.; Akeson, W. Tendons and Ligaments: A Morphological and Biochemical Comparison A historical review of the evolution of the use of tendons as ligament substitutes reveals that these. J. Orthop. Res. 1984, 1, 251–265. [Google Scholar]
- Frank, C.; Amiel, D.; Woo, S.L.Y.; Akeson, W. Normal ligament properties and ligament healing. Clin. Orthop. Relat. Res. 1985, 196, 15–25. [Google Scholar] [CrossRef]
- Duthon, V.B.; Barea, C.; Abrassart, S.; Fasel, J.H.; Fritschy, D.; Ménétrey, J. Anatomy of the anterior cruciate ligament. Knee Surgery, Sport. Traumatol. Arthrosc. 2006, 14, 204–213. [Google Scholar] [CrossRef] [Green Version]
- Franchi, M.; Fini, M.; Quaranta, M.; De Pasquale, V.; Raspanti, M.; Giavaresi, G.; Ottani, V.; Ruggeri, A. Crimp morphology in relaxed and stretched rat Achilles tendon. J. Anat. 2007, 210, 1–7. [Google Scholar] [CrossRef]
- Bottagisio, M.; D’Arrigo, D.; Talò, G.; Bongio, M.; Ferroni, M.; Boschetti, F.; Moretti, M.; Lovati, A.B. Achilles tendon repair by decellularized and engineered xenografts in a rabbit model. Stem Cells Int. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.J.; Hua, Y.H. Tendon allograft for treatment of chronic Achilles tendon rupture: A systematic review. Foot Ankle Surg. 2019, 25, 252–257. [Google Scholar] [CrossRef]
- Smith, L.T.; Holbrook, K.A.; Byers, P.H. Structure of the dermal matrix during development and in the adult. J. Invest. Dermatol. 1982, 79, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Armour, A.D.; Fish, J.S.; Woodhouse, K.A.; Semple, J.L. A comparison of human and porcine acellularized dermis: Interactions with human fibroblasts in vitro. Plast. Reconstr. Surg. 2006, 117, 845–856. [Google Scholar] [CrossRef] [PubMed]
- Prasertsung, I.; Kanokpanont, S.; Bunaprasert, T.; Thanakit, V.; Damrongsakkul, S. Development of acellular dermis from porcine skin using periodic pressurized technique. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 85, 210–219. [Google Scholar] [CrossRef]
- Shoulders, M.D.; Raines, R.T. Collagen structure and stability. Annu. Rev. Biochem. 2009, 78, 929–958. [Google Scholar] [CrossRef] [Green Version]
- Silver, F.H.; Freeman, J.W.; Devore, D. Viscoelastic properties of human skin and processed dermis. Ski. Res. Technol. 2001, 7, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Silver, F.H. Biological Materials: Structure, Mechanical Properties, and Modeling of Soft Tissues; NYU Press: New York, NY, USA, 1987; ISBN 9780814778609. [Google Scholar]
- Wilkes, G.L.; Brown, I.A.; Wildnauer, R.H. The biomechanical properties of skin. CRC Crit. Rev. Bioeng. 1973, 1, 453–495. [Google Scholar] [PubMed]
- Ní Annaidh, A.; Bruyère, K.; Destrade, M.; Gilchrist, M.D.; Otténio, M. Characterization of the anisotropic mechanical properties of excised human skin. J. Mech. Behav. Biomed. Mater. 2012, 5, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Ruszczak, Z. Effect of collagen matrices on dermal wound healing. Adv. Drug Deliv. Rev. 2003, 55, 1595–1611. [Google Scholar] [CrossRef] [PubMed]
