Guidance Level for Brevetoxins in French Shellfish
Abstract
:1. Introduction
2. Results
2.1. Detailed Cases of NSP Available in the Literature
2.2. Hazard Characterisation
2.3. Recommended Guidance Level in Shellfish
3. Discussion
4. Materials and Methods
4.1. Analysis of the Literature
4.2. Guidance Level Calculation
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- ANSES. Opinion of the French Agency for Food, Environmental and Occupational Health & Safety of 2 March 2021 on the State of Knowledge on Brevetoxins in Shellfish, Data on Toxicity, Occurrence and Brevetoxin-Producing Microalgae (Request No 2020-SA-0020); The Opinion Is Accompanied by a Collective Expert Appraisal Report; ANSES: Buenos Aires, Argentina, 2021; 18p. (In French) [Google Scholar]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on marine biotoxins in shellfish—Emerging toxins: Brevetoxin group. EFSA J. 2010, 8, 1677. [CrossRef]
- Dickey, R.W.; Baden, D.; Fleming, L.E. Brevetoxins. In Assessment and Management of Biotoxin Risks in Bivalve Molluscs; FAO Fisheries and Aquaculture Technical Paper; FAO: Rome, Italy, 2011; Volume 551, pp. 51–98. [Google Scholar]
- Ishida, H.; Nozawa, A.; Nukaya, H.; Tsuji, K. Comparative Concentrations of Brevetoxins PbTx-2, PbTx-3, BTX-B1 and BTX-B5 in Cockle, Austrovenus Stutchburyi, Greenshell Mussel, Perna Canaliculus, and Pacific Oyster, Crassostrea Gigas, Involved Neurotoxic Shellfish Poisoning in New Zealand. Toxicon 2004, 43, 779–789. [Google Scholar] [CrossRef]
- Ishida, H.; Nozawa, A.; Hamano, H.; Naoki, H.; Fujita, T.; Kaspar, H.F.; Tsuji, K. Brevetoxin B5, a New Brevetoxin Analog Isolated from Cockle Austrovenus Stutchburyi in New Zealand, the Marker for Monitoring Shellfish Neuro-toxicity. Tetrahedron Lett. 2004, 45, 29–33. [Google Scholar] [CrossRef]
- Nozawa, A.; Tsuji, K.; Ishida, H. Implication of Brevetoxin B1 and PbTx-3 in Neurotoxic Shellfish Poisoning in New Zealand by Isolation and Quantitative Determination with Liquid Chromatography-Tandem Mass Spectrometry. Toxicon 2003, 42, 91–103. [Google Scholar] [CrossRef]
- Abraham, A.; Flewelling, L.J.; El Said, K.R.; Odom, W.; Geiger, S.P.; Granholm, A.A.; Jackson, J.T.; Bodager, D. An Occurrence of Neurotoxic Shellfish Poisoning by Consumption of Gastropods Contaminated with Brevetoxins. Toxicon 2021, 191, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Abraham, A.; Wang, Y.; El Said, K.R.; Plakas, S.M. Characterization of Brevetoxin Metabolism in Karenia Brevis Bloom-Exposed Clams (Mercenaria sp.) by LC-MS/MS. Toxicon 2012, 60, 1030–1040. [Google Scholar] [CrossRef]
- Naar, J.J.; Kubanek, J.; Weidner, A.; Flewelling, L.; Bourdelais, A.; Steidinger, K.; Baden, D.G. Brevetoxin Depuration in Shellfish via Production of Non-toxic Metabolites: Consequences for Seafood Safety and the Environmental Fate of Biotoxins. Harmful Algae 2002 2004, 10, 488–490. [Google Scholar]
- Young, N.; Sharpe, R.A.; Barciela, R.; Nichols, G.; Davidson, K.; Berdalet, E.; Fleming, L.E. Marine harmful algal blooms and human health: A systematic scoping review. Harmful Algae 2020, 98, 101901. [Google Scholar] [CrossRef]
- Fish and Fishery Products Hazards and Controls Guidance, Fourth Edition—March 2020, Appendix 5: FDA and EPA Safety Levels in Regulations and Guidance, FDA. Available online: https://www.fda.gov/media/80400/download (accessed on 21 July 2021).
