Next Article in Journal
Evaluation of Ultrasound, Microwave, Ultrasound–Microwave, Hydrothermal and High Pressure Assisted Extraction Technologies for the Recovery of Phytochemicals and Antioxidants from Brown Macroalgae
Next Article in Special Issue
Botryllus schlosseri as a Unique Colonial Chordate Model for the Study and Modulation of Innate Immune Activity
Previous Article in Journal
Protective Effects of Fucoxanthin on Hydrogen Peroxide-Induced Calcification of Heart Valve Interstitial Cells
Previous Article in Special Issue
Diversity, Bioactivity Profiling and Untargeted Metabolomics of the Cultivable Gut Microbiota of Ciona intestinalis
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Marine Natural Products from Tunicates and Their Associated Microbes

1
Biological Oceanography Division (BOD), CSIR-National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, India
2
Department of Ocean Studies and Marine Biology, Pondicherry Central University, Brookshabad Campus, Port Blair 744102, India
3
Zoology Division, Sri Gurajada Appa Rao Government Degree College, Yellamanchili 531055, India
4
Chemical Oceanography Division (COD), CSIR-National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, India
5
Laboratoire de Chimie et Biotechnologie des Produits Naturels (CHEMBIOPRO), Université de La Réunion, ESIROI Agroalimentaire, 15 Avenue René Cassin, CS 92003, CEDEX 9, F-97744 Saint-Denis, Ile de La Réunion, France
*
Authors to whom correspondence should be addressed.
Mar. Drugs 2021, 19(6), 308; https://doi.org/10.3390/md19060308
Submission received: 4 May 2021 / Revised: 22 May 2021 / Accepted: 24 May 2021 / Published: 26 May 2021

Abstract

:
Marine tunicates are identified as a potential source of marine natural products (MNPs), demonstrating a wide range of biological properties, like antimicrobial and anticancer activities. The symbiotic relationship between tunicates and specific microbial groups has revealed the acquisition of microbial compounds by tunicates for defensive purpose. For instance, yellow pigmented compounds, “tambjamines”, produced by the tunicate, Sigillina signifera (Sluiter, 1909), primarily originated from their bacterial symbionts, which are involved in their chemical defense function, indicating the ecological role of symbiotic microbial association with tunicates. This review has garnered comprehensive literature on MNPs produced by tunicates and their symbiotic microbionts. Various sections covered in this review include tunicates’ ecological functions, biological activities, such as antimicrobial, antitumor, and anticancer activities, metabolic origins, utilization of invasive tunicates, and research gaps. Apart from the literature content, 20 different chemical databases were explored to identify tunicates-derived MNPs. In addition, the management and exploitation of tunicate resources in the global oceans are detailed for their ecological and biotechnological implications.

Graphical Abstract

1. Introduction

Tunicates and sea squirts are soft-bodied solitary or colonial (60%) sessile marine organisms belonging to the family Ascidiacea under the subphylum Urochordata, phylum Chordata [1,2]. These organisms are hermaphroditic, filter feeders, and appear in different body colors, such as translucent to blue, green, yellow, red, and brown, with a life span ranging from two months to one year [1,2,3,4]. Currently, tunicates are classified into four major clades such as (a) Appendicularia, (b) Thaliacea + Phlebobranchia + Aplousobranchia, (c) Molgulidae, and (d) Styelidae + Pyuridae, on the basis of the phylogenomic transcriptomic approach [5]. Globally, around 2815 tunicate species have been recorded from shallow coastal waters to deep waters [1]. Tunicate larvae resemble tadpole larvae of members of Chordata, but soon after the retrogressive metamorphosis, they lose the notochord and post-anal tail; thus, these organisms are often referred to as the “evolutionary connecting link” between invertebrates and chordates [6,7]. Therefore, tunicates are considered as important model organisms for several research aspects, such as evolution [6], development biology [8,9], invasion success [10], and bioactive compounds.
Tunicates are prolific producers of marine natural products (MNPs), and certain species are also known to release toxins, such as Bistramide A [11,12]. However, a few species, like Halocynthia roretzi and Pyura michaelseni, are eaten in southeast Asian countries like Korea [13,14]. The strong immune defensive system [15] and their associated symbiotic microbes with bioactive properties [16], makes tunicates highly preferential drug resources in the ocean [15,17]. Since the majority of the tunicate species are known to produce MNP’s, attempts are being undertaken in the culturing of these tunicates (e.g., mangrove tunicate Ecteinascidia turbinata) in large scale for various applications [18,19]. The process of accumulation of vanadium by vanadocytes of tunicates from seawater is well-known [20]. In contrast, investigations on the acquisition of MNPs by tunicates from their symbiotic bacteria are very limited, except for the antitumor products ecteinascidins [21,22], didemnin [23], and talaropeptides [24]. A recent review highlighted the association of bacteria, actinomycetes, fungi, and cyanobacteria with the tunicates and their bioactive nature [25]. It was also observed that actinomycetes, fungi, and bacteria are the predominant microbes associated with the tunicates, showing cytotoxic and antimicrobial activities [26], with the production of alkaloids as the major source of MNPs [27]. In this context, this review aimed to provide the chemical profiles of various tunicates and their associated microbes for biotechnological and drug development applications.

2. Ecological Importance of Tunicates

The tunicates population plays an important role in the marine food web through filter feeding [4]. Earlier studies have suggested that phytoplankton productivity in a shallow fjord is controlled by the tunicates population [28]. Tunicates are known to trap the sinking particulate organic matter and generate mucus rich organic matter and fecal pellets with carbohydrates and minerals [29,30], thereby triggering the downward biogeochemical flux (e.g., carbon flux) patterns from surface to deep waters [29,31,32]. Some obligate photosymbiotic tunicates have been suggested to act as environmental stress indicators [33]. The unknown ecological functions of a few tunicate MNPs [34] in understanding their ecological role is yet to be understood.

3. Database Search on Tunicate MNPs

Twenty different public chemical databases such as BIAdb, BindingDB, ChemDB, ChEMBL, ChemSpider, DrugBank, HIT, HMDB, KEGG, NCI, NPACT, PDB-Bind, PDBeChem, PharmaGKB, PubChem, SMPDB, SuperDrug, TTD, UNIProt, and ZINC were explored to identify the tunicate-originated MNPs deposited in these databases. The chemical constituents identified from these databases using the search keywords “tunicate and ascidian” are listed in Table 1.

4. Profile of MNPs from Tunicates and Associated Microbes

Tunicates are known to produce a wide range of MNPs with various bioactive properties (Table 2 and Table 3). These organisms are considered as a rich source of cellulose, which varies with different species [35]. Alkaloids and peptides are the major chemical constituents observed in tunicates [36]. Metabolites originated from tunicate hemocytes are also found to be cytotoxic to foreign particles [37] and various cell lines [38]. Microorganisms associated with the invertebrate hosts have also been identified as a source of bioactive metabolites [39]. In fact, bioactive metabolite-producing invertebrate-associated microorganisms have special implications in solving the “supply problem” in the initial steps of drug discovery [40]. Recently, Chen et al. reviewed the biological and chemical diversity of ascidian-associated microorganisms [41].
Microbes associated with tunicates have been found to produce potential metabolites showing antimicrobial and anticancer activities (Figure 1, Figure 2 and Figure 3 and Table 3). Tunicate-associated bacteria such as Bacillus, Pantoea, Pseudoalteromonas, Salinicola, Streptomyces, Vibrio and Virgibacillus have recently been identified with potential antimicrobial activities [16]. The introduced tunicate species are also reported to harbor diverse host-specific microbial populations [49] that produce species-specific metabolites [50]. In general, tunicate associated bacteria and fungi are known to produce a variety of MNPs with various biological properties [41]. The chemistry of yellow pigment-producing parasitic bacteria in the interstitial and blood-filled spaces of planktonic tunicates, Oikopleura vanhoeffeni and Oikopleura dioica, are yet to be characterized [51].

5. Antimicrobial Applications

Tunicates [123], with their associated epi-symbionts [16,124] and endosymbionts [125], are prolific producers of antimicrobial and antifungal compounds inhibiting pathogens. The brominated alkaloids [126] and other compounds from tunicates have been reported to possess several biological activities [25,26]. Pseudoalteromonas tunicata produces alkaloid tambjamine (425 nm), an antifungal yellow pigment [127,128], and violacein (575 nm), a purple pigment with antiprotozoal activity [129,130], in addition to a range of bioactive compounds [129,131]. Methanol extraction of Lissoclinum fragile displayed antibacterial, antifungal, hemolytic, and cytotoxic activities [92]. The kuanoniamine A metabolite produced by Eusynstyela tincta inhibited pathogenic bacteria such as B. subtilis, E. coli, S. aureus, V. cholerae, and V. parahaemolyticus and fungi A. fumigatus and C. albicans [88]. A diffusible 190-kDa protein produced by tunicate Ciona intestinalis associated bacterium Pseudoalteromonas tunicata was found to show antibacterial activity against marine isolates [132]. The four α-helical peptides “clavanins A, B, C, and D” isolated from the hemocytes of tunicate Styela clava showed antibacterial activity against pathogenic Listeria monocytogenes strain EGD and antifungal activity against Candida albicans [44]. Halocidin, an antimicrobial peptide purified from tunicate Halocynthia aurantium showed antibacterial activity against methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa [47]. Similarly, halocyntin and papillosin peptides isolated from tunicate Halocynthia papillosa also displayed antibacterial activity against both Gram-positive and Gram-negative marine bacteria [46]. Halocyamine peptides synthesized by the hemocytes of Halocynthia roretzi showed antimicrobial activity against various bacteria and yeasts [90]. Similarly, Halocyamines produced by Styela clava also displayed antimicrobial properties [108]. A salt-tolerant peptide isolated from hemocytes of Ciona intestinalis showed both antibacterial and antifungal activity [133]. Vanadium chloride and vanadyl sulfate also displayed antibacterial activity against various pathogens [95].
An endobiont, Streptomyces sp., isolated from the tunicate, Styela canopus, produced antibacterial compounds such as granaticin, granatomycin D, and dihydrogranaticin B [121]. Similarly endosymbiotic fungi associated with the tunicates, Polycarpa aurata [134] and Rhopalaea crassa [135], showed antimicrobial activity. The fungi Talaromyces sp., isolated from an unidentified tunicate, produced talaropeptides A and B, two antibacterial metabolites that inhibited Gram-positive bacteria, Bacillus subtilis [24]. The endophytic fungus Penicillium sp. isolated from Didemnum sp. produced antifungal and cytotoxic compounds, terretrione C and D [136].
Some tunicates produced antiviral molecules, indicating their chemical defense function against environmental viruses. The Caribbean tunicate, Trididemnum sp., was found to produce depsipeptides, particularly didemnin A and B, exhibiting antiviral activity against DNA and RNA viruses in vitro [111,137]. Another species of Caribbean tunicate, Eudistoma olivaceum, produced prolific MNPs, such as eudistomins A, D, G, H, I, J, M, N, O, P, and Q, which possessed antiviral activity [83]. The ascidian Didemnum guttatum was found to produce the cyclodidemniserinol trisulfate compound that showed anti-retroviral activity by inhibiting HIV-1 integrase [72]. The tunicate, Didemnum molle, released lanthipeptide divamide A that promised to be a potential anti-HIV drug [74] (Table 4).

