Synthesis and Antifouling Activity Evaluation of Analogs of Bromosphaerol, a Brominated Diterpene Isolated from the Red Alga Sphaerococcus coronopifolius
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Biological Material
3.3. Extraction and Isolation
3.4. Synthesis of Analogs of Bromosphaerol
3.4.1. Synthesis of Analogs 2 and 3
3.4.2. Synthesis of Analogs 4–6
3.4.3. Synthesis of Analogs 7 and 8
3.4.4. Synthesis of Analogs 9 and 10
3.4.5. Synthesis of Analog 11
3.4.6. Synthesis of Analogs 12–16
3.5. Evaluation of Settlement Inhibitory Activity
3.6. Evaluation of Toxicity
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Almeida, J.R.; Correia-da-Silva, M.; Sousa, E.; Antunes, J.; Pinto, M.; Vasconcelos, V.; Cunha, I. Antifouling potential of nature inspired sulfated compounds. Sci. Rep. 2017, 7, 42424. [Google Scholar] [CrossRef] [Green Version]
- Bloecher, N.; Floerl, O. Efficacy testing of novel antifouling coatings for pen nets in aquaculture: How good are alternatives to traditional copper coatings? Aquaculture 2020, 519, 734936. [Google Scholar] [CrossRef]
- Chen, L.; Duan, Y.; Cui, M.; Huang, R.; Su, R.; Qi, W.; He, Z. Biomimetic surface coatings for marine antifouling: Natural antifoulants, synthetic polymers and surface microtopography. Sci. Total Environ. 2021, 766, 1444692. [Google Scholar] [CrossRef] [PubMed]
- Feng, K.; Ni, C.; Yua, L.; Zhou, W.; Li, X. Synthesis and antifouling evaluation of indole derivatives. Ecotoxicol. Environ. Saf. 2019, 182, 109423. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Chen, R.; Lou, L.; Jing, X.; Liu, Q.; Liu, J.; Yu, J.; Liu, P.; Wang, J. Layer-by-layer-assembled antifouling films with surface microtopography inspired by Laminaria japonica. Appl. Surf. Sci. 2020, 511, 145564. [Google Scholar] [CrossRef]
- Kolter, R.; Greenberg, E.P. The superficial life of microbes. Nature 2006, 441, 300–302. [Google Scholar] [CrossRef]
- Leonardi, A.K.; Ober, C.K. Polymer-based marine antifouling and fouling release surfaces: Strategies for synthesis and modification. Annu. Rev. Chem. Biomol. Eng. 2019, 10, 241–264. [Google Scholar] [CrossRef]
- Liu, S.; Guo, W. Anti-Biofouling and healable materials: Preparation, mechanisms, and biomedical applications. Adv. Funct. Mater. 2018, 28, 1800596. [Google Scholar] [CrossRef]
- Talluri, S.N.L.; Winter, R.M.; David, R.; Salem, D.R. Conditioning film formation and its influence on the initial adhesion and biofilm formation by a cyanobacterium on photobioreactor materials. Biofouling 2020, 36, 183–199. [Google Scholar] [CrossRef]
- Chavan, P.; Kumar, R.; Kirubagaran, R.; Venugopalan, V.P. Comparative toxicological effects of two antifouling biocides on the marine diatom Chaetoceros lorenzianus: Damage and post-exposure recovery. Ecotoxicol. Environ. Saf. 2017, 144, 97–106. [Google Scholar] [CrossRef]
- Jagerbrand, A.K.; Brutemark, A.; Sveden, J.B.; Gren, I.M. A review on the environmental impacts of shipping on aquatic and nearshore ecosystems. Sci. Total Environ. 2019, 695, 133637. [Google Scholar] [CrossRef]
- Majik, M.S.; Rodrigues, C.; Mascarenhas, S.; D’Souza, L. Design and synthesis of marine natural product-based 1H-indole-2,3-dione scaffold as a new antifouling/antibacterial agent against fouling bacteria. Bioorganic Chem. 2014, 54, 89–95. [Google Scholar] [CrossRef]
- Callow, M.E.; Callow, J.E. Marine biofouling: A sticky problem. Biologist 2002, 49, 10–14. [Google Scholar] [PubMed]
- Cho, Y.; Jeon, K.H.; Lee, S.B.; Park, H.; Lee, I. Evaluation of in-service speed performance improvement by means of FDR-AF (frictional drag reducing anti-fouling) marine coating based on ISO19030 standard. Sci. Rep. 2021, 11, 1062. [Google Scholar] [CrossRef] [PubMed]
- Hunsucker, K.Z.; Ralston, E.; Gardner, H.; Swain, G. Specialized grooming as a mechanical method to prevent marine invasive species recruitment and transport on ship hulls. In Impacts of Invasive Species on Coastal Environments; Makowski, C., Finkl, C.W., Eds.; Springer International Publishing AG: Cham, Switzerland, 2019; pp. 247–265. [Google Scholar] [CrossRef]
- Kamensky, K.M.; Hellum, A.M.; Mukherjee, R.; Naik, A.; Moisander, P.H. Underwater shear-based grooming of marine biofouling using a non-contact Bernoulli pad device. Biofouling 2020, 36, 951–964. [Google Scholar] [CrossRef] [PubMed]
- Manolakis, I.; Azhar, U. Recent Advances in mussel-inspired synthetic polymers as marine antifouling coatings. Coatings 2020, 10, 653. [Google Scholar] [CrossRef]
- Schultz, M.P.; Bendick, J.A.; Holm, E.R.; Hertel, W.M. Economic impact of biofouling on a naval surface ship. Biofouling 2011, 27, 87–98. [Google Scholar] [CrossRef]
- Almeida, E.; Diamantino, T.C.; de Sousa, O. Marine paints: The particular case of antifouling paints. Prog. Org. Coat. 2007, 59, 2–20. [Google Scholar] [CrossRef]
- Finnegan, C.; Ryan, D.; Enright, A.M.; Garcia-Cabellos, G. A review of strategies for the detection and remediation of organotin pollution. Crit. Rev. Environ. Sci. Technol. 2018, 48, 77–118. [Google Scholar] [CrossRef]
- Szeto, W.; Leung, M.K.H.; Leung, D.Y.C. Recent developments of titanium dioxide materials for aquatic antifouling application. J. Mar. Sci. Technol. 2021, 26, 301–321. [Google Scholar] [CrossRef]
- Yebra, D.M.; Kiil, S.; Dam-Johansen, K. Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog. Org. Coat. 2004, 50, 75–104. [Google Scholar] [CrossRef]
- Schøyen, M.; Green, N.W.; Hjermann, D.Ø.; Tveiten, L.; Beylich, B.; Øxnevad, S.; Beyer, J. Levels and trends of tributyltin (TBT) and imposex in dogwhelk (Nucella lapillus) along the Norwegian coastline from 1991 to 2017. Mar. Environ. Res. 2018, 144, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Thomas, K.V.; Brooks, S. The environmental fate and effects of antifouling paint biocides. Biofouling 2010, 26, 73–88. [Google Scholar] [CrossRef]
- Chapman, J.; Hellio, C.; Sullivan, T.; Brown, R.; Russell, S.; Kiterringham, E.; Nor, L.; Regan, F. Bioinspired synthetic macroalgae: Examples from nature for antifouling applications. Int. Biodeter. Biodegr. 2014, 86, 6–13. [Google Scholar] [CrossRef]
- Readman, J.W. Development, occurrence and regulation of antifouling paint biocides: Historical review and future trends. In Antifouling Paint Biocides. The Handbook of Environmental Chemistry; Konstantinou, I., Ed.; Springer: Heidelburg, Germany, 2006; Volume 50, pp. 1–15. [Google Scholar] [CrossRef]
- Pistone, A.; Scolaro, C.; Visco, A. Mechanical properties of protective coatings against marine fouling: A Review. Polymers 2021, 13, 173. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Xu, K.; Hu, J.; Zhang, S.; Cao, G.; Shao, G. Durable self-polishing antifouling Cu-Ti coating by a micron-scale Cu/Ti laminated microstructure design. J. Mater. Sci. Technol. 2021, 79, 62–74. [Google Scholar] [CrossRef]
- Fusetani, N. Antifouling marine natural products. Nat. Prod. Rep. 2011, 28, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Yu, L.; Mou, J.; Wu, D.; Xu, M.; Zhou, P.; Ren, Y. Research strategies to develop environmentally friendly marine antifouling coatings. Mar. Drugs 2020, 18, 371. [Google Scholar] [CrossRef]
- Kirschner, C.M.; Brennan, A.B. Bio-inspired antifouling strategies. Annu. Rev. Mater. Res. 2012, 42, 211–229. [Google Scholar] [CrossRef]
- Selim, M.S.; El-Safty, S.A.; Shenashen, M.A.; Higazy, S.A.; Elmarakbi, A. Progress in biomimetic leverages for marine antifouling using nanocomposite coatings. J. Mater. Chem. B 2020, 8, 3701–3732. [Google Scholar] [CrossRef]
- Wang, K.L.; Wu, Z.H.; Wang, Y.; Wang, C.Y.; Xu, Y. Mini-Review: Antifouling natural products from marine microorganisms and their synthetic analogs. Mar. Drugs 2017, 15, 266. [Google Scholar] [CrossRef] [Green Version]
- Dahms, H.U.; Dobretsov, S. Antifouling compounds from marine macroalgae. Mar. Drugs 2017, 15, 265. [Google Scholar] [CrossRef]
- Saha, M.; Goecke, F.; Bhadury, P. Mini review: Algal natural compounds and extracts as antifoulants. J. Appl. Phycol. 2018, 30, 1859–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piazza, V.; Roussis, V.; Garaventa, F.; Greco, G.; Smyrniotopoulos, V.; Vagias, C.; Faimali, M. Terpenes from the red alga Sphaerococcus coronopifolius inhibit the settlement of barnacles. Mar. Biotechnol. 2011, 13, 764–772. [Google Scholar] [CrossRef]
- Protopapa, M.; Kotsiri, M.; Mouratidis, S.; Roussis, V.; Ioannou, E.; Dedos, S.G. Evaluation of antifouling potential and ecotoxicity of secondary metabolites derived from red algae of the genus Laurencia. Mar. Drugs 2019, 17, 646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cafieri, F.; Ciminiello, P.; Santacroce, C.; Fattorusso, E. Three diterpenes from the red alga Sphaerococcus coronopifolius. Phytochemistry 1983, 22, 1824–1825. [Google Scholar] [CrossRef]
- Schade, D.; Kotthaus, J.; Klein, N.; Kotthaus, J.; Clement, B. Prodrug design for the potent cardiovascular agent Nω-hydroxy-l-arginine (NOHA): Synthetic approaches and physicochemical characterization. Org. Biomol. Chem. 2011, 9, 5249–5259. [Google Scholar] [CrossRef] [PubMed]
- Walters, I.; Birch, L.; Hill-Cousins, J.; Collingwood, S.P.; Stevenson, C.S. Indolinones Compounds and Their Use in The Treatment of Fibrotic Diseases. U.S. Patent WO 2017/109513 A1, 29 June 2017. [Google Scholar]
- Rittschof, D.; Clare, A.S.; Gerhart, D.J.; Sister Avelin, M.; Bonaventura, J. Barnacle in vitro assays for biologically active substance: Toxicity and settlement inhibition assay using mass cultured Balanus amphitrite Darwin. Biofouling 1992, 6, 115–122. [Google Scholar] [CrossRef]
- Finney, D.J. Bioassay and the practice of statistical inference. Int. Stat. Rev. Rev. Int. Stat. 1979, 47, 1–12. [Google Scholar] [CrossRef]
Compounds | EC50 (72 h) Cypris Larvae Settlement Inhibition | LC50(cypris) (72 h) Cypris Larvae Mortality | LC50(nauplii) (48 h) Naupliar Mortality | TRN (LC50(nauplii)/EC50) | TRC (LC50(cypris)/EC50) |
---|---|---|---|---|---|
1 | 0.23 (0.17–0.30) | >100 | 3.63 (3.05–4.33) | 15.78 | 434.78 |
2 | 10.44 † | 25.2 † | 2.75 (2.47–3.07) | 0.26 | 2.39 |
4 | 7.19 (4.57–11.3) | >50 | 1.27 † | 0.17 | 6.95 |
6 | 7.53 (5.82–9.73) | 10.2 † | 7.57 (6.10–9.38) | 1.00 | 1.32 |
7 | 8.75 (6.75–11.34) | >50 | 11.53 (9.53–13.95) | 1.31 | >5.71 |
8 | >50 | >50 | >50 | n.d. ‡ | n.d. ‡ |
9 | <0.5 | >50 | 1.19 † | 2.38 | >100 |
10 | 3.87 † | >50 | 2.31 † | 0.59 | 12.90 |
11 | >50 | >50 | 21.64 (16.57–28.28) | n.d. ‡ | n.d. ‡ |
12 | >50 | >50 | 1.21 † | n.d. ‡ | n.d. ‡ |
13 | <0.5 | >50 | 1.26 † | 2.52 | >100 |
14 | >50 | >50 | >50 | n.d. ‡ | n.d. ‡ |
15 | <0.5 | 12.5 † | 1.81 † | 3.62 | 25.00 |
16 | <0.5 | 2.7 † | 1.36 † | 2.72 | 5.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prousis, K.C.; Kikionis, S.; Ioannou, E.; Morgana, S.; Faimali, M.; Piazza, V.; Calogeropoulou, T.; Roussis, V. Synthesis and Antifouling Activity Evaluation of Analogs of Bromosphaerol, a Brominated Diterpene Isolated from the Red Alga Sphaerococcus coronopifolius. Mar. Drugs 2022, 20, 7. https://doi.org/10.3390/md20010007
Prousis KC, Kikionis S, Ioannou E, Morgana S, Faimali M, Piazza V, Calogeropoulou T, Roussis V. Synthesis and Antifouling Activity Evaluation of Analogs of Bromosphaerol, a Brominated Diterpene Isolated from the Red Alga Sphaerococcus coronopifolius. Marine Drugs. 2022; 20(1):7. https://doi.org/10.3390/md20010007
Chicago/Turabian StyleProusis, Kyriakos C., Stefanos Kikionis, Efstathia Ioannou, Silvia Morgana, Marco Faimali, Veronica Piazza, Theodora Calogeropoulou, and Vassilios Roussis. 2022. "Synthesis and Antifouling Activity Evaluation of Analogs of Bromosphaerol, a Brominated Diterpene Isolated from the Red Alga Sphaerococcus coronopifolius" Marine Drugs 20, no. 1: 7. https://doi.org/10.3390/md20010007
APA StyleProusis, K. C., Kikionis, S., Ioannou, E., Morgana, S., Faimali, M., Piazza, V., Calogeropoulou, T., & Roussis, V. (2022). Synthesis and Antifouling Activity Evaluation of Analogs of Bromosphaerol, a Brominated Diterpene Isolated from the Red Alga Sphaerococcus coronopifolius. Marine Drugs, 20(1), 7. https://doi.org/10.3390/md20010007