- Gullbrand, S.E.; Ashinsky, B.G.; Lai, A.; Gansau, J.; Crowley, J.; Cunha, C.; Engiles, J.B.; Fusellier, M.; Muehleman, C.; Pelletier, M.; et al. Development of a standardized histopathology scoring system for intervertebral disc degeneration and regeneration in rabbit models-An initiative of the ORSspine section. JOR Spine 2021, 4, 1–12. [Google Scholar] [CrossRef]
- Hiroshi, Y. Strength of Biological Materials; Williams & Wilkins: Baltimore, MD, USA, 1970. [Google Scholar]
- Huang, K.; Liu, G.; Gu, Z.; Wu, J. Tofu as excellent scaffolds for potential bone regeneration. Chinese Chem. Lett. 2020, 31, 3190–3194. [Google Scholar] [CrossRef]
- Huang, K.; Hou, J.; Gu, Z.; Wu, J. Egg-White-/Eggshell-Based Biomimetic Hybrid Hydrogels for Bone Regeneration. ACS Biomater. Sci. Eng. 2019, 5, 5384–5391. [Google Scholar] [CrossRef]
- Gallagher, A.J.; Ní Annaidh, A.; Bruyère, K.; Ottenio, M.; Xie, H.; Gilchrist, M.D. Dynamic Tensile Properties of Human Skin. In Proceedings of the 2012 IRCOBI Conference, Dublin, Ireland, 12–14 September 2012; pp. 1–6. [Google Scholar]
- Dunn, M.; Tria, A.; Kato, P.; Bechler, J.; Ochner, R.; Zawadsky, J.; Silver, F.H. Anterior cruciate using a composite collagenous prosthesis histologic study in rabbits. Am. J. Sports Med. 1992, 20, 507–515. [Google Scholar] [CrossRef]
- Butler, D.L.; Grood, E.S.; Noyes, F.R.; Zernicke, R.F.; Brackett, K. Effects of structure and strain measurement technique on the material properties of young human tendons and fascia. J. Biomech. 1984, 17, 579–596. [Google Scholar] [CrossRef]
- Huang, C.Y.; Wang, V.M.; Pawluk, R.J.; Bucchieri, J.S.; Levine, W.N.; Bigliani, L.U.; Mow, V.C.; Flatow, E.L. Inhomogeneous mechanical behavior of the human supraspinatus tendon under uniaxial loading. J. Orthop. Res. 2005, 23, 924–930. [Google Scholar] [CrossRef]
- Shen, W.; Chen, J.; Yin, Z.; Chen, X.; Liu, H.; Heng, B.C.; Chen, W.; Ouyang, H.W. Allogenous tendon stem/progenitor cells in silk scaffold for functional shoulder repair. Cell Transplant. 2012, 21, 943–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arya, S.; Kulig, K. Tendinopathy alters mechanical and material properties of the Achilles tendon. J. Appl. Physiol. 2010, 108, 670–675. [Google Scholar] [CrossRef] [Green Version]
- Currey, J. The Structure and Mechanical Properties of Bone; Woodhead Publishing Limited: Sawston, UK, 2008; ISBN 9781845692049. [Google Scholar]
- Rubod, C.; Boukerrou, M.; Brieu, M.; Jean-Charles, C.; Dubois, P.; Cosson, M. Biomechanical properties of vaginal tissue: Preliminary results. Int. Urogynecol. J. 2008, 19, 811–816. [Google Scholar] [CrossRef]
- Zeng, Y.; Yang, J.; Huang, K.; Lee, Z.; Lee, X. A comparison of biomechanical properties between human and porcine cornea. J. Biomech. 2001, 34, 533–537. [Google Scholar] [CrossRef]
- Grebenik, E.A.; Istranov, L.P.; Istranova, E.V.; Churbanov, S.N.; Shavkuta, B.S.; Dmitriev, R.I.; Veryasova, N.N.; Kotova, S.L.; Kurkov, A.V.; Shekhter, A.B.; et al. Chemical cross—linking of xenopericardial biomeshes: A bottom—up study of structural and functional correlations. Xenotransplantation 2019, 26, e12506. [Google Scholar] [CrossRef] [PubMed]