6. Anticancer and Antitumor Applications

Trabectedin (Ecteinascidin; ET-743; Yondelis®), an alkaloid extracted from the orange tunicate, Ecteinascidia turbinata, is approved as a first anticancer drug [138] to treat breast cancer [139,140], soft tissue sarcoma [141], and ovarian cancer [142,143,144]. This molecule is suggested to originate from E. turbinata symbiotic bacteria, Candidatus Endoecteinascidia frumentensis [145]. However, plitidepsin (Aplidin®), a depsipeptide isolated from the Mediterranean tunicate, Aplidium albicans, is in phase II clinical trials [138,146] as an anticancer drug against breast cancer [147], human kidney carcinoma cells [52], and multiple myeloma [53]. Didemnin B is also in phase II trials [148], showing anticancer activity against leukaemia P388 cells [111]. Significantly, 60% of the human cervical carcinoma cell lines (HeLa) were inhibited by Eudistomins H extracts (IC50 0.49 μg/mL) obtained from E. viride [86]. Clavepictine A and B alkaloids originated from Clavelina picta demonstrated potential cytotoxic activity (IC50 12 μg/mL) against murine leukemia and human solid tumor cell lines [62]. Lamellarin sulfates originated from Didemnum ternerratum [78] and polycarpine dihydrochloride, a disulfide alkaloid extracted from an ascidian Polycarpa clavata, were found to inhibit human colon tumor cell lines [97].
Cystodytins A, B, and C, three teracyclic alkaloids isolated from Okinawa tunicate Cystodytes dellechiajei, were reported to show antitumor activities [64]. Macrolides isolated from tunicates Lissoclinum patella (Patellazole C) [94] and Eudistoma cf. rigida (Lejimalides A, B, C, and D) [149,150] possessed anticancer activity [151]. Diplamine, an orange pigment alkaloid produced by Diplosoma sp., demonstrated cytotoxic activity against leukemia cells [79]. Halocyamine A and B peptides extracted from H. roretzi showed anticancer activity against various cell lines [90]. A depsipeptide, dehydrodidemnin B, produced by Aplidium albicans inhibited Ehrlich carcinoma cells in mice and reduced 80–90% tumor cells [54]. Bryostatins Ecteinascidins products, such as ET-729, 743, 745, 759 A, 759B, and 770, extracted from the Caribbean tunicate Ecteinascidia turbinata showed immunomodulator activity and antitumor activity against various leukemia cells [152] and breast, lung, ovary, and melanoma cells [153]. The Brazilian ascidian, Didemnum granulatum, produced G2 checkpoint-inhibiting aromatic alkaloids, granulatimide and isogranulatimide [154]. The ascidian Cystodytes dellechiajei produced topoisomerase II-inhibiting ascididemin, which has antitumor activity against various tumor cell lines [66]. This marine alkaloid exhibits marked cytotoxic activities against a range of tumor cells. The kuanoniamine A metabolite extracted from E. tincta displayed 100% inhibition of Dalton’s lymphoma and Ehrlich ascites tumor cell lines [88]. Cynthichlorine, an alkaloid isolated from the tunicate Cynthia savignyi, showed cytotoxicity against Artemia salina larva at an LD50 of 48.5 μg/mL [63]. Siladenoserinols A and B derivatives isolated from didemnid tunicates possessed antitumor activity by inhibiting the interaction of p53-Hdm2 [69] (Table 4).

7. Antifouling and Anti-Deterrent Activities

The colonial tunicate, Eudistoma olivaceum, was found to produce brominated alkaloids, Eudistomins G and H, which acted as antifouling substances and fish antifeedants; thus, the E. olivaceum surface was completely free from fouling epibionts [34]. A dark green pigmented bacteria, Pseudoalteromonas tunicata, isolated from the surface of Ciona intestinalis, collected originally from off the west coast of Sweden, showed antifouling activity against algal spores, invertebrate larvae, and diatoms [131,155,156]. The yellow pigmented Pseudoalteromonas tunicata mutants have demonstrated antifouling activity against algal spore germination, bacterial growth, fungal growth, and invertebrate larvae [129]. Diindol-3-ylmethane products isolated from an unidentified ascidian-associated bacteria, Pseudovibrio denitrificans, displayed nearly 50% antifouling activity against barnacle Balanus amphitrite and bryozoan Bugula neritina [118].
Deterring activity of vanadium acidic solutions, such as vanadyl sulfate and sodium vanadate, was observed against Thalassoma bifasciatum when incorporated into food pellets [95,157]. Didemnimides C and D from Didemnum conchyliatum [158], nordidemnin B [102] and didemnin B [159] from Trididemnum solidum, and granulatamides from Didemnum granulatum [73] displayed antifeedant effects on various fishes in laboratory experiments. The kuanoniamine A molecule from E. tincta displayed feeding-deterrent activities against carnivore gold fish, Carassius auratus [88]. MNPs isolated from Antarctic tunicates have demonstrated variability in anti-deterrent activities [58]. Both the yellow pigmented tambjamine metabolites and blue tetrapyrrole metabolite released from Sigillina sp. (i.e., Atapozoa sp.) showed feeding-deterrent activity against various carnivore fishes [59,160]. The blue tetrapyrrole pigment was suggested to originate from the associated bacteria Serratia marcescens [120]. Tambjamines and tetrapyrrole chemical constituents from both adult and larvae were reported to function as defensive chemicals against predators [102]. Lipophilic crude extracts from Antarctic tunicate, Distaplia cylindrica [161], and polyandrocarpidines from Polyandrocarpa sp. [101,102] demonstrated deterrent activity against certain sea-stars, hermit crabs, and snails (Table 4).

8. Miscellaneous Applications

The chiton Mopalia sp. spawned when injected with 1.0 mg/L of gonadotropin releasing hormone (GnRH2) of a tunicate [48]. Lumichrome, a compound extracted from tunic, gonads, and eggs of ascidian, Halocynthia roretzi, was involved in the larval metamorphosis [89]. Similarly, sperm-activating and attracting factors (SAAF) were isolated from eggs of the ascidians Ciona intestinalis and Ascidia sydneiensis [162]. Lipids extracted from H. roretzi have demonstrated the antidiabetic and anti-obese properties in mice models [163]. Two novel alkaloids, mellpaladine and dopargimine, isolated from Palauan tunicate have demonstrated neuroactive behavior in mice [68]. Two new alkaloids, polyaurines A and B, isolated from the tunicate, Polycarpa aurata, inhibited blood-dwelling Schistosoma mansoni [96]. Lepadin and villatamine alakaloids isolated from Clavelina lepadiformis [61] and lepadins from Didemnum sp. [71] displayed potential antiparasitic and cytotoxic activities. The ascidian species, Didemnum psammathodes, collected from the central west coast of India was extracted in organic solvents. These extracts showed antimicrobial and antifouling properties [164].

9. Issues in Extraction & Identification of Tunicate MNPs

Marine organisms have developed diverse secondary metabolic pathways, which produce a vast number of unusual chemical moieties. These compounds belong to a wide variety of chemical classes, including terpenes, shikimates, polyketides, peptides, alkaloids, and many unidentified and uncharacterized structures (Houssen and Jaspars, 2012). There are several technologies in place to isolate and characterize the natural products from even a very small quantity of marine organisms. However, there are still hurdles in the isolation and characterization of bioactive molecules from ascidians. These include 1. taxonomic uncertainty: worldwide, there are very few taxonomists available for proper taxonomic assignments of tunicates. Sometimes the identification using molecular tools has been complicated by the difficulty in getting pure gDNA from the target species due to complex biotic associations (Houssen amd Jaspars, 2012). 2. Quantity of isolated molecules: most of the time, a small quantity of metabolites is available in the organisms, which is not even sufficient for spectroscopic analysis. 3. Instability of molecules: there are extremely labile compounds in the extracts, which decompose during the purification process, and we get artefacts. Of course, these problems are common in other marine invertebrates as well. Research funding has also become a hurdle for many young researchers; thus, many researchers are publishing their works with crude extracts instead of analyzing complete structural elucidation. If we could address these issues, we will be able to isolate and characterize novel bioactive molecules from this unique group of marine invertebrates. The quantity of molecules can be increased if we collect the target tunicate species at the right time (season) from the correct geographic location. This can be achieved by understanding the chemical ecology of the producing species. For this purpose, there should be joint efforts from marine biologists, ecologists, and natural product chemists.

10. Metabolic Origin of Some Tunicates and Their Predators

Several bioactive MNPs extracted from tunicates were believed to be originated from tunicates themselves. However, few studies have investigated the original origin of tunicate MNPs from their symbiotic microbes. Tambjamine pigments have been reported to be originated from tunicate-associated symbiotic bacteria like S. marcescens [160] and Pseudoalteromonas tunicata [116,131]. An identical dark blue pigmented tetrapyrrole compound isolated from an ascidian was observed from a bacterium [165]. The blue tetrapyrrole pigment was reported to have originated from the associated bacteria, Serratia marcescens [120]. Didemnins extracted from the tunicate, T. solidum [111], are found to be released by associated bacteria, Tistrella mobilis and Tistrella bauzanensis [23,122]. Similarly, the trabectedin compound identified from the Caribbean tunicate, E. turbinata [152,166], has now been observed to be produced by its symbiotic bacteria, Candidatus Endoecteinascidia frumentensis [145]. Meridianins isolated from Antarctic tunicates, Aplidium, Synoicum, and some sponges, are thought to have originated from their symbiotic microbes [58]. Similarly, tetrahydroisoquinoline constituents identified from the tunicate, Ecteinascidia turbinata, appeared to be released by the unculturable endosymbiotic bacterium, Candidatus Endoecteinascidia frumentensis [113]. Some of the bioactive MNPs identified from Didemnid tunicates also originated from their symbiotic cyanobacterial species, such as Synechocystis and Prochloron [167,168]. Namenamicin produced by the orange color ascidian, Polysyncraton lithostrotum, was suggested to originate from its symbiotic bacterium, Micromonospora species [100]. The anti-HIV lanthipeptide, divamide A, isolated from the tunicate, Didemnum molle, was found to be produced by uncultivable symbiotic bacteria [74].
Tunicates are known to produce more than 300 alkaloid compounds [126]. The tunicate predatory flatworm Prostheceraeus villatus was reported to obtain alkaloids, lepadins, and villatamines by preying (dietary origin) on the tunicate, Clavelina lepadiformis [61]. Likewise, tambjamine alkaloids observed in the ascidian Atapozoa sp. [160] and associated bacteria [131] were found to be acquired by the predatory nudibranchs, like Nembrotha sp., for defense functions [59,169]. Pyridoacridine metabolites observed in ascidians and some sponges indicate a possible microbial origin or convergent evolution of these molecules [170].

11. Utilization of Invasive Tunicates Resources

Tunicates usually occur in relatively low abundance in coastal waters. However, some tunicates are reported as invasive species in some coastal waters [171] and are known to cause space competition [172], damage to aquaculture [173,174] by harboring pathogenic viruses and bacteria [175], and ecosystem alteration within the spread area [176]. Few non-invasive tunicate species of the coral reef environment have also been reported to overgrow on massive corals and caused minimal [112] or partial inhibition or delayed development of coral polyps [177]. A study reported the outbreak of the invasive tunicate, Diplosoma similis, that overgrew on corals and macrophytes and resulted in 50% mortality of corals [178] (Table 5).
Therefore, such overwhelming invasive species may be utilized to investigate their biological properties, biotechnological implications, and drug development. The exploitation of antiviral and cytotoxic didemnins from the invasive tunicate, T. solidum, has already been investigated [111,112]. Antimicrobial activity of α-helical peptides “Clavanins” was identified from the hemocytes of the tunicate, Styela clava [44]. Thus, other invasive species need to be investigated for their bioactive properties. Seasonal studies on the spread of various invasive tunicates and their biomass estimations are an important research aspect for resource management and coastal conservation. A study suggested that ocean warming is triggering the rise of invasive species in coastal waters [185]. Therefore, identifying the key ocean-warming factors and their mitigation strategies is essential for a sustainable management of the global ocean bioresources.

12. Research Gaps and Future Perspective

Tunicates have been an important marine drug reservoir to treat a variety of diseases, including cancer. These resources from the ocean, particularly from the deep-sea, remain untapped for drug discovery. Therefore, exploration and exploitation of tunicate resources from coastal waters to the deep-sea and tropical to polar regions would open new insights in the drug discovery and evolutionary lineages. However, these efforts should be driven by chemical ecology of these organisms. The study of chemical ecology will help in bioprospecting and the efficient production of marine drugs from this unique group of organisms. On the other hand, the mode of colonization and pigment biosynthesis by associated microbes and the acquisition mechanism of pigments (e.g., tambjamines) by tunicates from their associated microbes are yet to be unveiled. Since tunicates have been reported to be colonized by pathogenic bacteria during filter feeding, the pathological implications of tunicates needs to be investigated to understand the possible transfer ways of pathogenic bacteria from tunicates to other biota and aquaculture setups. Therefore, regular biodiversity monitoring and population dynamics of tunicate resources should be performed to understand their distribution patterns and impact on the coastal resources.