- NOM-031-SSA1-1993: Especificaciones Sanitarias de los Moluscos Bivalvos Frescos-Refrigerados y Conge-Lados. Available online: http://www.fao.org/fishery/shared/faolextrans.jsp?xp_FAOLEX=LEX-FAOC013357&xp_faoLexLang=E&xp_lang=en (accessed on 21 July 2021).
- Victorian Fisheries Authority. Marine Biotoxin Management Plan; Victorian Fisheries Authority: Melbourne, VIC, Australia, 2017.
- Animal Products Notice: Regulated Control Scheme—Bivalve Molluscan Shellfish for Human Consumption. 2 August 2018. Ministry for Primary Industries. Available online: https://www.mpi.govt.nz/dmsdocument/30282-Animal-Products-Notice-Regulated-Control-Scheme-Bivalve-Molluscan-Shellfish-for-Human-Consumption-2018 (accessed on 21 July 2021).
- Reich, A.; Lazensky, R.; Faris, J.; Fleming, L.E.; Kirkpatrick, B.; Watkins, S.; Ullmann, S.; Kohler, K.; Hoagland, P. Assessing the impact of shellfish harvesting area closures on neurotoxic shellfish poisoning (NSP) incidence during red tide (Karenia brevis) blooms. Harmful Algae 2015, 43, 13–19. [Google Scholar] [CrossRef]
- Codex Alimentarius. Codex Alimentarius Standard for Live and Raw Bivalve Molluscs; CODEXSTAN 292–2008; The Codex Alimentarius: Rome, Italy, 2015; 9p. [Google Scholar]
- Fernandez, M.; Cembella, A. Mammalian bioassays. In Manual on Harmful Marine Microalgae; IOC Manuals and Guides No. 33; UNESCO: Paris, France, 1995; pp. 213–224. [Google Scholar]
- Amzil, Z.; Derrien, A.; Terre Terrillon, A.; Duval, A.; Connes, C.; Marco-Miralles, F.; Nézan, E.; Mertens, K.N. Monitoring the Emergence of Algal Toxins in Shellfish: First Report on Detection of Brevetoxins in French Mediterranean Mussels. Mar. Drugs 2021, 19, 393. [Google Scholar] [CrossRef]
- Huang, J.M.C.; Wu, C.H.; Baden, D.G. Depolarizing action of a red-tide dinoflagellate brevetoxin on axonal membranes. J. Pharmacol. Exp. Ther. 1984, 229, 615–621. [Google Scholar]
- Catterall, W.A.; Gainer, M. Interaction of brevetoxin A with a new receptor site on the sodium channel. Toxicon 1985, 23, 497–504. [Google Scholar] [CrossRef]
- Atchison, W.D.; Luke, V.S.; Narahashi, T.; Vogel, S.M. Nerve membrane sodium channels as the target site of brevetoxins at neuromuscular junctions. Br. J. Pharmacol. 1986, 89, 731–738. [Google Scholar] [CrossRef] [Green Version]
- Catterall, W.A.; Wisedchaisri, G.; Zheng, N. The chemical basis for electrical signaling. Nat. Chem. Biol. 2017, 13, 455–463. [Google Scholar] [CrossRef] [Green Version]
- Poli, M.A.; Mende, T.J.; Baden, D.G. Brevetoxins, unique activators of voltage-sensitive sodium channels, bind to specific sites in rat brain synaptosomes. Mol. Pharmacol. 1986, 30, 129–135. [Google Scholar] [PubMed]
- Sheridan, R.E.; Adler, M. The actions of a red tide toxin from Ptychodiscus brevis on single sodium channels in mammalian neuroblastoma cells. FEBS Lett. 1989, 247, 448–452. [Google Scholar] [CrossRef] [Green Version]