- Powell, H.M.; McFarland, K.L.; Butler, D.L.; Supp, D.M.; Boyce, S.T. Uniaxial strain regulates morphogenesis, gene expression, and tissue strength in engineered skin. Tissue Eng. Part A 2010, 16, 1083–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bose, S.; Li, S.; Mele, E.; Silberschmidt, V.V. Dry vs. wet: Properties and performance of collagen films. Part I. Mechanical behaviour and strain-rate effect. J. Mech. Behav. Biomed. Mater. 2020, 111, 103983. [Google Scholar] [CrossRef] [PubMed]
- Koide, T.; Daito, M. Effects of Various Collagen Crosslinking Techniques on Mechanical Properties of Collagen Film. Dent. Mater. J. 1997, 16, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Habermehl, J.; Skopinska, J.; Boccafoschi, F.; Sionkowska, A.; Kaczmarek, H.; Laroche, G.; Mantovani, D. Preparation of ready-to-use, stockable and reconstituted collagen. Macromol. Biosci. 2005, 5, 821–828. [Google Scholar] [CrossRef]
- Uriarte-Montoya, M.H.; Arias-Moscoso, J.L.; Plascencia-Jatomea, M.; Santacruz-Ortega, H.; Rouzaud-Sández, O.; Cardenas-Lopez, J.L.; Marquez-Rios, E.; Ezquerra-Brauer, J.M. Jumbo squid (Dosidicus gigas) mantle collagen: Extraction, characterization, and potential application in the preparation of chitosan-collagen biofilms. Bioresour. Technol. 2010, 101, 4212–4219. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Liu, A.; Wang, W.; Ye, R. Improved mechanical properties and thermal-stability of collagen fiber based film by crosslinking with casein, keratin or SPI: Effect of crosslinking process and concentrations of proteins. Int. J. Biol. Macromol. 2017, 109, 1319–1328. [Google Scholar] [CrossRef]
- Theodoridis, K.; Müller, J.; Ramm, R.; Findeisen, K.; Andrée, B.; Korossis, S.; Haverich, A.; Hilfiker, A. Effects of combined cryopreservation and decellularization on the biomechanical, structural and biochemical properties of porcine pulmonary heart valves. Acta Biomater. 2016, 43, 71–77. [Google Scholar] [CrossRef]
- Ward, D.V.; Wainwright, S.A. Locomotory aspects of squid mantle structure. J. Zool. 1972, 167, 437–449. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2018 Meeting the Sustainable Development Goals; FAO: Rome, Italy, 2018. [Google Scholar]
- Ibáñez, C.M.; Sepúlveda, R.D.; Ulloa, P.; Keyl, F.; Pardo-Gandarillas, M.C. The biology and ecology of the jumbo squid Dosidicus gigas (Cephalopoda) in Chilean waters: A review. Lat. Am. J. Aquat. Res. 2015, 43, 402–414. [Google Scholar] [CrossRef]
- Nagai, T.; Izumi, M.; Ishii, M. Fish scale collagen. Preparation and partial characterization. Int. J. Food Sci. Technol. 2004, 39, 239–244. [Google Scholar] [CrossRef]
- Torres-Arreola, W.; Pacheco-Aguilar, R.; Sotelo-Mundo, R.R.; Rouzaud-Sández, O.; Ezquerra-Brauer, J.M. Partial characterization of collagen from mantle, fin, and arms of jumbo squid (Dosidicus gigas). Cienc. y Tecnol. Aliment. 2008, 6, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Li, P.H.; Lu, W.C.; Chan, Y.J.; Ko, W.C.; Jung, C.C.; Le Huynh, D.T.; Ji, Y.X. Extraction and characterization of collagen from sea cucumber (Holothuria cinerascens) and its potential application in moisturizing cosmetics. Aquaculture 2020, 515, 734590. [Google Scholar] [CrossRef]
- Adamowicz, J.; Kloskowski, T.; Stopel, M.; Gniadek, M.; Rasmus, M.; Balcerczyk, D. Materials Science & Engineering C The development of marine biomaterial derived from decellularized squid mantle for potential application as tissue engineered urinary conduit. Mater. Sci. Eng. C 2021, 119, 111579. [Google Scholar] [CrossRef]