Author Contributions

Conceptualization, C.R., L.D., B.R.T. and M.R.; writing—original draft preparation, C.R., B.R.T., M.R., N.T. and L.D.; writing—review and editing, C.R., B.R.T., M.R., N.T. and L.D.; visualization, C.R. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by CSIR-NIO under the project OLP2005.

Acknowledgments

The authors, C.R. and N.T., thank the Director, CSIR-NIO for the institutional support. This is the NIO’s contribution number: 6741. Laurent Dufossé is indebted to the Conseil Régional de Bretagne, Conseil Régional de La Réunion, and the European Union for continuous support in the development of biotechnology research programs.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Shenkar, N.; Swalla, B.J. Global diversity of Ascidiacea. PLoS ONE 2011, 6, e20657. [Google Scholar] [CrossRef]
  2. Holland, L.Z. Tunicates. Curr. Biol. 2016, 26, R141–R156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  3. Gasparini, F.; Ballarin, L. Reproduction in Tunicates. In Encyclopedia of Reproduction, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; Volume 6, pp. 546–553. [Google Scholar]
  4. Bone, Q.; Carré, C.; Chang, P. Tunicate feeding filters. J. Mar. Biol. Assoc. UK 2003, 83, 907–919. [Google Scholar] [CrossRef]
  5. Delsuc, F.; Philippe, H.; Tsagkogeorga, G.; Simion, P.; Tilak, M.K.; Turon, X.; López-Legentil, S.; Piette, J.; Lemaire, P.; Douzery, E.J.P. A phylogenomic framework and timescale for comparative studies of tunicates. BMC Biol. 2018, 16, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  6. Berna, L.; Alvarez-Valin, F. Evolutionary genomics of fast evolving tunicates. Genome Biol. Evol. 2014, 6, 1724–1738. [Google Scholar] [CrossRef] [Green Version]
  7. Swalla, B.J. Building divergent body plans with similar genetic pathways. Heredity 2006, 97, 235–243. [Google Scholar] [CrossRef] [PubMed]
  8. Jeffery, W.R. Tunicates: Models for Chordate Evolution and Development at Low Genomic Complexity. In Comparative Genomics; Clark, M.S., Ed.; Springer Science + Business Media: New York, NY, USA, 2000; pp. 43–69. [Google Scholar]
  9. Lemaire, P. Evolutionary crossroads in developmental biology: The tunicates. Development 2011, 138, 2143–2152. [Google Scholar] [CrossRef] [Green Version]
  10. Zhan, A.; Briski, E.; Bock, D.G.; Ghabooli, S.; MacIsaac, H.J. Ascidians as models for studying invasion success. Mar. Biol. 2015, 162, 2449–2470. [Google Scholar] [CrossRef]
  11. Watters, D.J. Ascidian toxins with potential for drug development. Mar. Drugs 2018, 16, 162. [Google Scholar] [CrossRef] [Green Version]
  12. Gouiffes, D.; Juge, M.; Grimaud, N.; Welin, L.; Sauviat, M.P.; Barbin, Y.; Laurent, D.; Roussakis, C.; Henichart, J.P.; Verbist, J.F. Bistramide A, a new toxin from the urochordata Lissoclinum bistratum Sluiter: Isolation and preliminary characterization. Toxicon 1988, 26, 1129–1136. [Google Scholar] [CrossRef]
  13. Oh, K.-S.; Kim, J.-S.; Heu, M.-S. Food Constituents of Edible Ascidians Halocynthia roretzi and Pyura michaelseni. Korean J. Food Sci. Technol. 1997, 29, 955–962. [Google Scholar]
  14. Ali, A.J.H.; Tamilselvi, M. Ascidians in Coastal Water: A Comprehensive Inventory of Ascidian Fauna from the Indian Coast; Springer Nature: Cham, Switzerland, 2016; ISBN 9783319291185. [Google Scholar]
  15. DeFilippo, J.; Beck, G. Tunicate Immunology. In Reference Module in Life Sciences; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–10. [Google Scholar]
  16. Ayuningrum, D.; Liu, Y.; Riyanti; Sibero, M.T.; Kristiana, R.; Asagabaldan, M.A.; Wuisan, Z.G.; Trianto, A.; Radjasa, O.K.; Sabdono, A.; et al. Tunicate-associated bacteria show a great potential for the discovery of antimicrobial compounds. PLoS ONE 2019, 14, e0213797. [Google Scholar] [CrossRef]
  17. Franchi, N.; Ballarin, L. Immunity in protochordates: The tunicate perspective. Front. Immunol. 2017, 8, 674. [Google Scholar] [CrossRef] [PubMed]
  18. Walters, T.L.; Gibson, D.M.; Frischer, M.E. Cultivation of the marine pelagic tunicate Dlioletta gegenbauri (Uljanin 1884) for experimental studies. J. Vis. Exp. 2019, 150, e59832. [Google Scholar] [CrossRef]
  19. Fusetani, N. Drugs from the Sea; Krager: Basel, Switzerland, 2000. [Google Scholar]
  20. Michibara, H.; Uyama, T.; Ueki, T.; Kanamori, K. The mechanism of accumulation and reduction of vanadium by ascidians. In The Biology of Ascidians; Sawada, H., Yokosawa, H., Lambert, C.C., Eds.; Springer: Tokyo, Japan, 2001; pp. 363–373. [Google Scholar]
  21. Shen, G.Q.; Baker, B.J. Biosynthetic studies of the eudistomins in the tunicate Eudistoma olivaceum. Tetrahedron Lett. 1994, 35, 1141–1144. [Google Scholar] [CrossRef]
  22. Le, V.H.; Inai, M.; Williams, R.M.; Kan, T. Ecteinascidins. A review of the chemistry, biology and clinical utility of potent tetrahydroisoquinoline antitumor antibiotics. Nat. Prod. Rep. 2015, 32, 328–347. [Google Scholar] [CrossRef] [Green Version]
  23. Xu, Y.; Kersten, R.D.; Nam, S.J.; Lu, L.; Al-Suwailem, A.M.; Zheng, H.; Fenical, W.; Dorrestein, P.C.; Moore, B.S.; Qian, P.Y. Bacterial biosynthesis and maturation of the didemnin anti-cancer agents. J. Am. Chem. Soc. 2012, 134, 8625–8632. [Google Scholar] [CrossRef] [Green Version]
  24. Dewapriya, P.; Khalil, Z.G.; Prasad, P.; Salim, A.A.; Cruz-Morales, P.; Marcellin, E.; Capon, R.J. Talaropeptides A-D: Structure and biosynthesis of extensively N-methylated linear peptides from an Australian marine tunicate-derived Talaromyces sp. Front. Chem. 2018, 6, 394. [Google Scholar] [CrossRef]
  25. Dou, X.; Dong, B. Origins and bioactivities of natural compounds derived from marine ascidians and their symbionts. Mar. Drugs 2019, 17, 670. [Google Scholar] [CrossRef] [Green Version]
  26. Casertano, M.; Menna, M.; Imperatore, C. The ascidian-derived metabolites with antimicrobial properties. Antibiotics 2020, 9, 510. [Google Scholar] [CrossRef]
  27. Palanisamy, S.K.; Rajendran, N.M.; Marino, A. Natural products diversity of marine ascidians (Tunicates; Ascidiacea) and successful drugs in clinical development. Nat. Prod. Bioprospect. 2017, 7, 1–111. [Google Scholar] [CrossRef] [Green Version]
  28. Petersen, J.K.; Riisgard, H.U. Filtration capacity of the ascidian Ciona intestinalis and its grazing impact in a shallow fjord. Mar. Ecol. Prog. Ser. 1992, 88, 9–17. [Google Scholar] [CrossRef]
  29. Morris, R.J.; Bone, Q.; Head, R.; Braconnot, J.C.; Nival, P. Role of salps in the flux of organic matter to the bottom of the Ligurian Sea. Mar. Biol. 1988, 97, 237–241. [Google Scholar] [CrossRef]
  30. Pomeroy, L.R.; Deibel, D. Aggregation of organic matter by pelagic tunicates. Limnol. Oceanogr. 1980, 25, 643–652. [Google Scholar] [CrossRef]
  31. Gorsky, G.; Da Silva, N.L.; Dallot, S.; Laval, P.; Braconnot, J.C.; Prieur, L. Midwater tunicates: Are they related to the permanent front of the Ligurian Sea (NW Mediterranean)? Mar. Ecol. Prog. Ser. 1991, 74, 195–204. [Google Scholar] [CrossRef]
  32. Sutherland, K.R.; Madin, L.P.; Stocker, R. Filtration of submicrometer particles by pelagic tunicates. Proc. Natl. Acad. Sci. USA 2010, 107, 15129–15134. [Google Scholar] [CrossRef] [Green Version]
  33. Hirose, E.; Nozawa, Y. Latitudinal difference in the species richness of photosymbiotic ascidians along the east coast of Taiwan. Zool. Stud. 2020, 59, e19. [Google Scholar] [CrossRef] [PubMed]
  34. Davis, A.R. Alkaloids and ascidian chemical defense: Evidence for the ecological role of natural products from Eudistoma olivaceum. Mar. Biol. 1991, 111, 375–379. [Google Scholar] [CrossRef]
  35. Zhao, Y.; Li, J. Excellent chemical and material cellulose from tunicates: Diversity in cellulose production yield and chemical and morphological structures from different tunicate species. Cellulose 2014, 21, 3427–3441. [Google Scholar] [CrossRef]
  36. Menna, M.; Aiello, A. The Chemistry of Marine Tunicates. In Handbook of Marine Natural Products; Fattorusso, E., Gerwick, W.H., Taglialatela-Scafati, O., Eds.; Springer Science + Business Media B.V.: Berlin/Heidelberg, Germany, 2012; pp. 295–385. [Google Scholar]
  37. Franchi, N.; Ballarin, L. Cytotoxic cells of compound Ascidians. In Lessons in Immunity: From Single-Cell Organisms to Mammals; Ballarin, L., Cammarata, M., Eds.; Elsevier Inc.: London, UK, 2016; pp. 193–199. [Google Scholar]
  38. Parrinello, N. Cytotoxic activity of tunicate hemocytes. In Invertebrate Immunology; Rinkevich, B., Müller, W.E.G., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 190–217. [Google Scholar]
  39. Liu, L.; Zheng, Y.-Y.; Shao, C.-L.; Wang, C.-Y. Metabolites from marine invertebrates and their symbiotic microorganisms: Molecular diversity discovery, mining, and application. Mar. Life Sci. Technol. 2019, 1, 60–94. [Google Scholar] [CrossRef] [Green Version]
  40. Leal, M.C.; Sheridan, C.; Osinga, R.; Dionísio, G.; Rocha, R.; Silva, B.; Rosa, R.; Calado, C. Marine Microorganism-Invertebrate Assemblages: Perspectives to Solve the “Supply Problem” in the Initial Steps of Drug Discovery. Mar. Drugs 2014, 12, 3929–3952. [Google Scholar] [CrossRef] [Green Version]
  41. Chen, L.; Hu, J.S.; Xu, J.L.; Shao, C.L.; Wang, G.Y. Biological and chemical diversity of ascidian-associated microorganisms. Mar. Drugs 2018, 16, 362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  42. Oltz, E.M.; Smith, M.J.; Nakanishi, K.; Bruening, R.C.; Kustin, K. The tunichromes. A class of reducing blood pigments from sea squirts: Isolation, structures, and vanadium chemistry. J. Am. Chem. Soc. 1988, 110, 6162–6172. [Google Scholar] [CrossRef] [PubMed]
  43. Kustin, K.; Robinson, W.E.; Smith, M.J. Tunichromes, vanadium, and vacuolated blood cells in tunicates. Invertebr. Reprod. Dev. 1990, 17, 129–139. [Google Scholar] [CrossRef]