- Jeglitsch, G.; Rein, K.; Baden, D.G.; Adams, D.J. Brevetoxin-3 (PbTx-3) and its derivatives modulate single tetrodotoxin-sensitive sodium channels in rat sensory neurons. J. Pharmacol. Exp. Ther. 1998, 284, 516–525. [Google Scholar] [PubMed]
- Lombet, A.; Bidard, J.N.; Lazdunski, M. Ciguatoxin and brevetoxins share a common receptor site on the neuronal voltage-dependent Na+ channel. FEBS Lett. 1987, 219, 355–359. [Google Scholar] [CrossRef] [Green Version]
- Goldin, A.L. Diversity of mammalian voltage-gated sodium channels. Ann. N. Y. Acad. Sci. 1999, 868, 38–50. [Google Scholar] [CrossRef] [PubMed]
- de Lera Ruiz, M.; Kraus, R.L. Voltage-Gated Sodium Channels: Structure, Function, Pharmacology, and Clinical Indications. J. Med. Chem. 2015, 58, 7093–7118. [Google Scholar] [CrossRef] [PubMed]
- Dechraoui, M.Y.B.; Ramsdell, J.S. Type B brevetoxins show tissue selectivity for voltage-gated sodium channels: Comparison of brain, skeletal muscle and cardiac sodium channels. Toxicon 2003, 41, 919–927. [Google Scholar] [CrossRef]
- Konoki, K.; Baden, D.G.; Scheuer, T.; Catterall, W.A. Molecular Determinants of Brevetoxin Binding to Voltage-Gated Sodium Channels. Toxins 2019, 11, 513. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Zhou, Y.; Irvin, C.M.; Pierce, R.H.; Naar, J.; Backer, L.C.; Fleming, L.E.; Kirkpatrick, B.; Baden, D.G. Characterization of marine aerosol for assessment of human exposure to brevetoxins. Environ. Health Perspect. 2005, 113, 638–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierce, R.H.; Henry, M.S.; Blum, P.C.; Hamel, S.L.; Kirkpatrick, B.; Cheng, Y.; Zhou, Y.; Irvin, C.M.; Naar, J.; Weidner, A.; et al. Brevetoxin composition in water and marine aerosol along a Florida beach: Assessing potential human exposure to marine biotoxins. Harmful Algae 2005, 4, 965–972. [Google Scholar] [CrossRef]
- Twiner, M.J.; Bottein Dechraoui, M.Y.; Wang, Z.; Mikulski, C.M.; Henry, M.S.; Pierce, R.H.; Doucette, G.J. Extraction and analysis of lipophilic brevetoxins from the red tide dinoflagellate Karenia brevis. Anal. Biochem. 2007, 369, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Shin, C.; Hwang, J.Y.; Yoon, J.H.; Kim, S.H.; Kang, G.J. Simultaneous determination of neurotoxic shellfish toxins (brevetoxins) in commercial shellfish by liquid chromatography tandem mass spectrometry. Food Control 2018, 91, 365–371. [Google Scholar] [CrossRef]
- Dom, I.; Biré, R.; Hort, V.; Lavison-Bompard, G.; Nicolas, M.; Guérin, T. Extended targeted and non-targeted strategies for the analysis of marine toxins in mussels and oysters by (LC-HRMS). Toxins 2018, 10, 375. [Google Scholar] [CrossRef] [Green Version]
- Fire, S.E.; Flewelling, L.J.; Naar, J.; Twiner, M.J.; Henry, M.S.; Pierce, R.H.; Gannon, D.P.; Wang, Z.; Davidson, L.; Wells, R.S. Prevalence of brevetoxins in prey fish of bottlenose dolphins in Sarasota Bay, Florida. Mar. Ecol. Prog. Ser. 2008, 368, 283–294. [Google Scholar] [CrossRef] [Green Version]