- De Melo Oliveira, V.; Assis, C.R.D.; Costa, B.D.A.M.; de Araujo Neri, R.C.; Monte, F.T.D.; da Costa Vasconcelos, H.M.S.; França, R.C.P.; Santos, J.F.; de Souza Bezerra, R.; Porto, A.L.F. Physical, biochemical, densitometric and spectroscopic techniques for characterization collagen from alternative sources: A review based on the sustainable valorization of aquatic by-products. J. Mol. Struct. 2021, 1224, 129023. [Google Scholar] [CrossRef]
- Rýglová, Š.; Braun, M.; Hříbal, M.; Suchý, T.; Vöröš, D. The proportion of the key components analysed in collagen-based isolates from fish and mammalian tissues processed by different protocols. J. Food Compos. Anal. 2021, 103. [Google Scholar] [CrossRef]
- Benayahu, D.; Benayahu, Y. A Unique Marine-Derived Collagen: Its Characterization towards Biocompatibility Applications for Tissue Regeneration. Mar. Drugs 2021, 19, 419. [Google Scholar] [CrossRef] [PubMed]
- Riaz, T.; Zeeshan, R.; Zarif, F.; Ilyas, K.; Muhammad, N.; Safi, S.Z.; Rahim, A.; Rizvi, S.A.A.; Rehman, I.U. FTIR analysis of natural and synthetic collagen. Appl. Spectrosc. Rev. 2018, 53, 703–746. [Google Scholar] [CrossRef]
- Martínez Cortizas, A.; López-Costas, O. Linking structural and compositional changes in archaeological human bone collagen: An FTIR-ATR approach. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Belbachir, K.; Noreen, R.; Gouspillou, G.; Petibois, C. Collagen types analysis and differentiation by FTIR spectroscopy. Anal. Bioanal. Chem. 2009, 395, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Petibois, C.; Gouspillou, G.; Wehbe, K.; Delage, J.P.; Déléris, G. Analysis of type i and IV collagens by FT-IR spectroscopy and imaging for a molecular investigation of skeletal muscle connective tissue. Anal. Bioanal. Chem. 2006, 386, 1961–1966. [Google Scholar] [CrossRef]
- De Campos Vidal, B.; Mello, M.L.S. Collagen type I amide I band infrared spectroscopy. Micron 2011, 42, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Ghodbane, S.A.; Dunn, M.G. Physical and mechanical properties of cross-linked type I collagen scaffolds derived from bovine, porcine, and ovine tendons. J. Biomed. Mater. Res.—Part A 2016, 104, 2685–2692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanmugasundaram, N.; Ravikumar, T.; Babu, M. Comparative physico-chemical and in vitro properties of fibrillated collagen scaffolds from different sources. J. Biomater. Appl. 2004, 18, 247–264. [Google Scholar] [CrossRef]
- Budrugeac, P.; Carşote, C.; Miu, L. Application of thermal analysis methods for damage assessment of leather in an old military coat belonging to the History Museum of Braşov—Romania. J. Therm. Anal. Calorim. 2017, 127, 765–772. [Google Scholar] [CrossRef]
- Samouillan, V.; Delaunay, F.; Dandurand, J.; Merbahi, N.; Gardou, J.-P.; Yousfi, M.; Gandaglia, A.; Spina, M.; Lacabanne, C. The Use of Thermal Techniques for the Characterization and Selection of Natural Biomaterials. J. Funct. Biomater. 2011, 2, 230–248. [Google Scholar] [CrossRef] [Green Version]
- Flint, M.H.; Merrilees, M.J. Relationship between the axial periodicity and staining of collagen by the Masson trichrome procedure. Histochem. J. 1977, 9, 1–13. [Google Scholar] [CrossRef]