  44. Lee, I.H.; Zhao, C.; Cho, Y.; Harwig, S.S.L.; Cooper, E.L.; Lehrer, R.I. Clavanins, α-helical antimicrobial peptides from tunicate hemocytes. FEBS Lett. 1997, 400, 158–162. [Google Scholar] [CrossRef] [Green Version]
  45. Cima, F.; Franchi, N.; Ballarin, L. Origin and functions of tunicate hemocytes. In The Evolution of the Immune System: Conservation and Diversification; Malagoli, D., Ed.; Academic Press: London, UK, 2016; pp. 29–49. ISBN 9780128020135. [Google Scholar]
  46. Galinier, R.; Roger, E.; Sautiere, P.E.; Aumelas, A.; Banaigs, B.; Mitta, G. Halocyntin and papillosin, two new antimicrobial peptides isolated from hemocytes of the solitary tunicate, Halocynthia papillosa. J. Pept. Sci. 2009, 15, 48–55. [Google Scholar] [CrossRef] [PubMed]
  47. Jang, W.S.; Kim, K.N.; Lee, Y.S.; Nam, M.H.; Lee, I.H. Halocidin: A new antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium. FEBS Lett. 2002, 521, 81–86. [Google Scholar] [CrossRef] [Green Version]
  48. Gorbman, A.; Whiteley, A.; Kavanaugh, S. Pheromonal stimulation of spawning release of gametes by gonadotropin releasing hormone in the chiton, Mopalia sp. Gen. Comp. Endocrinol. 2003, 131, 62–65. [Google Scholar] [CrossRef]
  49. Evans, J.S.; Erwin, P.M.; Shenkar, N.; López-Legentil, S. Introduced ascidians harbor highly diverse and host-specific symbiotic microbial assemblages. Sci. Rep. 2017, 7, 11033. [Google Scholar] [CrossRef] [Green Version]
  50. Tianero, M.D.B.; Kwan, J.C.; Wyche, T.P.; Presson, A.P.; Koch, M.; Barrows, L.R.; Bugni, T.S.; Schmidt, E.W. Species specificity of symbiosis and secondary metabolism in ascidians. ISME J. 2015, 9, 615–628. [Google Scholar] [CrossRef] [Green Version]
  51. Flood, P. Yellow-stained oikopleurid appendicularians are caused by bacterial parasitism. Mar. Ecol. Prog. Ser. 1991, 71, 291–295. [Google Scholar] [CrossRef]
  52. Cuadrado, A.; García-Fernández, L.F.; González, L.; Suárez, Y.; Losada, A.; Alcaide, V.; Martínez, T.; Máa Fernández-Sousa, J.; Sánchez-Puelles, J.M.; Muñoz, A. AplidinTM induces apoptosis in human cancer cells via glutathione depletion and sustained activation of the epidermal growth factor receptor, Src, JNK, and p38 MAPK. J. Biol. Chem. 2003, 278, 241–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  53. Mitsiades, C.S.; Ocio, E.M.; Pandiella, A.; Maiso, P.; Gajate, C.; Garayoa, M.; Vilanova, D.; Montero, J.C.; Mitsiades, N.; McMullan, C.J.; et al. Aplidin, a marine organism-derived compound with potent antimyeloma activity in vitro and in vivo. Cancer Res. 2008. [Google Scholar] [CrossRef] [Green Version]
  54. Urdiales, J.L.; Morata, P.; De Castro, I.N.; Sánchez-Jiménez, F. Antiproliferative effect of dehydrodidemnin B (DDB), a depsipeptide isolated from Mediterranean tunicates. Cancer Lett. 1996, 102, 31–37. [Google Scholar] [CrossRef]
  55. Fedorov, S.N.; Radchenko, O.S.; Shubina, L.K.; Balaneva, N.N.; Bode, A.M.; Stonik, V.A.; Dong, Z. Evaluation of cancer-preventive activity and structure– activity relationships of 3-demethylubiquinone Q2, isolated from the ascidian Aplidium glabrum, and it synthetic analogs. Pharm. Res. 2006, 23, 70–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  56. Garrido, L.; Zubía, E.; Ortega, M.J.; Salvá, J. Haouamines A and B: A new class of alkaloids from the ascidian Aplidium haouarianum. J. Org. Chem. 2003, 68, 293–299. [Google Scholar] [CrossRef] [PubMed]
  57. Park, N.S.; Park, Y.K.; Ramalingam, M.; Yadav, A.K.; Cho, H.R.; Hong, V.S.; More, K.N.; Bae, J.H.; Bishop-Bailey, D.; Kano, J.; et al. Meridianin C inhibits the growth of YD-10B human tongue cancer cells through macropinocytosis and the down-regulation of Dickkopf-related protein-3. J. Cell. Mol. Med. 2018, 22, 5833–5846. [Google Scholar] [CrossRef]
  58. Núñez-Pons, L.; Carbone, M.; Vázquez, J.; Rodríguez, J.; Nieto, R.M.; Varela, M.M.; Gavagnin, M.; Avila, C. Natural products from antarctic colonial ascidians of the genera Aplidium and Synoicum: Variability and defensive role. Mar. Drugs 2012, 10, 1741–1764. [Google Scholar] [CrossRef] [Green Version]
  59. Paul, V.J.; Lindquist, N.; Fenical, W. Chemical defenses of the tropical ascidian Atapozoa sp. and its nudibranch predators Nembrotha spp. Mar. Ecol. Prog. Ser. 1990, 59, 109–118. [Google Scholar] [CrossRef]
  60. Choi, H.; Hwang, H.; Chin, J.; Kim, E.; Lee, J.; Nam, S.J.; Lee, B.C.; Rho, B.J.; Kang, H. Tuberatolides, potent FXR antagonists from the korean marine tunicate Botryllus tuberatus. J. Nat. Prod. 2011, 74, 90–94. [Google Scholar] [CrossRef]
  61. Kubanek, J.; Williams, D.E.; de Silva, E.D.; Allen, T.; Andersen, R.J. Cytotoxic alkaloids from the flatworm Prostheceraeus villatus and its tunicate prey Clavelina lepadiformis. Tetrahedron Lett. 1995, 36, 6189–6192. [Google Scholar] [CrossRef]
  62. Raub, M.F.; Cardellina, J.H.; Choudhary, M.I.; Ni, C.Z.; Clardy, J.; Alley, M.C. Clavepictines A and B: Cytotoxic Quinolizidines from the Tunicate Clavelina picta. J. Am. Chem. Soc. 1991, 113, 3178–3180. [Google Scholar] [CrossRef]
  63. Abourriche, A.; Abboud, Y.; Maoufoud, S.; Mohou, H.; Seffaj, T.; Charrouf, M.; Chaib, N.; Bennamara, A.; Bontemps, N.; Francisco, C. Cynthichlorine: A bioactive alkaloid from the tunicate Cynthia savignyi. Farmaco 2003, 58, 1351–1354. [Google Scholar] [CrossRef]
  64. Kobayashi, J.; Cheng, J.F.; Nakamura, H.; Ohizumi, Y.; Walchli, M.R.; Hirata, Y.; Sasaki, T. Cystodytins A, B, and C, novel tetracyclic aromatic alkaloids with potent antineoplastic activity from the Okinawan tunicate Cystodytes dellechiajei. J. Org. Chem. 1988, 53, 1800–1804. [Google Scholar] [CrossRef]
  65. Kobayashi, J.; Tsuda, M.; Tanabe, A.; Ishibashi, M.; Cheng, J.F.; Yamamura, S.; Sasaki, T. Cystodytins D-I, new cytotoxic tetracyclic aromatic alkaloids from the okinawan marine tunicate Cystodytes dellechiajei. J. Nat. Prod. 1991, 54, 1634–1638. [Google Scholar] [CrossRef] [PubMed]
  66. Dassonneville, L.; Wattez, N.; Baldeyrou, B.; Mahieu, C.; Lansiaux, A.; Banaigs, B.; Bonnard, I.; Bailly, C. Inhibition of topoisomerase II by the marine alkaloid ascididemin and induction of apoptosis in leukemia cells. Biochem. Pharmacol. 2000, 60, 527–537. [Google Scholar] [CrossRef]
  67. López-Legentil, S.; Turon, X.; Schupp, P. Chemical and physical defenses against predators in Cystodytes (Ascidiacea). J. Exp. Mar. Biol. Ecol. 2006, 332, 27–36. [Google Scholar] [CrossRef]
  68. Uchimasu, H.; Matsumura, K.; Tsuda, M.; Kumagai, K.; Akakabe, M.; Fujita, M.J.; Sakai, R. Mellpaladines and dopargimine, novel neuroactive guanidine alkaloids from a Palauan Didemnidae tunicate. Tetrahedron 2016, 72, 7185–7193. [Google Scholar] [CrossRef]
  69. Torii, M.; Hitora, Y.; Kato, H.; Koyanagi, Y.; Kawahara, T.; Losung, F.; Mangindaan, R.E.P.; Tsukamoto, S. Siladenoserinols M-P, sulfonated serinol derivatives from a tunicate. Tetrahedron 2018, 74, 7516–7521. [Google Scholar] [CrossRef]
  70. Machida, K.; Arai, D.; Katsumata, R.; Otsuka, S.; Yamashita, J.K.; Ye, T.; Tang, S.; Fusetani, N.; Nakao, Y. Sameuramide A, a new cyclic depsipeptide isolated from an ascidian of the family Didemnidae. Bioorg. Med. Chem. 2018, 26, 3852–3857. [Google Scholar] [CrossRef] [PubMed]
  71. Wright, A.D.; Goclik, E.; König, G.M.; Kaminsky, R. Lepadins D-F: Antiplasmodial and antitrypanosomal decahydroquinoline derivatives from the tropical marine tunicate Didemnum sp. J. Med. Chem. 2002, 45, 3067–3072. [Google Scholar] [CrossRef] [PubMed]
  72. Mitchell, S.S.; Rhodes, D.; Bushman, F.D.; Faulkner, D.J. Cyclodidemniserinol trisulfate, a sulfated serinolipid from the Palauan ascidian Didemnum guttatum that inhibits HIV-1 integrase. Org. Lett. 2000, 2, 1605–1607. [Google Scholar] [CrossRef]
  73. Seleghim, M.H.R.; De Lira, S.P.; Campana, P.T.; Berlinck, R.G.S.; Custódio, M.R. Localization of granulatimide alkaloids in the tissues of the ascidian Didemnum granulatum. Mar. Biol. 2007, 150, 967–975. [Google Scholar] [CrossRef]
  74. Smith, T.E.; Pond, C.D.; Pierce, E.; Harmer, Z.P.; Kwan, J.; Zachariah, M.M.; Harper, M.K.; Wyche, T.P.; Matainaho, T.K.; Bugni, T.S.; et al. Accessing chemical diversity from the uncultivated symbionts of small marine animals. Nat. Chem. Biol. 2018, 14, 179–185. [Google Scholar] [CrossRef]
  75. Donia, M.S.; Wang, B.; Dunbar, D.C.; Desai, P.V.; Patny, A.; Avery, M.; Hamann, M.T. Mollamides B and C, cyclic hexapeptides from the indonesian tunicate Didemnum molle. J. Nat. Prod. 2008, 71, 941–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  76. Oku, N.; Matsunaga, S.; Fusetani, N. Shishijimicins A-C, novel enediyne antitumor antibiotics from the ascidian Didemnum proliferum. J. Am. Chem. Soc. 2003, 125, 2044–2045. [Google Scholar] [CrossRef]
  77. Takeara, R.; Jimenez, P.C.; Wilke, D.V.; Moraes, M.O.d.; Pessoa, C.; Lopes, N.P.; Lopes, J.L.C.; Lotufo, T.M.d.C.; Costa-Lotufo, L.V. Antileukemic effects of Didemnum psammatodes (Tunicata: Ascidiacea) constituents. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2008, 151, 363–369. [Google Scholar] [CrossRef]
  78. Bracegirdle, J.; Robertson, L.P.; Hume, P.A.; Page, M.J.; Sharrock, A.V.; Ackerley, D.F.; Carroll, A.R.; Keyzers, R.A. Lamellarin Sulfates from the Pacific Tunicate Didemnum ternerratum. J. Nat. Prod. 2019, 82, 2000–2008. [Google Scholar] [CrossRef]
  79. Charyulu, G.A.; McKee, T.C.; Ireland, C.M. Diplamine, a cytotoxic polyaromatic alkaloid from the tunicate Diplosoma sp. Tetrahedron Lett. 1989, 30, 4201–4202. [Google Scholar] [CrossRef]
  80. Ogi, T.; Taira, J.; Margiastuti, P.; Ueda, K. Cytotoxic metabolites from the Okinawan ascidian Diplosoma virens. Molecules 2008, 13, 595–602. [Google Scholar] [CrossRef]