- Abraham, A.; El Said, K.R.; Wang, Y.; Jester, E.L.E.; Plakas, S.M.; Flewelling, L.J.; Henry, M.S.; Pierce, R.H. Biomarkers of brevetoxin exposure and composite toxin levels in hard clam (Mercenaria sp.) exposed to Karenia brevis blooms. Toxicon 2015, 96, 82–88. [Google Scholar] [CrossRef]
- Flewelling, L.J.; Corcoran, A.A.; Granholm, A.A.; Takeuchi, N.Y.; Van Hoeck, R.V.; Zahara, M.L. Validation and Assessment of an Enzyme-Linked Immunosorbent Assay (Elisa) for Use in Monitoring and Managing Neurotoxic Shellfish Poisoning. J. Shellfish Res. 2020, 39, 491–500. [Google Scholar] [CrossRef]
- Manger, R.L.; Leja, L.S.; Lee, S.Y.; Hungerford, J.M.; Wekell, M.M. Tetrazolium-based cell bioassay for neurotoxins active on voltage-sensitive sodium channels: Semiautomated assay for saxitoxins, brevetoxins, and ciguatoxins. Anal Biochem. 1993, 214, 190–194. [Google Scholar] [CrossRef]
- Dickey, R.; Jester, E.; Granade, R.; Mowdy, D.; Moncreiff, C.; Rebarchik, D.; Robl, M.; Musser, S.; Poli, M. Monitoring brevetoxins during a Gymnodinium breve red tide: Comparison of sodium channel specific cytotoxicity assay and mouse bioassay for determination of neurotoxic shellfish toxins in shellfish extracts. Nat. Toxins 1999, 7, 157–165. [Google Scholar] [CrossRef]
- Morris, P.D.; Campbell, D.S.; Taylor, T.J.; Freeman, J.I. Clinical and epidemiological features of neurotoxic shellfish poisoning in North Carolina. Am. J. Public Health 1991, 81, 471–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacKenzie, L.; Rhodes, L.; Till, D.; Hoe Chang, F.; Kaspar, H.; Haywood, A.; Kapa, J.; Walker, B. A Gymnodinium sp. bloom and the contamination of shellfish with lipid soluble toxins in New Zealand, Jan–April 1993. In Harmful Marine Algal Blooms; Lavoisier Science Publishers: Paris, France, 1995; pp. 795–800. [Google Scholar]
- Morohashi, A.; Satake, M.; Murata, K.; Naoki, H.; Kaspar, H.F.; Yasumoto, T. Brevetoxin B3, a new brevetoxin analog isolated from the greenshell mussel perna canaliculus involved in neurotoxic shellfish poisoning in New Zealand. Tetrahedron Lett. 1995, 36, 8995–8998. [Google Scholar] [CrossRef]
- Ishida, H.; Muramatsu, N.; Nukaya, H.; Kosuge, T.; Tsuji, K. Study on neurotoxic shellfish poisoning involving the oyster, Crassostrea gigas, in New Zealand. Toxicon 1996, 34, 1050–1053. [Google Scholar] [CrossRef]
- Morohashi, A.; Satake, M.; Naoki, H.; Kaspar, H.F.; Oshima, Y.; Yasumoto, T. Brevetoxin B4 isolated from greenshell mussels Perna canaliculus, the major toxin involved in neurotoxic shellfish poisoning in New Zealand. Nat. Toxins 1999, 7, 45–48. [Google Scholar] [CrossRef]
- Todd, K. A Review of NSP Monitoring in New Zealand in Support of a New Programme; Report No. 660; Cawthron Institute: Nelson, New Zealand, 2002. [Google Scholar]
- Florida Department of Health. Neurotoxic Shellfish Poisoning Guide to Surveillance and Investigation, Last Revised: 30 December 2011. Available online: http://www.floridahealth.gov/diseases-and-conditions/disease-reporting-and-management/disease-reporting-and-surveillance/_documents/gsi-neurotoxic-shellfish.pdf (accessed on 21 July 2021).