- Kotova, S.L.; Shekhter, A.B.; Timashev, P.S.; Guller, A.E.; Mudrov, A.A.; Timofeeva, V.A.; Panchenko, V.Y.; Bagratashvili, V.N.; Solovieva, A.B. AFM study of the extracellular connective tissue matrix in patients with pelvic organ prolapse. J. Surf. Investig. 2014, 8, 754–760. [Google Scholar] [CrossRef]
- Baselt, D.R.; Revel, J.P.; Baldeschwieler, J.D. Subfibrillar structure of type I collagen observed by atomic force microscopy. Biophys. J. 1993, 65, 2644–2655. [Google Scholar] [CrossRef] [Green Version]
- Otwell, W.; Giddings, G. Scanning electron microscopy of squid, Loligo pealei: Raw, cooked, and frozen mantle. Mar. Fish. Rev. 1980, 42, 67–72. [Google Scholar]
- Han, Y.; Li, X.; Zhang, Y.; Han, Y.; Chang, F.; Ding, J. Mesenchymal Stem Cells for Regenerative Medicine. Cells 2019, 8, 886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeman, F.E.; Kelly, D.J. Tuning alginate bioink stiffness and composition for controlled growth factor delivery and to spatially direct MSC Fate within bioprinted tissues. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Bikmulina, P.Y.; Kosheleva, N.V.; Shpichka, A.I.; Efremov, Y.M.; Yusupov, V.I.; Timashev, P.S.; Rochev, Y.A. Beyond 2D: Effects of photobiomodulation in 3D tissue-like systems. J. Biomed. Opt. 2020, 25, 1. [Google Scholar] [CrossRef] [PubMed]
- Paterson, T.E.; Shi, R.; Tian, J.; Harrison, C.J.; De Sousa Mendes, M.; Hatton, P.V.; Li, Z.; Ortega, I. Electrospun scaffolds containing silver-doped hydroxyapatite with antimicrobial properties for applications in orthopedic and dental bone surgery. J. Funct. Biomater. 2020, 11, 58. [Google Scholar] [CrossRef] [PubMed]
- Sindhu, K.R.; Bansode, N.; Rémy, M.; Morel, C.; Bareille, R.; Hagedorn, M.; Hinz, B.; Barthélémy, P.; Chassande, O.; Boiziau, C. New injectable self-assembled hydrogels that promote angiogenesis through a bioactive degradation product. Acta Biomater. 2020, 115, 197–209. [Google Scholar] [CrossRef]
- Merlin Rajesh Lal, L.P.; Suraishkumar, G.K.; Nair, P.D. Chitosan-agarose scaffolds supports chondrogenesis of Human Wharton’s Jelly mesenchymal stem cells. J. Biomed. Mater. Res.—Part A 2017, 105, 1845–1855. [Google Scholar] [CrossRef] [PubMed]
- Keane, T.J.; Saldin, L.T.; Badylak, S.F. Decellularization of Mammalian Tissues: Preparing Extracellular Matrix Bioscaffolds; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; ISBN 9781782420958. [Google Scholar]
- Food and Drug Administration. Guideline on Validation of the Limulus ameobocyte Lysate Test as an End-Product Endotoxin Test for Human and Animal Parenteral Drugs, Biological Products, and Medical Devices; U.S. Department of Health & Human Services: Washington, DC, USA, 1987; pp. 1–30. [Google Scholar]
- Stoilov, I.; Starcher, B.C.; Mecham, R.P.; Broekelmann, T.J. Measurement of elastin, collagen, and total protein levels in tissues. In Methods in Cell Biology; Mecham, R.P., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; Volume 143, pp. 133–146. ISBN 978-0-12-812297-6. [Google Scholar]
- Xiong, Y.L. Structure-Function Relationships of Muscle Proteins. In Food Proteins and Their Applications; CRC Press: Boca Raton, FL, USA, 2017; p. 52. ISBN 9780203755617. [Google Scholar]