  81. Cvetkovic, R.S.; Figgitt, D.P.; Plosker, G.L. ET-743. Drugs 2002, 62, 1185–1192. [Google Scholar] [CrossRef]
  82. Rashid, M.A.; Gustafson, K.R.; Boyd, M.R. New cytotoxic n-methylated β-carboline alkaloids from the marine ascidian Eudistoma gilboverde. J. Nat. Prod. 2001, 64, 1454–1456. [Google Scholar] [CrossRef] [PubMed]
  83. Kobayashi, J.; Harbour, G.C.; Gilmore, J.; Rinehart, K.L. Eudistomins A, D, G, H, I, J, M, N, O, P, and Q, Bromo-, Hydroxy-, Pyrrolyl-, and 1-Pyrrolinyl-β-carbolines from the antiviral Caribbean tunicate Eudistoma olivaceum. J. Am. Chem. Soc. 1984, 106, 1526–1528. [Google Scholar] [CrossRef]
  84. Rinehart, K.L.; Kobayashi, J.; Harbour, G.C.; Hughes, R.G.; Mizsak, S.A.; Scahill, T.A. Eudistomins C, E, K, and L, potent antiviral compounds containing a novel oxathiazepine ring from the Caribbean tunicate Eudistoma olivaceum. J. Am. Chem. Soc. 1984, 106, 1524–1526. [Google Scholar] [CrossRef]
  85. Jimenez, P.C.; Wilke, D.V.; Ferreira, E.G.; Takeara, R.; De Moraes, M.O.; Silveira, E.R.; Lotufo, T.M.D.C.; Lopes, N.P.; Costa-Lotufo, L.V. Structure elucidation and anticancer activity of 7-oxostaurosporine derivatives from the Brazilian endemic tunicate Eudistoma vannamei. Mar. Drugs 2012, 10, 1092–1102. [Google Scholar] [CrossRef] [Green Version]
  86. Rajesh, R.P.; Annappan, M. Anticancer effects of brominated indole alkaloid eudistomin H from marine ascidian Eudistoma viride against cervical cancer cells (HeLa). Anticancer Res. 2015, 35, 283–294. [Google Scholar]
  87. Tapiolas, D.M.; Bowden, B.F.; Abou-Mansour, E.; Willis, R.H.; Doyle, J.R.; Muirhead, A.N.; Liptrot, C.; Llewellyn, L.E.; Wolff, C.W.W.; Wright, A.D.; et al. Eusynstyelamides A, B, and C, nNOS inhibitors, from the ascidian Eusynstyela latericius. J. Nat. Prod. 2009, 72, 1115–1120. [Google Scholar] [CrossRef]
  88. Devi, S.; Rajasekharan, K.; Padmakumar, K.; Tanaka, J.; Higa, T. Biological activity and chemistry of the compound ascidian Eusynstyela tineta. In The Biology of Ascidians; Sawada, H., Yokosawa, H., Lambert, C.C., Eds.; Springer: Tokyo, Japan, 2001; pp. 341–354. [Google Scholar]
  89. Tsukamotol, S.; Kato, H.; Hirota, H.; Fusetane, N. Lumichrome Is a putative intrinsic substance inducing larval metamorphosis in the ascidian Halocynthia roretzi. In The Biology of Ascidians; Sawada, H., Yokosawa, H., Lambert, C.C., Eds.; Springer: Tokyo, Japan, 2001; pp. 335–340. [Google Scholar]
  90. Azumi, K.; Yokosawa, H.; Ishii, S.I. Halocyamines: Novel antimicrobial tetrapeptide-like substances isolated from the hemocytes of the solitary ascidian Halocynthia roretzi. Biochemistry 1990, 29, 159–165. [Google Scholar] [CrossRef]
  91. Oda, T.; Fujiwara, T.; Liu, H.; Ukai, K.; Mangindaan, R.E.P.; Mochizuki, M.; Namikoshi, M. Effects of lissoclibadins and lissoclinotoxins, isolated from a tropical ascidian Lissoclinum cf. badium, on IL-8 production in a PMA-stimulated promyelocytic leukemia cell line. Mar. Drugs 2006, 4, 15–21. [Google Scholar] [CrossRef] [Green Version]
  92. Kumaran, N.S.; Bragadeeswaran, S.; Meenakshi, V.K.; Balasubramanian, T. Bioactivity potential of extracts from ascidian Lissoclinum fragile. Afr. J. Pharm. Pharmacol. 2012, 6, 1854–1859. [Google Scholar] [CrossRef] [Green Version]
  93. Corley, D.G.; Moore, R.E.; Paul, V.J. Patellazole B: A novel cytotoxic thiazole-containing macrolide from the marine tunicate Lissoclinum patella. J. Am. Chem. Soc. 1988, 110, 7920–7922. [Google Scholar] [CrossRef]
  94. Zabriskie, T.M.; Mayne, C.L.; Ireland, C.M. Patellazole C: A novel cytotoxic macrolide from Lissoclinum patella. J. Am. Chem. Soc. 1988, 110, 7919–7920. [Google Scholar] [CrossRef]
  95. Odate, S.; Pawlik, J.R. The role of vanadium in the chemical defense of the solitary tunicate, Phallusia nigra. J. Chem. Ecol. 2007, 33, 643–654. [Google Scholar] [CrossRef]
  96. Casertano, M.; Imperatore, C.; Luciano, P.; Aiello, A.; Putra, M.Y.; Gimmelli, R.; Ruberti, G.; Menna, M. Chemical investigation of the indonesian tunicate Polycarpa aurata and evaluation of the effects against Schistosoma mansoni of the novel alkaloids polyaurines A and B. Mar. Drugs 2019, 17, 278. [Google Scholar] [CrossRef] [Green Version]
  97. Kang, H.; Fenical, W. Polycarpine dihydrochloride: A cytotoxic dimeric disulfide alkaloid from the Indian ocean ascidian Polycarpa clavata. Tetrahedron Lett. 1996, 37, 2369–2372. [Google Scholar] [CrossRef]
  98. Guo, P.; Wang, Z.; Li, G.; Liu, Y.; Xie, Y.; Wang, Q. First discovery of polycarpine, polycarpaurines A and C, and their derivatives as novel antiviral and antiphytopathogenic fungus agents. J. Agric. Food Chem. 2016, 64, 4264–4272. [Google Scholar] [CrossRef]
  99. Fujita, M.; Nakao, Y.; Matsunaga, S.; Nishikawa, T.; Fusetani, N. Sodium 1-(12-hydroxy)octadecanyl sulfate, an MMP2 inhibitor, isolated from a tunicate of the family polyclinidae. J. Nat. Prod. 2002, 65, 1936–1938. [Google Scholar] [CrossRef]
  100. Nicolaou, K.C.; Li, R.; Lu, Z.; Pitsinos, E.N.; Alemany, L.B. Total synthesis and full structural assignment of namenamicin. J. Am. Chem. Soc. 2018, 140, 8091–8095. [Google Scholar] [CrossRef]
  101. Cheng, M.T.; Rinehart, K.L. Polyandrocarpidines: Antimicrobial and Cytotoxic Agents from a Marine Tunicate (Polyandrocarpa sp.) from the Gulf of California. J. Am. Chem. Soc. 1978, 100, 7409–7411. [Google Scholar] [CrossRef]
  102. Lindquist, N.; Hay, M.E.; Fenical, W. Defense of ascidians and their conspicuous larvae: Adult vs. larval chemical defenses. Ecol. Monogr. 1992, 62, 547–568. [Google Scholar] [CrossRef] [Green Version]
  103. Kaneko, N.; Katsuyama, Y.; Kawamura, K.; Fujiwara, S. Regeneration of the gut requires retinoic acid in the budding ascidian Polyandrocarpa misakiensis. Dev. Growth Differ. 2010, 52, 457–468. [Google Scholar] [CrossRef]
  104. Wang, W.; Kim, H.; Nam, S.J.; Rho, B.J.; Kang, H. Antibacterial butenolides from the korean tunicate Pseudodistoma antinboja. J. Nat. Prod. 2012, 27, 574–577. [Google Scholar] [CrossRef] [PubMed]
  105. Appleton, D.R.; Page, M.J.; Lambert, G.; Berridge, M.V.; Copp, B.R. Kottamides A–D: Novel bioactive imidazolone-containing alkaloids from the New Zealand ascidian Pycnoclavella kottae. J. Org. Chem. 2002, 67, 5402–5404. [Google Scholar] [CrossRef]
  106. Aiello, A.; Carbonelli, S.; Fattorusso, E.; Iuvone, T.; Menna, M. New bioactive sulfated metabolites from the Mediterranean tunicate Sidnyum turbinatum. J. Nat. Prod. 2001, 64, 219–221. [Google Scholar] [CrossRef]
  107. Davies-Coleman, M.T.; Cantrell, C.L.; Gustafson, K.R.; Beutler, J.A.; Pannell, L.K.; Boyd, M.R. Stolonic acids A and B, new cytotoxic cyclic peroxides from an Indian Ocean ascidian Stolonica species. J. Nat. Prod. 2000, 63, 1411–1413. [Google Scholar] [CrossRef]
  108. Menzel, L.P.; Lee, I.H.; Sjostrand, B.; Lehrer, R.I. Immunolocalization of clavanins in Styela clava hemocytes. Dev. Comp. Immunol. 2002, 26, 505–515. [Google Scholar] [CrossRef]
  109. Raftos, D.A.; Hutchinson, A. Cytotoxicity reactions in the solitary tunicate Styela plicata. Dev. Comp. Immunol. 1995, 19, 463–471. [Google Scholar] [CrossRef]
  110. Miyata, Y. Ecdysteroids from the Antarctic tunicate Synoicum adareanum. J. Nat. Prod. 2007, 70, 1859–1864. [Google Scholar] [CrossRef]
  111. Rinehart, K.L.; Gloer, J.B.; Hughes, R.G.; Renis, H.E.; Patrick McGovren, J.; Swynenberg, E.B.; Stringfellow, D.A.; Kuentzel, S.L.; Li, L.H. Didemnins: Antiviral and antitumor depsipeptides from a Caribbean tunicate. Science 1981, 212, 933–935. [Google Scholar] [CrossRef]
  112. Rodríguez-Martínez, R.E.; Jordán-Garza, A.G.; Baker, D.M.; Jordán-Dahlgren, E. Competitive interactions between corals and Trididemnum solidum on Mexican Caribbean reefs. Coral Reefs 2012, 31, 571–577. [Google Scholar] [CrossRef]
  113. Schofield, M.M.; Jain, S.; Porat, D.; Dick, G.J.; Sherman, D.H. Identification and analysis of the bacterial endosymbiont specialized for production of the chemotherapeutic natural product ET-743. Environ. Microbiol. 2015, 17, 3964–3975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  114. Jayanetti, D.R.; Braun, D.R.; Barns, K.J.; Rajski, S.R.; Bugni, T.S. Bulbiferates A and B: Antibacterial acetamidohydroxybenzoates from a marine proteobacterium, Microbulbifer sp. J. Nat. Prod. 2019, 82, 1930–1934. [Google Scholar] [CrossRef] [PubMed]
  115. Yamazaki, H.; Nakayama, W.; Takahashi, O.; Kirikoshi, R.; Izumikawa, Y.; Iwasaki, K.; Toraiwa, K.; Ukai, K.; Rotinsulu, H.; Wewengkang, D.S.; et al. Verruculides A and B, two new protein tyrosine phosphatase 1B inhibitors from an Indonesian ascidian-derived Penicillium verruculosum. Bioorganic Med. Chem. Lett. 2015, 25, 3087–3090. [Google Scholar] [CrossRef]
  116. Pinkerton, D.M.; Banwell, M.G.; Garson, M.J.; Kumar, N.; De Moraes, M.O.; Cavalcanti, B.C.; Barros, F.W.A.; Pessoa, C. Antimicrobial and cytotoxic activities of synthetically derived tambjamines C and E-J, BE-18591, and a related alkaloid from the marine bacterium Pseudoalteromonas tunicata. Chem. Biodivers. 2010, 7, 1311–1324. [Google Scholar] [CrossRef]
  117. Burke, C.; Thomas, T.; Egan, S.; Kjelleberg, S. The use of functional genomics for the identification of a gene cluster encoding for the biosynthesis of an antifungal tambjamine in the marine bacterium Pseudoalteromonas tunicata: Brief report. Environ. Microbiol. 2007, 9, 814–818. [Google Scholar] [CrossRef]
  118. Wang, K.L.; Xu, Y.; Lu, L.; Li, Y.; Han, Z.; Zhang, J.; Shao, C.L.; Wang, C.Y.; Qian, P.Y. Low-toxicity diindol-3-ylmethanes as potent antifouling compounds. Mar. Biotechnol. 2015, 17, 624–632. [Google Scholar] [CrossRef] [PubMed]