- McFarren, E.F.; Tanabe, H.; Silva, F.J.; Wilson, W.B.; Campbell, J.E.; Lewis, K.H. The occurrence of a ciguatera-like poison in oysters, clams, and Gymnodinium breve cultures. Toxicon 1965, 3, 111–123. [Google Scholar] [CrossRef]
- Hemmert, W.H. The public health implications of Gymnodinium breve red tides, a review of the literature and recent events. In Proceedings of the First International Conference on Toxic Dinoflagellate Bloom, Boston, MA, USA, 4–6 November 1974; Massachusetts Science and Technology Foundation: Boston, MA, USA, 1995; p. 532. [Google Scholar]
- L’Herondelle, K.; Talagas, M.; Mignen, O.; Misery, L.; Le Garrec, R. Neurological Disturbances of Ciguatera Poisoning: Clinical Features and Pathophysiological Basis. Cells 2020, 9, 2291. [Google Scholar] [CrossRef]
- Gessner, B.D. Neurotoxic toxins. In Seafood and Freshwater Toxins: Pharmacology, Physiology, and Detection; Botana, L.M., Ed.; Marcel Dekker: New York, NY, USA, 2000; pp. 65–90. [Google Scholar]
- Wang, D. Neurotoxins from marine dinoflagellates: A brief review. Mar. Drugs 2008, 6, 349–371. [Google Scholar] [CrossRef]
- Watkins, S.M.; Reich, A.; Fleming, L.E.; Hammond, R. Neurotoxic shellfish poisoning. Mar. Drugs 2008, 6, 431–455. [Google Scholar] [CrossRef] [Green Version]
- Poli, M.A.; Musser, S.M.; Dickey, R.W.; Eilers, P.P.; Hall, S. Neurotoxic shellfish poisoning and brevetoxin metabolites: A case study from Florida. Toxicon 2000, 38, 981–993. [Google Scholar] [CrossRef] [Green Version]
- Terzagian, R. Five Cluster of Neurotoxic Shellfish Poisoning (NSP) in Lee County, July 2006; Florida Department of Health EPI: Tallahassee, FL, USA, 2016. [Google Scholar]
- Baden, D.G.; Mende, T.J. Toxicity of two toxins from the Florida red tide marine dinoflagellate, Ptychodiscus brevis. Toxicon 1982, 20, 457–461. [Google Scholar] [CrossRef]
- Allen, S.K.; Moss Small, J.; Kube, P.D. Genetic parameters for Crassostrea virginica and their application to family-based breeding in the mid-Atlantic, USA. Aquaculture 2021, 538, 736578. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Statement on further elaboration of the consumption figure of 400 g shellfish meat on the basis of new consumption data. EFSA J. 2010, 8, 1706. [Google Scholar] [CrossRef]
Signs and Symptoms | Outbreak Location, Date, Number of Cases (n) and Reference | ||||
---|---|---|---|---|---|
Florida (1962) n = 5 [48] | Florida (1973–74) n = 11 [49] | North Carolina (1987) n = 48 [41] | Florida (1996) n = 3 [54] | Florida (2006) n = 20 [53] | |
Abdominal pain | 45% | 48% | x | ||
Pain (undefined location) | 20–30% | ||||
Nausea | 20% | 44% | x | 80% | |
Diarrhea | 60% | 33% | 20–30% | ||
Vomiting | 10% | x | 65% | ||
Paresthesia 1 | 100% | 55% | 81% | x | 90% |
Feeling cold | 40% | ||||
Dysesthesia 2 | 40% | 17% | 5% | ||
Myalgia 3 | 13% | ||||
Vertigo 4 | 80% | 36% | 60% | 50% | |
Ataxia 5 | 40% | 27% | 65% | ||
Tremor | 6% | ||||
Muscle weakness | 80% | ||||
Cramping | 20–30% | ||||
Muscle contractions | 9% | 20–30% | |||
Rectal pain | 20% | ||||
Asthenia | 31% | x | 20–30% | ||
Malaise | 50% | ||||
Chills | 21% | ||||
Headache | 9% | 15% | 20–30% | ||
Mydriasis 6 | 80% | ||||
Blurred vision | ≤ 10% | ||||
Bradycardia | 40% | ||||
Slurred speech | 55% | ||||
Partial paralysis | 9% | 20–30% | |||
Respiratory discomfort | 35% | ||||
Chest pain | ≤10% | ||||
Sweating | ≤10% | ||||
Fever | ≤10% | ||||
Respiratory distress | 9% | x | ≤10% | ||
Tachycardia | x | ≤10% | |||
Loss of consciousness | x | ||||
Convulsions | 9% | x | |||
Seizures | x | ||||
Coma | 9% | ||||
Sever neurological symptoms | 5% | ||||
Decerebrate posturing 7 | 9% |
Studies | Lowest Levels with Symptoms (“Acute LOAELs”) | Corresponding Minimum Concentrations in Shellfish Flesh Associated with Symptoms |
---|---|---|
McFarren et al. (1965) [48] | 405–540 MU/person for moderate symptoms 54–81 MU/person induced minor symptoms (paresthesia) in one case (we revised this level to 27–40.5 MU/person *) 91 MU/person for moderate symptoms | 135 MU/100 g 135 MU/100 >65 MU/100 g |
Hemmert, 1975 [49] | 0.3–0.4 MU/kg bw | 75–118 MU/100 g |
Morris, 1991 [41] | n.a | 35 and 60 MU/100 g |
Watkins, 2008;Terzagian, 2006 [53,55] | n.a | 24 and 42.9 mg BTX-3 eq./kg (ELISA) |
For comparison, the maximum level used by the Codex Alimentarius, US FDA, Australia/New Zealand and Mexico [11,12,13,14,16] | 20 MU/100 g 800 µg BTX-2/kg |
Exposure (MU/Person) | Exposure (μg BTX-3 eq./Person) | ||
---|---|---|---|
“acute LOAEL” | Hemmert (1975) a [49] Mc Farren et al. (1965) a [48] | 21–28 b 27–40.5 c | 71.4–95.2 91.8–137.7 |
Shellfish at CODEX maximum permitted level (20 MU/100 g) | French consumption of clams d | ||
P95 = 50 g P97.5 = 60 g | 10 12 | 34 68 | |
French consumption of oysters d | |||
P95 = 182.4 g P97.5 = 255 g | 36.5 51 | 124.1 173.4 | |
French consumption of mussels d | |||
P95 = 200 g P97.5 = 300 g | 40 60 | 136 204 | |
Large portion size of 400 g [58] | 80 | 272 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arnich, N.; Abadie, E.; Amzil, Z.; Dechraoui Bottein, M.-Y.; Comte, K.; Chaix, E.; Delcourt, N.; Hort, V.; Mattei, C.; Molgó, J.; et al. Guidance Level for Brevetoxins in French Shellfish. Mar. Drugs 2021, 19, 520. https://doi.org/10.3390/md19090520
Arnich N, Abadie E, Amzil Z, Dechraoui Bottein M-Y, Comte K, Chaix E, Delcourt N, Hort V, Mattei C, Molgó J, et al. Guidance Level for Brevetoxins in French Shellfish. Marine Drugs. 2021; 19(9):520. https://doi.org/10.3390/md19090520
Chicago/Turabian StyleArnich, Nathalie, Eric Abadie, Zouher Amzil, Marie-Yasmine Dechraoui Bottein, Katia Comte, Estelle Chaix, Nicolas Delcourt, Vincent Hort, César Mattei, Jordi Molgó, and et al. 2021. "Guidance Level for Brevetoxins in French Shellfish" Marine Drugs 19, no. 9: 520. https://doi.org/10.3390/md19090520
APA StyleArnich, N., Abadie, E., Amzil, Z., Dechraoui Bottein, M. -Y., Comte, K., Chaix, E., Delcourt, N., Hort, V., Mattei, C., Molgó, J., & Le Garrec, R. (2021). Guidance Level for Brevetoxins in French Shellfish. Marine Drugs, 19(9), 520. https://doi.org/10.3390/md19090520