- Gauza-Włodarczyk, M.; Kubisz, L.; Włodarczyk, D. Amino acid composition in determination of collagen origin and assessment of physical factors effects. Int. J. Biol. Macromol. 2017, 104, 987–991. [Google Scholar] [CrossRef]
- Nam, K.A.; You, S.G.; Kim, S.M. Molecular and physical characteristics of squid (Todarodes pacificus) skin collagens and biological properties of their enzymatic hydrolysates. J. Food Sci. 2008, 73, 249–255. [Google Scholar] [CrossRef]
- Barocas, V.H.; Ph, D.; Hubel, A. Collagen Film-Based Corneal Stroma Equivalent. Tissue Eng. 2006, 12, 1565–1575. [Google Scholar]
- Bardakova, K.N.; Grebenik, E.A.; Istranova, E.V.; Istranov, L.P.; Gerasimov, Y.V.; Grosheva, A.G.; Zharikova, T.M.; Minaev, N.V.; Shavkuta, B.S.; Dudova, D.S.; et al. Reinforced Hybrid Collagen Sponges for Tissue Engineering. Bull. Exp. Biol. Med. 2018, 165, 142–147. [Google Scholar] [CrossRef]
- Akram, A.N.; Zhang, C. Extraction of collagen-II with pepsin and ultrasound treatment from chicken sternal cartilage; physicochemical and functional properties. Ultrason. Sonochem. 2020, 64, 105053. [Google Scholar] [CrossRef] [PubMed]
- Efremov, Y.M.; Bakhchieva, N.A.; Shavkuta, B.S.; Frolova, A.A.; Kotova, S.L.; Novikov, I.A.; Akovantseva, A.A.; Avetisov, K.S.; Avetisov, S.E.; Timashev, P.S. Mechanical properties of anterior lens capsule assessed with AFM and nanoindenter in relation to human aging, pseudoexfoliation syndrome, and trypan blue staining. J. Mech. Behav. Biomed. Mater. 2020, 112, 104081. [Google Scholar] [CrossRef] [PubMed]
- Zorin, V.L.; Pulin, A.A.; Eremin, I.I.; Korsakov, I.N.; Zorina, A.I.; Khromova, N.V.; Sokova, O.I.; Kotenko, K.V.; Kopnin, P.B. Myogenic potential of human alveolar mucosa derived cells Vadim. Cell Cycle 2017, 16, 545–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.C.; Krause, D.S.; Deans, R.J.; Keating, A.; Prockop, D.J.; Horwitz, E.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef] [PubMed]
Tissue/Material | Treatment | Tensile Test Data | References | |
---|---|---|---|---|
Ultimate Tensile Strength, UTS (MPa) | Young’s Modulus (MPa) | |||
Human Skin | 27.2 ± 9.3 MPa | 98.9 ± 97 MPa | [23,29] | |
Reconstructed anterior cruciate ligament (ACL) rabbit model | Glutaraldehyde cross-linked prostheses | 26 MPa | [30] | |
Reconstructed anterior cruciate ligament (ACL) rabbit model | Carbodiimide cross-linked prostheses | 12 MPa | [30] | |
Reconstructed anterior cruciate ligament (ACL) rabbit model | Sham-operated controls | 49 ± 20 MPa | [30] | |
Human patellar tendon | 60–100 MPa | 300–400 MPa | [31] | |
Human native rotator cuff tendon | 11.5 ± 5 MPa | 50–170 MPa | [32] | |
TSPC seeded knitted silk–collagen sponge scaffold for functional shoulder repair rabbit model | TSPC seeded | Control group 5.9 ± 1 MPa; TCPC group 8.3 ± 1.5 MPa | Control group 44.3 ± 12.1 MPa; TCPC group 67.8 ± 14.6 MPa | [33] |
Human Achilles tendon | 40 ± 8 MPa | 1600 ± 200 MPa | [34] | |
Rabbit Achilles tendon | 4.5 MPa | 45 MPa | [14] | |
Human fibrocartilage | 10 MPa | [26] | ||
Human compact bone | 0.03 MPa | 15,000 MPa (Depending on type and size of the bones) | [35] | |
Human vaginal tissue | 0.82–2.62 MPa | [36] | ||
Human cornea | 3.81 ± 0.4 MPa | [37] | ||
DBP, decellularized bovine pericardium | Along 23 MPa Across 20 MPa | Along 120 MPa Across 50 MPa | [38] | |
Normal human skin (NHS) | 2.8 MPa | [39] | ||
ASC from bovine hide scaffolds by electrospinning | 0.4 MPa | [39] | ||
Un-crosslinked collagen film from bovine tendon | 10 ± 0.5 MPa | [40] | ||
Un-crosslinked collagen film from (Coll type I) | 37.7 ± 4.5 MPa | 1100 ± 100 MPa | [41] | |
Collagen films from rat tail (Coll type I) | 100 MPa | 27 MPa | [42] | |
Chitosan-AS collagen biofilms from mantle D. gigas | 33.5 ± 4 MPa | [43] | ||
Collagen fiber films from cattle skin | Dry 17.25 ± 0.07 MPa Wet 2.61 ± 0.05 MPa | [44] | ||
Fresh (non-treated) pulmonary heart valves pigs | 0.5 ± 0.2 MPa | [45] |
Name of Amino Acids | Abbreviation | Letter Code | Molecular Mass, g/mol | Residues per 1000 Residues | w% * |
---|---|---|---|---|---|
Alanine | Ala | A | 89.094 | 86.2 | 6.87 |
Arginine | Arg | R | 174.203 | 56.4 | 8.79 |
Aspartic acid | Asp | D | 133.104 | 62.9 | 7.49 |
Cysteine | Cys | C | 121.154 | 3.5 | 0.74 |
Glutamic acid | Glu | E | 147.131 | 86.4 | 11.38 |
Glycine | Gly | G | 75.067 | 330.0 | 22.18 |
Histidine | His | H | 155.156 | 7.7 | 1.07 |
Hydroxyproline | Hyp | O | 131.131 | 86.3 | 10.13 |
Hydroxylysine | Hyl | 162.187 | 10.3 | 1.5 | |
Isoleucine | Ile | I | 131.175 | 13.9 | 1.64 |
Leucine | Leu | L | 131.175 | 29.5 | 3.47 |
Lysine | Lys | K | 146.189 | 14.0 | 1.83 |
Methionine | Met | M | 149.208 | 10.4 | 1.39 |
Phenylalanine | Phe | F | 165.192 | 11.1 | 1.64 |
Proline | Pro | P | 115.132 | 91.3 | 9.4 |
Serine | Ser | S | 105.093 | 41.1 | 3.86 |
Threonine | Thr | T | 119.119 | 27.9 | 2.97 |
Tyrosine | Tyr | Y | 181.191 | 6.4 | 1.04 |
Valine | Val | V | 117.148 | 24.9 | 2.61 |
Total | 1000 | ||||
Hyp/Hyl | 8.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frolova, A.; Aksenova, N.; Novikov, I.; Maslakova, A.; Gafarova, E.; Efremov, Y.; Bikmulina, P.; Elagin, V.; Istranova, E.; Kurkov, A.; et al. A Collagen Basketweave from the Giant Squid Mantle as a Robust Scaffold for Tissue Engineering. Mar. Drugs 2021, 19, 679. https://doi.org/10.3390/md19120679
Frolova A, Aksenova N, Novikov I, Maslakova A, Gafarova E, Efremov Y, Bikmulina P, Elagin V, Istranova E, Kurkov A, et al. A Collagen Basketweave from the Giant Squid Mantle as a Robust Scaffold for Tissue Engineering. Marine Drugs. 2021; 19(12):679. https://doi.org/10.3390/md19120679
Chicago/Turabian StyleFrolova, Anastasia, Nadezhda Aksenova, Ivan Novikov, Aitsana Maslakova, Elvira Gafarova, Yuri Efremov, Polina Bikmulina, Vadim Elagin, Elena Istranova, Alexandr Kurkov, and et al. 2021. "A Collagen Basketweave from the Giant Squid Mantle as a Robust Scaffold for Tissue Engineering" Marine Drugs 19, no. 12: 679. https://doi.org/10.3390/md19120679
APA StyleFrolova, A., Aksenova, N., Novikov, I., Maslakova, A., Gafarova, E., Efremov, Y., Bikmulina, P., Elagin, V., Istranova, E., Kurkov, A., Shekhter, A., Kotova, S., Zagaynova, E., & Timashev, P. (2021). A Collagen Basketweave from the Giant Squid Mantle as a Robust Scaffold for Tissue Engineering. Marine Drugs, 19(12), 679. https://doi.org/10.3390/md19120679