  119. Takagi, M.; Motohashi, K.; Izumikawa, M.; Khan, S.T.; Hwang, J.-H.; Shin-Ya, K. JBIR-66, a new metabolite isolated from tunicate-derived Saccharopolyspora sp. SS081219JE-28. Biosci. Biotechnol. Biochem. 2010, 74, 2355–2357. [Google Scholar] [CrossRef] [Green Version]
  120. Wasserman, H.H.; Friedland, D.J.; Morrison, D.A. A novel dipyrrolyldipyrromethene prodigiosin analog from Serratia marcescens. Tetrahedron Lett. 1968, 6, 641–644. [Google Scholar] [CrossRef]
  121. Sung, A.A.; Gromek, S.M.; Balunas, M.J. Upregulation and identification of antibiotic activity of a marine-derived Streptomyces sp. via co-cultures with human pathogens. Mar. Drugs 2017, 15, 250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  122. Tsukimoto, M.; Nagaoka, M.; Shishido, Y.; Fujimoto, J.; Nishisaka, F.; Matsumoto, S.; Harunari, E.; Imada, C.; Matsuzaki, T. Bacterial production of the tunicate-derived antitumor cyclic depsipeptide didemnin B. J. Nat. Prod. 2011, 74, 2329–2331. [Google Scholar] [CrossRef]
  123. Karthikeyan, M.M.; Ananthan, G.; Balasubramanian, T. Antimicrobial activity of crude extracts of some ascidians (Urochordata: Ascidiacea), from Palk Strait, (Southeast Coast of India). World J. Fish. Mar. Sci. 2009, 1, 262–267. [Google Scholar]
  124. Ayuningrum, D.; Kristiana, R.; Nisa, A.A.; Radjasa, S.K.; Muchlissin, S.I.; Radjasa, O.K.; Sabdono, A.; Trianto, A. Bacteria associated with tunicate, Polycarpa aurata, from Lease sea, Maluku, Indonesia exhibiting anti-multidrug resistant bacteria. Biodiversitas 2019, 20, 956–964. [Google Scholar] [CrossRef] [Green Version]
  125. Litaay, M.; Christine, G.; Gobel, R.B.; Dwyana, Z. Bioactivity of endo-symbiont bacteria of tunicate Polycarpa aurata as antimicrobial. In Proceedings of the 23 National Seminar of Indonesia Biology Society, Jayapura, Indonesia, 18 September 2015. [Google Scholar]
  126. Menna, M.; Fattorusso, E.; Imperatore, C. Alkaloids from marine ascidians. Molecules 2011, 16, 8694–8732. [Google Scholar] [CrossRef]
  127. Franks, A.; Haywood, P.; Holmström, C.; Egan, S.; Kjelleberg, S.; Kumar, N. Isolation and structure elucidation of a novel yellow pigment from the marine bacterium Pseudoalteromonas tunicata. Molecules 2005, 10, 1286–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  128. Franks, A.; Egan, S.; Holmström, C.; James, S.; Lappin-Scott, H.; Kjelleberg, S. Inhibition of fungal colonization by Pseudoalteromonas tunicata provides a competitive advantage during surface colonization. Appl. Environ. Microbiol. 2006, 72, 6079–6087. [Google Scholar] [CrossRef] [Green Version]
  129. Egan, S.; James, S.; Holmström, C.; Kjelleberg, S. Correlation between pigmentation and antifouling compounds produced by Pseudoalteromonas tunicata. Environ. Microbiol. 2002, 4, 433–442. [Google Scholar] [CrossRef]
  130. Matz, C.; Webb, J.S.; Schupp, P.J.; Phang, S.Y.; Penesyan, A.; Egan, S.; Steinberg, P.; Kjelleberg, S. Marine biofilm bacteria evade eukaryotic predation by targeted chemical defense. PLoS ONE 2008, 3, e2744. [Google Scholar] [CrossRef] [Green Version]
  131. Holmström, C.; James, S.; Neilan, B.A.; White, D.C.; Kjelleberg, S. Pseudoalteromonas tunicata sp. nov., a bacterium that produces antifouling agents. Int. J. Syst. Bacteriol. 1998, 48, 1205–1212. [Google Scholar] [CrossRef] [Green Version]
  132. James, S.G.; Holmström, C.; Kjelleberg, S. Purification and characterization of a novel antibacterial protein from the marine bacterium D2. Appl. Environ. Microbiol. 1996, 62, 2783–2788. [Google Scholar] [CrossRef] [Green Version]
  133. Fedders, H.; Michalek, M.; Grötzinger, J.; Leippe, M. An exceptional salt-tolerant antimicrobial peptide derived from a novel gene family of haemocytes of the marine invertebrate Ciona intestinalis. Biochem. J. 2008, 416, 65–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  134. Nurfadillah, A.; Litaay, M.; Gobel, R.B.; Haedar, N. Potency of tunicate Polycarpa aurata as inoculum source of sebagai sumber endosimbyotic fungi that produce antimicrobe. J. Alam Lingkung. 2015, 6, 10–16. [Google Scholar]
  135. Tahir, E.; Litaay, M.; Gobel, R.B.; Haedar, N.; Al, E. Potency of tunicate Rhopalaea crassa as inoculum source of endosymbiont fungi that produce antimicrobe. Spermonde 2016, 2, 33–37. [Google Scholar]
  136. Shaala, L.A.; Youssef, D.T.A. Identification and bioactivity of compounds from the fungus Penicillium sp. CYE-87 isolated from a marine tunicate. Mar. Drugs 2015, 13, 1698–1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  137. Canonico, P.G.; Pannier, W.L.; Huggins, J.W.; Rienehart, K.L. Inhibition of RNA viruses in vitro and in Rift Valley fever-infected mice by didemnins A and B. Antimicrob. Agents Chemother. 1982, 22, 696–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  138. Mayer, A.M.S.; Glaser, K.B.; Cuevas, C.; Jacobs, R.S.; Kem, W.; Little, R.D.; McIntosh, J.M.; Newman, D.J.; Potts, B.C.; Shuster, D.E. The odyssey of marine pharmaceuticals: A current pipeline perspective. Trends Pharmacol. Sci. 2010, 31, 255–265. [Google Scholar] [CrossRef]
  139. Zelek, L.; Yovine, A.; Brain, E.; Turpin, F.; Taamma, A.; Riofrio, M.; Spielmann, M.; Jimeno, J.; Misset, J.L. A phase II study of Yondelis® (trabectedin, ET-743) as a 24-h continuous intravenous infusion in pretreated advanced breast cancer. Br. J. Cancer 2006, 94, 1610–1614. [Google Scholar] [CrossRef] [Green Version]
  140. Atmaca, H.; Bozkurt, E.; Uzunoglu, S.; Uslu, R.; Karaca, B. A diverse induction of apoptosis by trabectedin in MCF-7 (HER2−/ER+) and MDA-MB-453 (HER2+/ER−) breast cancer cells. Toxicol. Lett. 2013, 221, 128–136. [Google Scholar] [CrossRef] [PubMed]
  141. Grosso, F.; Jones, R.L.; Demetri, G.D.; Judson, I.R.; Blay, J.-Y.; Cesne, A.L.; Lippo, R.S.; Casieri, P.; Collini, P.; Dileo, P.; et al. Effi cacy of trabectedin (ecteinascidin-743) in advanced pretreated myxoid liposarcomas: A retrospective study. Lancet Oncol. 2007, 8, 595–602. [Google Scholar] [CrossRef]
  142. Sessa, C.; De Braud, F.; Perotti, A.; Bauer, J.; Curigliano, G.; Noberasco, C.; Zanaboni, F.; Gianni, L.; Marsoni, S.; Jimeno, J.; et al. Trabectedin for women with ovarian carcinoma after treatment with platinum and taxanes fails. J. Clin. Oncol. 2005, 23, 1867–1874. [Google Scholar] [CrossRef]
  143. Krasner, C.N.; McMeekin, D.S.; Chan, S.; Braly, P.S.; Renshaw, F.G.; Kaye, S.; Provencher, D.M.; Campos, S.; Gore, M.E. A Phase II study of trabectedin single agent in patients with recurrent ovarian cancer previously treated with platinum-based regimens. Br. J. Cancer 2007, 97, 1618–1624. [Google Scholar] [CrossRef] [Green Version]
  144. Monk, B. A randomized phase III study of trabectedin with pegylated liposomal doxorubicin (PLD) versus PLD in relapsed, recurrent ovarian cancer (OC). Eur. J. Cancer Suppl. 2008, 19, viii1–viii4. [Google Scholar]
  145. Rath, C.M.; Janto, B.; Earl, J.; Ahmed, A.; Hu, F.Z.; Hiller, L.; Dahlgren, M.; Kreft, R.; Yu, F.; Wolff, J.J.; et al. Meta-omic characterization of the marine invertebrate microbial consortium that produces the chemotherapeutic natural product ET-743. ACS Chem. Biol. 2011, 6, 1244–1255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  146. Tohme, R.; Darwiche, N.; Gali-Muhtasib, H. A journey under the sea: The quest for marine anti-cancer alkaloids. Molecules 2011, 16, 9665–9696. [Google Scholar] [CrossRef]
  147. González-Santiago, L.; Suárez, Y.; Zarich, N.; Muñoz-Alonso, M.J.; Cuadrado, A.; Martínez, T.; Goya, L.; Iradi, A.; Sáez-Tormo, G.; Maier, J.V.; et al. Aplidin® induces JNK-dependent apoptosis in human breast cancer cells via alteration of glutathione homeostasis, Rac1 GTPase activation, and MKP-1 phosphatase downregulation. Cell Death Differ. 2006, 13, 1968–1981. [Google Scholar] [CrossRef] [PubMed]
  148. Rinehart, K.L. Antitumor compounds from tunicates. Med. Res. Rev. 2000, 20, 1–27. [Google Scholar] [CrossRef]
  149. Kobayashi, J.; Cheng, J.F.; Nakamura, H.; Ohta, T.; Nozoe, S.; Hirata, Y.; Sasaki, T. Lejimalides A and B, novel 24-membered macrolides with potent antileukemic activity from the Okinawan tunicate Eudistoma cf. rigida. J. Org. Chem. 1988, 53, 6147–6150. [Google Scholar] [CrossRef]
  150. Kikuchi, Y.; Ishibashi, M.; Sasaki, T.; Kobayashi, J. Lejimalides C and D, new antineoplastic 24-membered macrolide sulfates from the okinawan marine tunicate Eudistoma cf. rigida. Tetrahedron Lett. 1991, 32, 789–797. [Google Scholar] [CrossRef]
  151. Nguyen, M.H.; Imanishi, M.; Kurogi, T.; Wan, X.; Ishmael, J.E.; McPhail, K.L.; Smith, A.B. Synthetic access to the mandelalide family of macrolides: Development of an anion relay chemistry strategy. J. Org. Chem. 2018, 83, 4287–4306. [Google Scholar] [CrossRef]
  152. Rinehart, K.L.; Holt, T.G.; Fregeau, N.L.; Stroh, J.G.; Keifer, P.A.; Sun, F.; Li, L.H.; Martin, D.G. Ecteinascidins 729, 743, 745, 759A, 759B, and 770: Potent antitumor agents from the Caribbean tunicate Ecteinascidia turbinata. J. Org. Chem. 1990, 55, 4512–4515. [Google Scholar] [CrossRef]
  153. Izbicka, E.; Lawrence, R.; Raymond, E.; Eckhardt, G.; Faircloth, G.; Jimeno, J.; Clark, G.; Von Hoff, D.D. In vitro antitumor activity of the novel marine agent, Ecteinascidin-743 (ET-743, NSC-648766) against human tumors explanted from patients. Ann. Oncol. 1998, 9, 981–987. [Google Scholar] [CrossRef]
  154. Berlmck, R.G.S.; Britton, R.; Piers, E.; Lim, L.; Roberge, M.; Moreira Da Rocha, R.; Andersen, R.J. Granulatimide and isogranulatimide, aromatic alkaloids with G2 checkpoint inhibition activity isolated from the Brazilian ascidian Didemnum granulatum: Structure elucidation and synthesis. J. Org. Chem. 1998, 63, 9850–9856. [Google Scholar] [CrossRef]
  155. Holmstrom, C.; James, S.; Egan, S.; Kjelleberg, S. Inhibition of common fouling organisms by marine bacterial isolates with special reference to the role of pigmented bacteria. Biofouling 1996, 10, 251–259. [Google Scholar] [CrossRef]
  156. Holmstrom, C.; Rittschof, D.; Kjelleberg, S. Inhibition of settlement by larvae of Balanus amphitrite and Ciona intestinalis by a surface-colonizing marine bacterium. Appl. Environ. Microbiol. 1992, 58, 2111–2115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  157. Stoecker, D. Resistance of a tunicate to fouling. Biol. Bull. 1978, 155, 615–626. [Google Scholar] [CrossRef]
  158. Vervoort, H.C.; Pawlik, J.R.; Fenical, W. Chemical defense of the Caribbean ascidian Didemnum conchyliatum. Mar. Ecol. Prog. Ser. 1998, 164, 221–228. [Google Scholar] [CrossRef] [Green Version]
  159. Lindquist, N.; Hay, M.E. Can small rare prey be chemically defended? The case for marine larvae. Ecology 1995, 76, 1347–1358. [Google Scholar] [CrossRef]
  160. Lindquist, N.; Fenical, W. New tambjamine class alkaloids from the marine ascidian Atapozoa sp. and its nudibranch predators. Origin of the tambjamines in Atapozoa. Experientia 1991, 47, 504–506. [Google Scholar] [CrossRef]
  161. McClintock, J.B.; Amsler, M.O.; Koplovitz, G.; Amsler, C.D.; Baker, B.J. Observations on an association between the dexaminid amphipod Polycheria antarctica f. acanthopoda and its ascidian host Distaplia cylindrica. J. Crustac. Biol. 2009, 29, 605–608. [Google Scholar] [CrossRef] [Green Version]
  162. Watanabe, T.; Shibata, H.; Ebine, M.; Tsuchikawa, H.; Matsumori, N.; Murata, M.; Yoshida, M.; Morisawa, M.; Lin, S.; Yamauchi, K.; et al. Synthesis and complete structure determination of a sperm-activating and -attracting factor isolated from the ascidian ascidia sydneiensis. J. Nat. Prod. 2018, 81, 985–997. [Google Scholar] [CrossRef]
  163. Mikami, N.; Hosokawa, M.; Miyashita, K. Effects of sea squirt (Halocynthia roretzi) lipids on white adipose tissue weight and blood glucose in diabetic/obese KK-Ay mice. Mol. Med. Rep. 2010, 3, 449–453. [Google Scholar] [PubMed]
  164. Thakur, N.L. Studies on Some Bioactive Aspects of Selected Marine Organisms; Goa University: Goa, India, 2001. [Google Scholar]
  165. Kazlauskas, R.; Marwood, J.F.; Murphy, P.T.; Wells, R.J. A blue pigment from a compound ascidian. Aust. J. Chem. 1982, 35, 215–217. [Google Scholar] [CrossRef] [Green Version]
  166. Wright, A.E.; Forleo, D.A.; Gunawardana, G.P.; Gunasekera, S.P.; Koehn, F.E.; McConnell, O.J. Antitumor tetrahydroisoquinoline alkaloids from the colonial ascidian Ecteinascidia turbinata. J. Org. Chem. 1990, 55, 4508–4515. [Google Scholar] [CrossRef]
  167. Kott, P. Didemnid-algal symbiosis: Host species in the Western Pacific with notes on the symbiosis. Micronesica 1982, 18, 95–127. [Google Scholar]
  168. Sings, H.L.; Rinehart, K.L. Compounds produced from potential tunicate-blue-green algal symbiosis: A review. J. Ind. Microbiol. Biotechnol. 1996, 17, 385–396. [Google Scholar] [CrossRef]
  169. Carté, B.; Faulkner, D.J. Defensive metabolites from three nembrothid nudibranchs. J. Org. Chem. 1983, 48, 2314–2318. [Google Scholar] [CrossRef]
  170. Garson, M.J. Marine natural products as antifeedants. In Comprehensive Natural Products II: Chemistry and Biology; Elsevier Ltd.: Amsterdam, The Netherlands, 2010; pp. 503–537. ISBN 9780080453828. [Google Scholar]
  171. Lins, D.M.; de Marco, P.; Andrade, A.F.A.; Rocha, R.M. Predicting global ascidian invasions. Divers. Distrib. 2018, 24, 692–704. [Google Scholar] [CrossRef] [Green Version]
  172. Gittenberger, A.; Moons, J.J.S. Settlement and possible competition for space between the invasive violet tunicate Botrylloides violaceus and the native star tunicate Botryllus schlosseri in The Netherlands. Aquat. Invasions 2011, 6, 435–440. [Google Scholar] [CrossRef]
  173. Sephton, D.; Vercaemer, B.; Nicolas, J.M.; Keays, J. Monitoring for invasive tunicates in Nova Scotia, Canada (2006–2009). Aquat. Invasions 2011, 6, 391–403. [Google Scholar] [CrossRef]
  174. Seo, K.S.; Lee, Y. A first assessment of invasive marine species on Chinese and Korean coasts. In Biological Invasions in Marine Ecosystems, Ecological Studies 204; Rilov, G., Crooks, J.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 577–585. [Google Scholar]
  175. Costello, K.E.; Lynch, S.A.; McAllen, R.; O’Riordan, R.M.; Culloty, S.C. The role of invasive tunicates as reservoirs of molluscan pathogens. Biol. Invasions 2021, 23, 641–655. [Google Scholar] [CrossRef]
  176. Daigle, R.M.; Herbinger, C.M. Ecological interactions between the vase tunicate (Ciona intestinalis) and the farmed blue mussel (Mytilus edulis) in Nova Scotia, Canada. Aquat. Invasions 2009, 4, 177–187. [Google Scholar] [CrossRef]
  177. Ramesh, C.H.; Koushik, S.; Shunmugaraj, T.; Murthy, M.V.R. Infestation of colonial ascidians on reef biota of Gulf of Mannar Marine Biosphere Reserve, India. J. New Biol. Rep. 2019, 8, 187–189. [Google Scholar]
  178. Vargas-Ángel, B.; Godwin, L.S.; Asher, J.; Brainard, R.E. Invasive didemnid tunicate spreading across coral reefs at remote Swains Island, American Sāmoa. Coral Reefs 2009, 28, 53. [Google Scholar] [CrossRef] [Green Version]
  179. Tatián, M.; Schwindt, E.; Lagger, C.; Varela, M.M. Colonization of Patagonian harbours (SW Atlantic) by an invasive sea squirt. Spixiana 2010, 33, 111–117. [Google Scholar]
  180. Pleus, A.; LeClair, L.; Schultz, J.; Lambert, G. 2007–09 Tunicate Management Plan; In Coordination with the Tunicate Response Advisory Committee; Washington State Department of Fish and Wildlife, Aquatic Invasive Species Unit: Olympia, WA, USA, 2008; pp. 1–64.
  181. Cordell, J.R.; Levy, C.; Toft, J.D. Ecological implications of invasive tunicates associated with artificial structures in Puget Sound, Washington, USA. Biol. Invasions 2013, 15, 1303–1318. [Google Scholar] [CrossRef]
  182. Abdul Jaffar, H.; Soban Akram, A.; Kaleem Arshan, M.L.; Sivakumar, V.; Tamilselvi, M. Distribution and invasiveness of a colonial ascidian, Didemnum psammathodes, along the southern Indian coastal water. Oceanologia 2016, 58, 212–220. [Google Scholar] [CrossRef] [Green Version]
  183. Carman, M.R.; Grunden, D.W. First occurrence of the invasive tunicate Didemnum vexillum in eelgrass habitat. Aquat. Invasions 2010, 5, 23–29. [Google Scholar] [CrossRef]
  184. Griffith, K.; Mowat, S.; Holt, R.H.F.; Ramsay, K.; Bishop, J.D.D.; Lambert, G.; Jenkins, S.R. First records in Great Britain of the invasive colonial ascidian Didemnum vexillum Kott, 2002. Aquat. Invasions 2009, 4, 581–590. [Google Scholar] [CrossRef]
  185. Sorte, C.J.B.; Williams, S.L.; Zerebecki, R.A. Ocean warming increases threat of invasive species in a marine fouling community. Ecology 2010, 91, 2198–2204. [Google Scholar] [CrossRef]
Figure 1. Important anticancer drugs of tunicates and their associated microbes in clinical trials.
Figure 1. Important anticancer drugs of tunicates and their associated microbes in clinical trials.
Marinedrugs 19 00308 g001
Figure 2. Tunicate-associated epibiotic and endobiotic symbionts. (the small inserted empty box provides more details in Figure 3).
Figure 2. Tunicate-associated epibiotic and endobiotic symbionts. (the small inserted empty box provides more details in Figure 3).
Marinedrugs 19 00308 g002
Figure 3. Illustration depicting various MNPs released from endobiotic and epibiotic microbes associated with tunicate’s endostyle and tunic.
Figure 3. Illustration depicting various MNPs released from endobiotic and epibiotic microbes associated with tunicate’s endostyle and tunic.
Marinedrugs 19 00308 g003
Table 1. List of MNPs originated from tunicates available in various public databases. The unknown compound records are excluded from the list.
Table 1. List of MNPs originated from tunicates available in various public databases. The unknown compound records are excluded from the list.
DatabaseNo. of Known CompoundsNo. of Unknown CompoundsKnown Chemical CompoundBiological Properties
BIAdb1-PolycarpineCytotoxic, antiviral, and antifungal
BindingDB2-Tuberatolides,
Sodium 1-(12-hydroxy) octadecanyl sulfate
Farnesoid X receptor antagonists, matrix metalloproteinase 2 inhibitor
ChemDB2-Patellazole B,
Patellazole C
Antimicrobial, cytotoxic
ChEMBL2 Ascididemin,
Trabectedin
Anticancer
ChemSpider1-TrabectedinAnticancer
DrugBank--
HIT--
HMDB1-TrabectedinAnticancer
KEGG1-TrabectedinAnticancer
NCI--
NPACT--
PDB-Bind--
PDBeChem16>30Cystodytin D, cystodytin F, cystodytin E,
cystodytin G,
cystodytin H,
cystodytin I,
Diplosoma ylidene 1,
Diplosoma ylidene 2,
Lejimalide A, lejimalide B,
lissoclibadin 1, lissoclibadin 2,
lissoclibadin 3, lamellarin alpha 20-sulfate,
plitidepsin,
trabectedin
Cytotoxic, anticancer
PharmaGKB1-TrabectedinAnticancer
PubChem42Patellazole B,
Patellazole C,
GnRH-II,
GnRH-I
Antimicrobial and cytotoxic, induces spawning
SMPDB--
SuperDrug1-TrabectedinAnticancer
TTD--
UniProt11Retinoic acidRegeneration of gut
ZINC1-TrabectedinAnticancer
Foot note: Table 1 data are garnered from public chemical databases listed in the main text part 3, but not from the literature. That is why there are no references cited in this table. Readers are asked to refer to Tables 2 and 3 where details are from the literature, and therefore, references are cited.
Table 2. Chemical profiles from body parts and fluids of few tunicate species.
Table 2. Chemical profiles from body parts and fluids of few tunicate species.
Body ComponentChemical CompoundFunctionApplicationReference
Tunic
(Ascidia sp., Ciona intestinalis, Halocynthia roretzi, and Styela plicata)
Tunicin (cellulose)ProtectionMaterial cellulose[35]
Blood (Ascidia nigra,
Molgula manhattensis)
VanadiumOxygen transport [42]
Blood
(Ascidia nigra)
TunichromesVanadium binding and reduces blood pigments [42,43]
Hemocytes
(Styela clava)
ClavaninsMultiple functionsAntimicrobial[44,45]
Hemocytes
(Halocynthia papillosa)
Halocyntin and papillosin Antimicrobial[46]
Hemocytes
(Halocynthia aurantium)
Halocidin Antimicrobial[47]
Gonad (Unknown sp.)GnRH-2 peptidePheromone-like functionInduce spawning[48]
Table 3. Bioactive compounds from various species of tunicates and their associated microbes.
Table 3. Bioactive compounds from various species of tunicates and their associated microbes.
MNPs from TunicatesChemical CompoundFunctionApplicationReference
Aplidium albicansAplidin Anticancer[52,53]
Aplidium albicansDehydrodidemnin B Antitumor[54]
Aplidium glabrumQuinones Anticancer, cytotoxic[55]
Aplidium haouarianumHaouamine A Cytotoxic activity[56]
Aplidium meridianumMeridianins Anticancer, antibiofilm[57]
Aplidium & SynoicumMeridianinsFeeding deterrentsAntibacterial[58]
Atapozoa sp.TambjamineFeeding deterrents [59]
Botryllus tuberatusTuberatolides Farnesoid X receptor antagonists[60]
Clavelina lepadiformisLepadins and villatamines Antiparasitic, anticancer[61]
Clavelina pictaClavepictine A and B Antimicrobial, cytotoxicity[62]
Cynthia savignyiCynthichlorine Antifungal, cytotoxicity[63]
Cystodytes dellechiajeiCystodytins A-I Antitumor, cytotoxic[64,65]
Cystodytes dellechiajeiAscididemin Antitumor[66]
Cystodytes sp.AscidideminFeeding deterrentsAntifeedant[67]
DidemnidaeMellpaladine and dopargimine Neuroactive[68]
DidemnidaeSiladenoserinols A and B Antitumor[69]
DidemnidaeSameuramide A Colony formation[70]
Didemnum sp.Lepadins D-F Antiplasmodial and antitrypanosomal[71]
Didemnum guttatumCyclodidemniserinol trisulfate Anti-retroviral[72]
Didemnum granulatumGranulatamides Deterrent activity[73]
Didemnum molleLanthipeptide divamide A anti-HIV drug[74]
Didemnum molleMollamide B Anticancer[75]
Didemnum proliferumShishijimicins Antitumor[76]
Didemnum psammatodesMethyl esters Antiproliferative[77]
Didemnum ternerratumLamellarin Sulfates Anticancer[78]
Diplosoma sp.Diplamine Antibacterial and cytotoxic[79]
Diplosoma virensDiplosoma ylidene 1,
Diplosoma ylidene 2
Anticancer[80]
Ecteinascidia turbinataEcteinascidin 743 (Trabectedin) Anticancer[81]
Eudistoma gilboverdeMethyleudistomins Antitumor[82]
Eudistoma olivaceumEudistomins G and HChemical defenseAntifouling[34]
Eudistoma olivaceumEudistomins A, D, G, H, I, J, M, N, O, P, and Q Antiviral[83]
Eudistoma olivaceumEudistomins C, E, K, and L Antiviral[84]
Eudistoma vannamei7-Oxostaurosporine Anticancer[85]
Eudistoma virideEudistomins H Anticancer[86]
Eusynstyela latericiusEusynstyelamides A, B Antibacterial[87]
Eusynstyela tinctaKuanoniamine AChemical defenseAntimicrobial, antitumor, antifouling[88]
Halocynthia aurantiumHalocidin Antimicrobial[47]
Halocynthia papillosaHalocyntin and papillosin Antimicrobial[46]
Halocynthia roretziLumichromeLarval metamorphosis [89]
Halocynthia roretziHalocyamine A and B Antimicrobial, anticancer[90]
Lissoclinum cf. badiumLissoclibadins Anticancer[91]
Lissoclinum fragile Antimicrobial, hemolytic, and cytotoxic[92]
Lissoclinum patellaPatellazole B and C Antimicrobial, cytotoxic[93,94]
Phallusia nigraVanadium chloride,
vanadyl sulfate
Antimicrobial[95]
Polycarpa aurataPolyaurines A and B Antiparasitic[96]
Polycarpa clavataPolycarpine dihydrochloride Cytotoxic[97]
Polycarpa clavataPolycarpaurines A and C Antiviral, antifungal[98]
PolyclinidaeSodium 1-(12-hydroxy) octadecanyl sulfate Matrix metalloproteinase 2 inhibitor[99]
Polysyncraton lithostrotumNamenamicin Cytotoxic, antitumor[100]
Polyandrocarpa sp.Polyandrocarpidines Antimicrobial, cytotoxic, and deterrent activities[101,102]
Polyandrocarpa misakiensisRetinoic acid Regeneration of gut[103]
Pseudodistoma antinbojaCadiolides J-M Antibacterial[104]
Pycnoclavella kottaeKottamide D Cytotoxic, anti-inflammatory, and antimetabolic activities[105]
Sidnyum turbinatumAlkyl sulfates Antiproliferative[106]
Stolonica sp.Stolonic acid A and B Antiproliferative[107]
Styela clavaClavanins Antimicrobial[108]
Styela plicataHemocytes Cytotoxic[109]
Synoicum adareanumHyousterones and Abeohyousterone Cytotoxic and anticancer[110]
Trididemnum solidumDidemnins A, B, and C Antiviral, cytotoxic[111,112]
MNPs from associated microbes
Candidatus Endoecteinascidia frumentensisTetrahydroisoquinoline [113]
Microbulbifer sp.Bulbiferates A and B Antibacterial[114]
Penicillium verruculosumVerruculides A, chrodrimanins A and H Protein tyrosine phosphatase 1B inhibition[115]
Pseudoalteromonas rubraIsatinMicrobial defenseAntibacterial[16]
Pseudoalteromonas tunicataTambjamineFeeding deterrents [116]
Pseudoalteromonas tunicataTambjamine Antifungal[117]
Pseudovibrio denitrificansDiindol-3-ylmethanes Antifouling[118]
Saccharopolyspora sp.JBIR-66 Cytotoxic[119]
Serratia marcescensTetrapyrrole pigmentFeeding deterrents [120]
Streptomyces sp.Granaticin, granatomycin D, and dihydrogranaticin B Antibacterial[121]
Talaromyces sp.Talaropeptides A-D Plasma stability, Antibacterial, antifungal, cytotoxic[24]
Tistrella mobilis and Tistrella bauzanensisDidemnin Anticancer[23,122]
Table 4. Bioactive MNP’s from tunicates and associated microbes.
Table 4. Bioactive MNP’s from tunicates and associated microbes.
ApplicationCompoundActivity againstDose/
Concentration
Growth Inhibition
(Diameter/
Percentage)
Assay MethodReference
Antimicrobial
ClavaninsE. coli,
L. monocytogenes,
C. albicans
1.6–3.5 μg/mL
-Radial diffusion assay[44]
DiplamineE. coli,
S. aureus
-[79]
HalocidinMethicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa100–200 μg/mL
5–11 mmRadial diffusion assay[47]
IsatinBacillus cereus, Bacillus megaterium, Escherichia coli, Micrococcus luteus,MIC 200 μg/mL7–>21 mmDisk diffusion assay[16]
Kuanoniamine AB. Subtilis, E. coli, S. aureus,
V. cholerae,
V. parahaemolyticus and fungus
A. jumigatus and C. albicans
25 μg/mL7–13 mmDisk diffusion assay[88]
CynthichlorineA. radiobacter,
E. coli,
P. aeruginosa,
Botrytis cinerea,
Verticillium albo atrum
6–10 mmDisc
diffusion assay
[63]
Talaropeptides A and BBacillus subtilisIC50 1.5–3.7 µM50%Microtiter plate assay[24]
Terretrione C and DCandida albicansMIC 32 µg/mL17–19 mmDisc
diffusion assay
[136]
Anticancer & antitumor
AplidinMultiple myeloma cell lines, MDA-MB-231 breast cancer cells, A-498 and ACHN cell linesIC50 1 to 15 nmol/L Nuclear Staining Assay; MTT assay[52,53]
Clavepictines A and BMurine leukemia and human solid tumor cell linesIC50 12 μg/mL Microculture tetrazolium assay[62]
Dehydrodidemnin BEhrlich carcinoma cells2.5 μg/mouse70–90%MTT assay[54]
Didemnins A and BLeukaemia P388 cellsIC50 1.5–25 μg/mL -[111]
DiplamineLeukemia L1210 cellsIC50 2×10-2 μg/mL -[79]
Ecteinascidin 743 (Trabectedin)Leukemia L1210 cellsIC50 0.5 μg/mL -[152]
Eudistomins HHeLa cell linesIC50 0.49 μg/mL
60%MTT assay[86]
Halocyamine A and BRat neuronal cells, mouse neuroblastoma N-18 cells, and human Hep-G2 cells -[90]
Kuanoniamine ADalton’s lymphoma and Ehrlich ascites tumour cell lines25 μg/mL
100%Trypan blue exclusion test[88]
Lamellarin SulfatesHCT-116 human colon tumor cellsIC50 9.7 μM MTS cell proliferation assay[78]
NamenamicinP388 leukemia cells, 3Y1, and HeLaIC50 3.5 nM;
IC50 3.3–13 pM
Biochemical prophage induction assay[100]
Polycarpine dihydrochlorideHCT-116 human colon tumor cellsED50 1.9 μg/mL -[97]
7-oxostaurosporineHL-60, Molt-4, Jurkat, K562, HCT-8, MDA MB-435, and SF-295 cell linesIC50 10–58 nM95%MTT assay[85]
Terretrione C and DHuman breast cancer cellsIC50 16.5 and 17.6 μM Sulforhodamine B assay[136]
Antifouling
Diindol-3-ylmethanesBarnacle, Balanus amphitrite and bryozoan, Bugula neritinaEC50 18.57 Microtiter plate assay[118]
Eudistomins G and HFish and other larvae Antifeedant assay[34]
Table 5. Occurrence of invasive tunicate species in the global ocean and their impact on the marine ecosystem.
Table 5. Occurrence of invasive tunicate species in the global ocean and their impact on the marine ecosystem.
Invasive TunicateCountryOrigin TypeNegative ImpactsReference
Ascidiella aspersaArgentinaExoticSpace competition[179]
Botrylloides violaceusNetherlandsExoticSpace competition[172]
Botryllus schlosseriNetherlandsIndigenousSpace competition[172]
Botryllus schlosseri,
Botrylloides violaceus,
Ciona intestinalis,
Ciona savignyi,
Didemnum vexillum,
Molgula manhattensis,
Styela clava
USAExoticCompetitors for food and space[180,181]
Ciona intestinalisCanadaExoticMussel mortality[176]
Ciona intestinalisKoreaExoticSpace competition and damage to aquaculture[174]
Didemnum psammathodesIndiaIndigenousSpace competition[182]
Didemnum vexillumUSAExoticThreat to eelgrass[183]
Didemnum vexillumWalesExoticSpace competition[184]
Diplosoma similisAmerican SāmoaIndigenousKill corals[178]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Ramesh, C.; Tulasi, B.R.; Raju, M.; Thakur, N.; Dufossé, L. Marine Natural Products from Tunicates and Their Associated Microbes. Mar. Drugs 2021, 19, 308. https://doi.org/10.3390/md19060308

AMA Style

Ramesh C, Tulasi BR, Raju M, Thakur N, Dufossé L. Marine Natural Products from Tunicates and Their Associated Microbes. Marine Drugs. 2021; 19(6):308. https://doi.org/10.3390/md19060308

Chicago/Turabian Style

Ramesh, Chatragadda, Bhushan Rao Tulasi, Mohanraju Raju, Narsinh Thakur, and Laurent Dufossé. 2021. "Marine Natural Products from Tunicates and Their Associated Microbes" Marine Drugs 19, no. 6: 308. https://doi.org/10.3390/md19060308

APA Style

Ramesh, C., Tulasi, B. R., Raju, M., Thakur, N., & Dufossé, L. (2021). Marine Natural Products from Tunicates and Their Associated Microbes. Marine Drugs, 19(6), 308. https://doi.org/10.3390/md19060308

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop