The Tetrahydrofuran Motif in Marine Lipids and Terpenes
Abstract
:1. Introduction
2. Lipids
2.1. Lipid Alcohols
C19 Lipid Diols
2.2. Fatty Acids
2.2.1. Petromyroxols
2.2.2. PMA
2.2.3. Mutafurans
2.2.4. Aspericacids
3. Terpenes
3.1. Monoterpenes
3.1.1. Pantofuranoids
3.1.2. Furoplocamioids
3.2. Sesquiterpenes
3.2.1. Heronapyrrols
3.2.2. Kumausallene and Kumausyne
3.3. Diterpenes
3.3.1. Darwinolide
3.3.2. Uprolides
3.4. Triterpenes
3.4.1. Intricatetraol
3.4.2. Omaezakianol
3.4.3. Longilenes
3.4.4. Laurokanols and Yucatecone
3.4.5. Thyrsenol
3.4.6. Saiyacenol
3.4.7. Teurilene
3.4.8. Thyrsiferol
3.4.9. Rhabdastins
3.5. Meroterpenes
3.5.1. Alisiaquinones and Alisiaquinol
3.5.2. Tricycloalterfurenes
3.5.3. Marinoterpins
4. Other Tetrahydrofuran Derivatives
4.1. Substituted Tetrahydrofurans
4.1.1. Pachastrissamine (Jaspine B)
4.1.2. Myrothecols
4.1.3. Astronypyrone, Astronyquinone, and Astronyurea
4.1.4. Sinularones
4.1.5. (+)-Varitriol
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Jiménez, C. Marine Natural Products in Medicinal Chemistry. ACS Med. Chem. Lett. 2018, 9, 959–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine Natural Products. Nat. Prod. Rep. 2021, 38, 362–413. [Google Scholar] [CrossRef]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine Natural Products. Nat. Prod. Rep. 2020, 37, 175–223. [Google Scholar] [CrossRef] [PubMed]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine Natural Products. Nat. Prod. Rep. 2019, 36, 122–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuwa, H. Structure determination, correction, and disproof of marine macrolide natural products by chemical synthesis. Org. Chem. Front. 2021, 8, 3990–4023. [Google Scholar] [CrossRef]
- Caso, A.; da Silva, F.B.; Esposito, G.; Teta, R.; Sala, G.D.; Cavalcanti, L.P.A.N.; Valverde, A.L.; Martins, R.C.C.; Costantino, V. Exploring Chemical Diversity of Phorbas Sponges as a Source of Novel Lead Compounds in Drug Discovery. Mar. Drugs 2021, 19, 667. [Google Scholar] [CrossRef]
- Ebada, S.S.; Lin, W.H.; Proksch, P. Bioactive sesterterpenes and tripterpenes from marine sponges: Ocurrence and pharmacological significance. Mar. Drugs 2010, 8, 313–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebel, R. Terpenes from Marine-Derived Fungi. Mar. Drugs 2010, 8, 2340–2368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elissawy, A.M.; El-Shazly, M.; Ebada, S.S.; Singab, A.B.; Proksch, P. Bioactive Terpenes from Marine-Derived Fungi. Mar. Drugs 2015, 13, 1966–1992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, M.; Wu, Z.; Guo, H.; Liu, L.; Chen, S. A Review of Terpenes from Marine-Derived Fungi: 2015–2019. Mar. Drugs 2020, 18, 321. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Sun, J.; Chen, J.; Zhang, H.; Guo, Y.-W.; Wang, H. Terpenoids from Marine Soft Coral of the Genus Lemnalia: Chemistry and Biological Activities. Mar. Drugs 2018, 16, 320. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.-C.; Sheu, J.-H.; Wu, Y.-C.; Sung, P.-J. Terpenoids from Octocorals of the Genus Pachyclavularia. Mar. Drugs 2017, 15, 382. [Google Scholar] [CrossRef] [Green Version]
- Avila, C. Terpenoids in Marine Heterobranch Molluscs. Mar. Drugs 2020, 18, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegazy, M.E.F.; Mohamed, T.A.; Alhammady, M.A.; Shaheen, A.M.; Reda, E.H.; Elshamy, A.I.; Aziz, M.; Paré, P.W. Molecular Architecture and Biomedical Leads of Terpenes from Red Sea Marine Invertebrates. Mar. Drugs 2015, 13, 3154–3181. [Google Scholar] [CrossRef] [PubMed]
- Nasir, N.M.; Ermanis, K.; Clarke, P.A. Strategies for the construction of tetrahydropyran rings in the synthesis of natural products. Org. Biomol. Chem. 2014, 12, 3323–3335. [Google Scholar] [CrossRef] [PubMed]
- Fuwa, H. Contemporary Strategies for the Synthesis of Tetrahydropyran Derivatives: Application to Total Synthesis of Neopeltolide, a Marine Macrolide Natural Product. Mar. Drugs 2016, 14, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbero, H.; Díez-Poza, C.; Barbero, A. The Oxepane Motif in Marine Drugs. Mar. Drugs 2017, 15, 361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, R.A.; Pathare, R.S.; Gorve, D.A. Advances in Total Synthesis of Some 2,3,5-Trisubstituted Tetrahydrofuran Natural Products. Chem. Asian J. 2020, 15, 2815–2837. [Google Scholar] [CrossRef]
- Fernandes, R.A.; Gorve, D.A.; Pathare, R.S. Emergence of 2,3,5-trisubstituted tetrahydrofuran natural products and their synthesis. Org. Biomol. Chem. 2020, 18, 7002–7025. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Peña, L.; Díez-Poza, C.; González-Andrés, P.; Barbero, A. The Tetrahydrofuran Motif in Polyketide Marine Drugs. Mar. Drugs 2022, 20, 120. [Google Scholar] [CrossRef]
- Warren, R.G.; Wells, R.J.; Blount, J.F. A novel lipid from the brown alga Notheia anomala. Aust. J. Chem. 1980, 33, 891–898. [Google Scholar] [CrossRef]
- Capon, R.J.; Barrow, R.A.; Rochfort, S.; Jobling, M.; Skene, C.; Lacey, E.; Gill, J.H.; Friedel, T.; Wadsworth, D. Marine nematocides: Tetrahydrofurans from a southern Australian brown alga, Notheia anomala. Tetrahedron 1998, 54, 2227–2242. [Google Scholar] [CrossRef]
- Jang, H.; Shin, I.; Lee, D.; Kim, H.; Kim, D. Stereoselective Substrate-Controlled Asymmetric Syntheses of both 2,5-cis- and 2,5-trans-Tetrahydrofuranoid Oxylipids: Stereodivergent Intramolecular Amide Enolate Alkylation. Angew. Chem. Int. Ed. 2016, 55, 6497–6501. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Huertas, M.; Brant, C.; Chung-Davidson, Y.-W.; Bussy, U.; Hoye, T.R.; Li, W. (+)- and (−)-Petromyroxols: Antipodal Tetrahydrofurandiols from Larval Sea Lamprey (Petromyzon marinus L.) That Elicit Enantioselective Olfactory Responses. Org. Lett. 2015, 17, 286–289. [Google Scholar] [CrossRef]
- Mullapudi, V.; Ahmad, I.; Senapati, S.; Ramana, C.V. Total Synthesis of (+)-Petromyroxol, (−)-iso-Petromyroxol, and Possible Diastereomers. ACS Omega 2020, 5, 25334–25348. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Brant, C.O.; Huertas, M.; Hessler, E.J.; Mezei, G.; Scott, A.M.; Hoye, T.R.; Li, W. Fatty-acid derivative acts as a sea lamprey migratory pheromone. PNAS 2018, 115, 8603. [Google Scholar] [CrossRef] [Green Version]
- Morinaka, B.I.; Skepper, C.K.; Molinski, T.F. Ene-yne Tetrahydrofurans from the Sponge Xestospongia muta. Exploiting a Weak CD Effect for Assignment of Configuration. Org. Lett. 2007, 9, 1975–1978. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Lu, Y.; Lin, X.; Yang, B.; Yang, X.; Liu, Y. Brominated aliphatic hydrocarbons and sterols from the sponge Xestospongia testudinaria with their bioactivities. Chem. Phys. Lipids 2011, 164, 703–706. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, L.; Zhang, Z.; Yan, X.; He, S. New antifungal tetrahydrofuran derivatives from a marine sponge-associated fungus Aspergillus sp. LS78. Fitoterapia 2020, 146, 104677. [Google Scholar] [CrossRef] [PubMed]
- Cueto, M.; Darias, J. Uncommon tetrahydrofuran monoterpenes from Antarctic Pantoneura plocamioides. Tetrahedron 1996, 52, 5899–5906. [Google Scholar] [CrossRef]
- Blanc, A.; Toste, F.D. Enantioselective Synthesis of Cyclic Ethers through a Vanadium-Catalyzed Resolution/Oxidative Cyclization. Angew. Chem. Int. Ed. 2006, 45, 2096–2099. [Google Scholar] [CrossRef] [PubMed]
- Darias, J.; Rovirosa, J.; San Martin, A.; Díaz, A.-R.; Dorta, E.; Cueto, M. Furoplocamioids A− C, Novel Polyhalogenated Furanoid Monoterpenes from Plocamium c artilagineum. J. Nat. Prod. 2001, 64, 1383–1387. [Google Scholar] [CrossRef]
- Díaz-Marrero, A.R.; Cueto, M.; Dorta, E.; Rovirosa, J.; San-Martín, A.; Darias, J. New halogenated monoterpenes from the red alga Plocamium cartilagineum. Tetrahedron 2002, 58, 8539–8542. [Google Scholar] [CrossRef]
- Argandoña, V.H.; Rovirosa, J.; San-Martín, A.; Riquelme, A.; Díaz-Marrero, A.R.; Cueto, M.; Darias, J.; Santana, O.; Guadaño, A.; González-Coloma, A. Antifeedant Effects of Marine Halogenated Monoterpenes. J. Agric. Food. Chem. 2002, 50, 7029–7033. [Google Scholar] [CrossRef] [PubMed]
- Raju, R.; Piggott, A.M.; Barrientos Diaz, L.X.; Khalil, Z.; Capon, R.J. Heronapyrroles A−C: Farnesylated 2-Nitropyrroles from an Australian Marine-Derived Streptomyces sp. Org. Lett. 2010, 12, 5158–5161. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.; Khalil, Z.; Capon, R.J.; Stark, C.B. Heronapyrrole D: A case of co-inspiration of natural product biosynthesis, total synthesis and biodiscovery. Beilstein J. Org. Chem. 2014, 10, 1228–1232. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, J.; Stark, C.B.W. Biomimetic Synthesis and Proposal of Relative and Absolute Stereochemistry of Heronapyrrole C. Org. Lett. 2012, 14, 4042–4045. [Google Scholar] [CrossRef]
- Schmidt, J.; Stark, C.B.W. Synthetic Endeavors toward 2-Nitro-4-Alkylpyrroles in the Context of the Total Synthesis of Heronapyrrole C and Preparation of a Carboxylate Natural Product Analogue. J. Org. Chem. 2014, 79, 1920–1928. [Google Scholar] [CrossRef]
- Ding, X.-B.; Furkert, D.P.; Capon, R.J.; Brimble, M.A. Total Synthesis of Heronapyrrole C. Org. Lett. 2014, 16, 378–381. [Google Scholar] [CrossRef]
- Ding, X.-B.; Brimble, M.A.; Furkert, D.P. Nitropyrrole natural products: Isolation, biosynthesis and total synthesis. Org. Biomol. Chem. 2016, 14, 5390–5401. [Google Scholar] [CrossRef]
- Ding, X.-B.; Furkert, D.P.; Brimble, M.A. 2-Nitropyrrole cross-coupling enables a second generation synthesis of the heronapyrrole antibiotic natural product family. Chem. Commun. 2016, 52, 12638–12641. [Google Scholar] [CrossRef]
- Ding, X.-B.; Brimble, M.A.; Furkert, D.P. Reactivity of 2-Nitropyrrole Systems: Development of Improved Synthetic Approaches to Nitropyrrole Natural Products. J. Org. Chem. 2018, 83, 12460–12470. [Google Scholar] [CrossRef]
- Suzuki, T.; Koizumi, K.; Suzuki, M.; Kurosawa, E. Kumausalle, a new bromoallene from the marine red alga laurencia nipponica yamada. Chem. Lett. 1983, 12, 1639–1642. [Google Scholar] [CrossRef] [Green Version]
- Grese, T.A.; Hutchinson, K.D.; Overman, L.E. General approach to halogenated tetrahydrofuran natural products from red algae of the genus Laurencia. Total synthesis of (.+-.)-kumausallene and (.+-.)-1-epi-kumausallene. J. Org. Chem. 1993, 58, 2468–2477. [Google Scholar] [CrossRef]
- Werness, J.B.; Tang, W. Stereoselective Total Synthesis of (−)-Kumausallene. Org. Lett. 2011, 13, 3664–3666. [Google Scholar] [CrossRef]
- Das, S.; Ramana, C.V. A formal total synthesis of (−)-kumausallene. Tetrahedron 2015, 71, 8577–8584. [Google Scholar] [CrossRef]
- Suzuki, T.; Koizumi, K.; Suzuki, M.; Kurosawa, E. Kumausynes and deacetylkumausynes, four new halogenated C-15 acetylenes from the red alga Laurencia nipponica Yamada. Chem. Lett. 1983, 12, 1643–1644. [Google Scholar] [CrossRef]
- Brown, M.J.; Harrison, T.; Overman, L.E. General approach to halogenated tetrahydrofuran natural products from red algae of the genus Laurencia. Total synthesis of (.+-.)-trans-kumausyne and demonstration of an asymmetric synthesis strategy. J. Am. Chem. Soc. 1991, 113, 5378–5384. [Google Scholar] [CrossRef]
- Von Salm, J.L.; Witowski, C.G.; Fleeman, R.M.; McClintock, J.B.; Amsler, C.D.; Shaw, L.N.; Baker, B.J. Darwinolide, a New Diterpene Scaffold That Inhibits Methicillin-Resistant Staphylococcus aureus Biofilm from the Antarctic Sponge Dendrilla membranosa. Org. Lett. 2016, 18, 2596–2599. [Google Scholar] [CrossRef]
- Shilling, A.J.; Witowski, C.G.; Maschek, J.A.; Azhari, A.; Vesely, B.A.; Kyle, D.E.; Amsler, C.D.; McClintock, J.B.; Baker, B.J. Spongian Diterpenoids Derived from the Antarctic Sponge Dendrilla antarctica Are Potent Inhibitors of the Leishmania Parasite. J. Nat. Prod. 2020, 83, 1553–1562. [Google Scholar] [CrossRef]
- Siemon, T.; Steinhauer, S.; Christmann, M. Synthesis of (+)-Darwinolide, a Biofilm-Penetrating Anti-MRSA Agent. Angew. Chem. Int. Ed. 2019, 58, 1120–1122. [Google Scholar] [CrossRef]
- Rodríguez, A.D.; Piña, I.C.; Soto, J.J.; Rojas, D.R.; Barnes, C.L. Isolation and structures of the uprolides. I. Thirteen new cytotoxic cembranolides from the Caribbean gorgonian Euniceamammosa. Can. J. Chem. 1995, 73, 643–654. [Google Scholar] [CrossRef]
- Rodríguez, A.D.; Soto, J.J.; Piña, I.C. Uprolides D-G, 2. A Rare Family of 4,7-Oxa-bridged Cembranolides from the Caribbean Gorgonian Eunicea mammosa. J. Nat. Prod. 1995, 58, 1209–1216. [Google Scholar] [CrossRef]
- Rodríguez, A.D.; Soto, J.J.; Barnes, C.L. Synthesis of Uprolide D− G Analogues. Revision of Structure of the Marine Cembranolides Uprolide F Diacetate and Uprolide G Acetate. J. Org. Chem. 2000, 65, 7700–7702. [Google Scholar] [CrossRef]
- Zhu, L.; Tong, R. Structural Revision of (+)-Uprolide F Diacetate Confirmed by Asymmetric Total Synthesis. Org. Lett. 2015, 17, 1966–1969. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, Y.; Ma, R.; Tong, R. Total Synthesis and Structural Revision of (+)-Uprolide G Acetate. Angew. Chem. Int. Ed. 2015, 54, 627–632. [Google Scholar] [CrossRef]
- Zhu, L.; Tong, R. Structural Revision of Uprolide G Acetate: Effective Interplay between NMR Data Analysis and Chemical Synthesis. Synlett 2015, 26, 1643–1648. [Google Scholar] [CrossRef]
- Ramana, C.V.; Salian, S.R.; Gurjar, M.K. Central core of uprolides D and E: A survey of some ring closing metathesis approaches. Tetrahedron Lett. 2007, 48, 1013–1016. [Google Scholar] [CrossRef]
- Marshall, J.A.; Griot, C.A.; Chobanian, H.R.; Myers, W.H. Synthesis of a Lactone Diastereomer of the Cembranolide Uprolide D. Org. Lett. 2010, 12, 4328–4331. [Google Scholar] [CrossRef]
- Torres-Mendoza, D.; González, Y.; Gómez-Reyes, J.F.; Guzmán, H.M.; López-Perez, J.L.; Gerwick, W.H.; Fernandez, P.L.; Gutiérrez, M. Uprolides N, O and P from the Panamanian Octocoral Eunicea succinea. Molecules 2016, 21, 819. [Google Scholar] [CrossRef]
- Suzuki, M.; Matsuo, Y.; Takeda, S.; Suzuki, T. Intricatetraol, a halogenated triterpene alcohol from the red alga Laurencia intricata. Phytochemistry 1993, 33, 651–656. [Google Scholar] [CrossRef]
- Morimoto, Y.; Takaishi, M.; Adachi, N.; Okita, T.; Yata, H. Two-directional synthesis and stereochemical assignment toward a C2 symmetric oxasqualenoid (+)-intricatetraol. Org. Biomol. Chem. 2006, 4, 3220–3222. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, Y.; Okita, T.; Takaishi, M.; Tanaka, T. Total Synthesis and Determination of the Absolute Configuration of (+)-Intricatetraol. Angew. Chem. Int. Ed. 2007, 46, 1132–1135. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, Y.; Suzuki, M.; Masuda, M.; Iwai, T.; Morimoto, Y. Squalene-Derived Triterpene Polyethers from the Red Alga Laurencia omaezakiana. Helv. Chim. Acta 2008, 91, 1261–1266. [Google Scholar] [CrossRef]
- Morimoto, Y.; Okita, T.; Kambara, H. Total Synthesis and Determination of the Absolute Configuration of (+)-Omaezakianol. Angew. Chem. Int. Ed. 2009, 48, 2538–2541. [Google Scholar] [CrossRef]
- Xiong, Z.; Busch, R.; Corey, E.J. A Short Total Synthesis of (+)-Omaezakianol via an Epoxide-Initiated Cationic Cascade Reaction. Org. Lett. 2010, 12, 1512–1514. [Google Scholar] [CrossRef]
- Morimoto, Y.; Takeuchi, E.; Kambara, H.; Kodama, T.; Tachi, Y.; Nishikawa, K. Biomimetic Epoxide-Opening Cascades of Oxasqualenoids Triggered by Hydrolysis of the Terminal Epoxide. Org. Lett. 2013, 15, 2966–2969. [Google Scholar] [CrossRef]
- Itokawa, H.; Kishi, E.; Morita, H.; Takeya, K.; Iitaka, Y. A New Squalene-type Triterpene from the Woods of Eurycoma longifolia. Chem. Lett. 1991, 20, 2221–2222. [Google Scholar] [CrossRef]
- Morita, H.; Kishi, E.; Takeya, K.; Itokawa, H.; Iitaka, Y. Squalene derivatives from Eurycoma longifolia. Phytochemistry 1993, 34, 765–771. [Google Scholar] [CrossRef]
- Morimoto, Y.; Iwai, T.; Kinoshita, T. Total synthesis and determination of the absolute configuration of (−)-longilene peroxide. Tetrahedron Lett. 2001, 42, 6307–6309. [Google Scholar] [CrossRef]
- Morimoto, Y.; Iwai, T.; Nishikawa, Y.; Kinoshita, T. Stereospecific and biomimetic synthesis of CS and C2 symmetric 2,5-disubstituted tetrahydrofuran rings as central building blocks of biogenetically intriguing oxasqualenoids. Tetrahedron Asymmetry 2002, 13, 2641–2647. [Google Scholar] [CrossRef]
- Cen-Pacheco, F.; Pérez Manríquez, C.; Luisa Souto, M.; Norte, M.; Fernández, J.J.; Hernández Daranas, A. Marine Longilenes, Oxasqualenoids with Ser-Thr Protein Phosphatase 2A Inhibition Activity. Mar. Drugs 2018, 16, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cen-Pacheco, F.; Santiago-Benítez, A.J.; Tsui, K.Y.; Tantillo, D.J.; Fernández, J.J.; Daranas, A.H. Structure and Computational Basis for Backbone Rearrangement in Marine Oxasqualenoids. J. Org. Chem. 2021, 86, 2437–2446. [Google Scholar] [CrossRef]
- Norte, M.; Fernández, J.; Souto, M.L.; Gavín, J.; García-Grávalos, M.D. Thyrsenols A and B, two unusual polyether squalene derivatives. Tetrahedron 1997, 53, 3173–3178. [Google Scholar] [CrossRef]
- Fernández, J.; Souto, M.L.; Norte, M. Evaluation of the cytotoxic activity of polyethers isolated from Laurencia. Biorg. Med. Chem. 1998, 6, 2237–2243. [Google Scholar] [CrossRef]
- Souto, M.A.L.; Manríquez, C.P.; Norte, M.; Leira, F.; Fernández, J.J. The inhibitory effects of squalene-derived triterpenes on protein phosphatase PP2A. Bioorg. Med. Chem. Lett. 2003, 13, 1261–1264. [Google Scholar] [CrossRef]
- Cen-Pacheco, F.; Villa-Pulgarin, J.A.; Mollinedo, F.; Norte, M.; Daranas, A.H.; Fernández, J.J. Cytotoxic oxasqualenoids from the red alga Laurencia viridis. Eur. J. Med. Chem. 2011, 46, 3302–3308. [Google Scholar] [CrossRef] [PubMed]
- Cen-Pacheco, F.; Mollinedo, F.; Villa-Pulgarín, J.A.; Norte, M.; Fernández, J.J.; Hernández Daranas, A. Saiyacenols A and B: The key to solve the controversy about the configuration of aplysiols. Tetrahedron 2012, 68, 7275–7279. [Google Scholar] [CrossRef]
- Cen-Pacheco, F.; Santiago-Benítez, A.J.; García, C.; Álvarez-Méndez, S.J.; Martín-Rodríguez, A.J.; Norte, M.; Martín, V.S.; Gavín, J.A.; Fernández, J.J.; Daranas, A.H. Oxasqualenoids from Laurencia viridis: Combined Spectroscopic–Computational Analysis and Antifouling Potential. J. Nat. Prod. 2015, 78, 712–721. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Marrero, A.R.; López-Arencibia, A.; Bethencout-Estrella, C.J.; Cen-Pacheco, F.; Sifaoui, I.; Hernández Creus, A.; Duque-Ramírez, M.C.; Souto, M.L.; Hernández Daranas, A.; Lorenzo-Morales, J.; et al. Antiprotozoal activities of marine polyether triterpenoids. Bioorg. Chem. 2019, 92, 103276. [Google Scholar] [CrossRef] [PubMed]
- Nishikibe, K.; Nishikawa, K.; Kumagai, M.; Doe, M.; Morimoto, Y. Asymmetric Total Syntheses, Stereostructures, and Cytotoxicities of Marine Bromotriterpenoids Aplysiol B (Laurenmariannol) and Saiyacenol A. Chem. Asian J. 2022, 17, e202101137. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Suzuki, M.; Furusaki, A.; Matsumoto, T.; Kato, A.; Imanaka, Y.; Kurosawa, E. Teurilene and thyrsiferyl 23-acetate, meso and remarkably cytotoxic compounds from the marine red alga laurencia obtusa (hudson) lamouroux. Tetrahedron Lett. 1985, 26, 1329–1332. [Google Scholar] [CrossRef]
- Sheikh, N.S. Synthetic endeavours towards oxasqualenoid natural products containing 2,5-disubstituted tetrahydrofurans–eurylene and teurilene. Nat. Prod. Rep. 2014, 31, 1088–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blunt, J.W.; Hartshorn, M.P.; McLennan, T.J.; Munro, M.H.G.; Robinson, W.T.; Yorke, S.C. Thyrsiferol: A squalene-derived metabolite of laurencia thyrsifera. Tetrahedron Lett. 1978, 19, 69–72. [Google Scholar] [CrossRef]
- Sakemi, S.; Higa, T.; Jefford, C.W.; Bernardinelli, G. Venustatriol. A new, anti-viral, triterpene tetracyclic ether from Laurencia venusta. Tetrahedron Lett. 1986, 27, 4287–4290. [Google Scholar] [CrossRef]
- Little, R.D.; Nishiguchi, G.A. Synthetic Efforts Toward, and Biological Activity of, Thyrsiferol and Structurally-Related Analogues. In Studies in Natural Products Chemistry; Attaur, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2008; Volume 35, pp. 3–56. [Google Scholar]
- Lorenzo-Morales, J.; Díaz-Marrero, A.R.; Cen-Pacheco, F.; Sifaoui, I.; Reyes-Batlle, M.; Souto, M.L.; Hernández Daranas, A.; Piñero, J.E.; Fernández, J.J. Evaluation of Oxasqualenoids from the Red Alga Laurencia viridis against Acanthamoeba. Mar. Drugs 2019, 17, 420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirashima, M.; Tsuda, K.; Hamada, T.; Okamura, H.; Furukawa, T.; Akiyama, S.-i.; Tajitsu, Y.; Ikeda, R.; Komatsu, M.; Doe, M.; et al. Cytotoxic Isomalabaricane Derivatives and a Monocyclic Triterpene Glycoside from the Sponge Rhabdastrella globostellata. J. Nat. Prod. 2010, 73, 1512–1518. [Google Scholar] [CrossRef] [PubMed]
- Lai, K.-H.; Huang, Z.-H.; El-Shazly, M.; Peng, B.-R.; Wei, W.-C.; Su, J.-H. Isomalabaricane Triterpenes from the Marine Sponge Rhabdastrella sp. Mar. Drugs 2021, 19, 206. [Google Scholar] [CrossRef]
- Desoubzdanne, D.; Marcourt, L.; Raux, R.; Chevalley, S.; Dorin, D.; Doerig, C.; Valentin, A.; Ausseil, F.; Debitus, C. Alisiaquinones and alisiaquinol, dual inhibitors of Plasmodium falciparum enzyme targets from a New Caledonian deep water sponge. J. Nat. Prod. 2008, 71, 1189–1192. [Google Scholar] [CrossRef]
- Shi, Z.-Z.; Miao, F.-P.; Fang, S.-T.; Liu, X.-H.; Yin, X.-L.; Ji, N.-Y. Sesteralterin and Tricycloalterfurenes A-D: Terpenes with Rarely Occurring Frameworks from the Marine-Alga-Epiphytic Fungus Alternaria alternata k21-1. J. Nat. Prod. 2017, 80, 2524–2529. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.-Y.; Park, S.C.; Byun, W.S.; Oh, D.-C.; Lee, S.K.; Oh, K.-B.; Shin, J. Bioactive Bianthraquinones and Meroterpenoids from a Marine-Derived Stemphylium sp. Fungus. Mar. Drugs 2020, 18, 436. [Google Scholar] [CrossRef]
- Fraga, B.M.; Díaz, C.E. Proposal for structural revision of several monosubstituted tricycloalternarenes. Phytochemistry 2022, 198, 113141. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Tan, X.; Gu, L.; Liu, J.; Hao, X.; Tao, L.; Feng, H.; Cao, Y.; Shi, Z.; Duan, Y.; et al. New secondary metabolites with immunosuppressive activity from the phytopathogenic fungus Bipolaris maydis. Bioorg. Chem. 2020, 99, 103816. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Wei, W.; Zhang, W.-J.; Hua, C.-P.; Chen, C.-J.; Ge, H.-M.; Tan, R.-X.; Jiao, R.-H. New tricycloalternarenes from fungus Alternaria sp. J. Asian Nat. Prod. Res. 2015, 17, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.C.; Winter, J.M.; Asolkar, R.N.; Boonlarppradab, C.; Cullum, R.; Fenical, W. Marinoterpins A–C: Rare Linear Merosesterterpenoids from Marine-Derived Actinomycete Bacteria of the Family Streptomycetaceae. J. Org. Chem. 2021, 86, 11140–11148. [Google Scholar] [CrossRef]
- Kuroda, I.; Musman, M.; Ohtani, I.I.; Ichiba, T.; Tanaka, J.; Gravalos, D.G.; Higa, T. Pachastrissamine, a Cytotoxic Anhydrophytosphingosine from a Marine Sponge, Pachastrissa sp. J. Nat. Prod. 2002, 65, 1505–1506. [Google Scholar] [CrossRef] [PubMed]
- Ledroit, V.; Debitus, C.; Lavaud, C.; Massiot, G. Jaspines A and B: Two new cytotoxic sphingosine derivatives from the marine sponge Jaspis sp. Tetrahedron Lett. 2003, 44, 225–228. [Google Scholar] [CrossRef]
- Martinková, M.; Gonda, J. Marine cytotoxic jaspine B and its stereoisomers: Biological activity and syntheses. Carbohydr. Res. 2016, 423, 1–42. [Google Scholar] [CrossRef]
- Lu, X.; He, J.; Wu, Y.; Du, N.; Li, X.; Ju, J.; Hu, Z.; Umezawa, K.; Wang, L. Isolation and Characterization of New Anti-Inflammatory and Antioxidant Components from Deep Marine-Derived Fungus Myrothecium sp. Bzo-l062. Mar. Drugs 2020, 18, 597. [Google Scholar] [CrossRef]
- Chokpaiboon, S.; Unagul, P.; Kongthong, S.; Danwisetkanjana, K.; Pilantanapak, A.; Suetrong, S.; Bunyapaiboonsri, T. A pyrone, naphthoquinone, and cyclic urea from the marine-derived fungus Astrosphaeriella nypae BCC 5335. Tetrahedron Lett. 2016, 57, 1171–1173. [Google Scholar] [CrossRef]
- Shi, H.; Yu, S.; Liu, D.; Van Ofwegen, L.; Proksch, P.; Lin, W. Sinularones A–I, New Cyclopentenone and Butenolide Derivatives from a Marine Soft Coral Sinularia sp. and Their Antifouling Activity. Mar. Drugs 2012, 10, 1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peil, S.; Bistoni, G.; Goddard, R.; Fürstner, A. Hydrogenative Metathesis of Enynes via Piano-Stool Ruthenium Carbene Complexes Formed by Alkyne gem-Hydrogenation. J. Am. Chem. Soc. 2020, 142, 18541–18553. [Google Scholar] [CrossRef] [PubMed]
- Malmstrøm, J.; Christophersen, C.; Barrero, A.F.; Oltra, J.E.; Justicia, J.; Rosales, A. Bioactive Metabolites from a Marine-Derived Strain of the Fungus Emericella variecolor. J. Nat. Prod. 2002, 65, 364–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clemens, R.T.; Jennings, M.P. An efficient total synthesis and absolute configuration determination of varitriol. Chem. Commun. 2006, 25, 2720–2721. [Google Scholar] [CrossRef]
- Mahesh, S.M.; Supriya, T.; Prakash, T.P. Recent Developments Towards the Synthesis of Varitriol: An Antitumour Agent from Marine Derived Fungus Emericella Variecolor. Curr. Org. Synth. 2014, 11, 268–287. [Google Scholar] [CrossRef] [Green Version]
- McAllister, G.D.; Robinson, J.E.; Taylor, R.J.K. The synthesis of (−)-varitriol and (−)-3′-epi-varitriol via a Ramberg–Bäcklund route. Tetrahedron 2007, 63, 12123–12130. [Google Scholar] [CrossRef]
- Vamshikrishna, K.; Srihari, P. A conventional approach to the total synthesis of (−)-varitriol. Tetrahedron: Asymmetry 2012, 23, 1584–1587. [Google Scholar] [CrossRef]
- Vamshikrishna, K.; Srihari, P. Total synthesis of (+)-varitriol and (+)-6′-epi-varitriol. Tetrahedron 2012, 68, 1540–1546. [Google Scholar] [CrossRef]
- Sun, T.; Deutsch, C.; Krause, N. Combined coinage metal catalysis in natural product synthesis: Total synthesis of (+)-varitriol and seven analogs. Org. Biomol. Chem. 2012, 10, 5965–5970. [Google Scholar] [CrossRef]
- Sánchez-Eleuterio, A.; García-Santos, W.H.; Díaz-Salazar, H.; Hernández-Rodríguez, M.; Cordero-Vargas, A. Stereocontrolled Nucleophilic Addition to Five-Membered Oxocarbenium Ions Directed by the Protecting Groups. Application to the Total Synthesis of (+)-Varitriol and of Two Diastereoisomers Thereof. J. Org. Chem. 2017, 82, 8464–8475. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Qin, H.-B. ZnBr2-catalyzed direct C-glycosylation of glycosyl acetates with terminal alkynes. Org. Chem. Front. 2018, 5, 1962–1966. [Google Scholar] [CrossRef]
- Zhang, F.-H.; Guo, X.; Zeng, X.; Wang, Z. Catalytic Enantioconvergent Allenylation of Aldehydes with Propargyl Halides. Angew. Chem. Int. Ed. 2022, 61, e202117114. [Google Scholar] [CrossRef]
Marine Source | Compound Class | Marine Species | Compound Name |
---|---|---|---|
Lampreys | Fatty acids | Petromyzon marinus L. | (+)-Petromyroxol (−)-Petromyroxol (+)-PMA (−)-PMA (+)-PMB (−)-PMB |
Corals | Diterpenes | Eunicea mammosa | Uprolides D–E |
Substituted THF | Sinularia sp. | Sinularones E–F | |
Algae | C19 lipid diols | Notheia anomala | Trans-oxylipid Cis-oxylipid |
Monoterpenes | Plocamium cartilagineum | Furoplocamioids A–C | |
Pantoneura plocamioides | Pantofuranoids A–F | ||
Sesquiterpenes | Laurencia nipponica Yamada | (−)-Kumausallene (+)-Trans-Kumausyne | |
Triterpenes | Laurencia intricata | Intricatetraol | |
Laurencia omaezakiana | Omaezakianol | ||
Laurencia viridis | Longilenes Laurokanols A–E Yucatecone Thyrsenols A–B Saiyacenols A–C | ||
Laurencia obtusa | Teurilene | ||
Laurencia thyrsifera | Thyrsiferol | ||
Sponges | Fatty acids | Xestospongia muta | Mutafurans A–G |
Xestospongia testudinaria | Mutafuran H | ||
Aspergillus sp. LS78 | Aspericacid A–B | ||
Diterpenes | Dendrillamembranosa | (+)-Darwinolide | |
Triterpenes | Rhabdastrella sp. | Rhabdastins H–I | |
Meroterpenes | New Caledonian | Alisiaquinones A–C Alisiaquinol | |
Substituted THF | Pachastrissa/Jaspis sp. | Jaspines A-B | |
Fungi | Meroterpenes | Alternaria alternata | Tricycloalterfurenes A–D |
Stemphylium sp. | Tricycloalterfurenes E–G | ||
Substituted THF | Myrothecium sp. BZO-L062 | (−)-1S-Myrothecol (−)-1R-Myrothecol Methoxy-myrothecol | |
Astrosphaeriella nypae BCC-5335 | Astronypyrone Astronyquinone Astronyurea | ||
Emericella variecolor | (+)-Varitriol (−)-Varitriol | ||
Bacteria | Sesquiterpenes | Streptomyces sp. CMB-M0423 | Heronapyrroles C–D |
Meroterpenes | Streptomyces sp. AJS-327 and CNQ-253 | Marinoterpins A–C |
Compound | Biological Activity | Cell Line or Organism | Biological Result | Assay | Reference |
---|---|---|---|---|---|
trans-oxylipid | Nematocidal | Haemonchus contortus | LD50 = 1.8 ppm | Parasitic nematode larval development assay | [21] |
Trichostrongylus colubriformis | LD50 = 9.9 ppm | ||||
(+)-PMA | Pheromone | Petromyzon marinus | 10−11 molL−1 | Electro-olfactogram | [26] |
Mutafuran D | Antifungal activity | Cryptococcus neoformans var. grubii | MIC = 4 μg/mL | Pathogenic fungus assay | [27] |
Furoplocamioid C | Antifeedant effects | Leptinotarsa decemlineata | EC50 = 19.1 nmol/cm2 | Insect bioassay | [32] |
Myzus persicae | EC50 = 3.7 nmol/cm2 | ||||
Ropalosiphum padi | EC50 = 1.6 nmol/cm2 | ||||
Heranopyrrole D | Antibacterial activity | Staphylococcus aureus ATCC 25923 | IC50 = 1.8 μM | Antibacterial assay | [36] |
Staphylococcus epidermidis ATCC 12228 | IC50 = 0.9 μM | ||||
Bacillus subtilis ATCC 6633 | IC50 = 1.8 μM | ||||
(+)-Darwinolide | Antibacterial activity | Staphylococcus aureus | IC50 = 33.2 μM | MRSA biofilm assay | [49] |
Uprolide D acetate | Cytotoxic Activity Against Tumor Cell Lines | HeLa cells | IC50 = 2.5 µg/ m | Cytotoxicity assay on human cells | [52] |
CCRF-CEM T-cell leukemia | IC50 = 7.0 µg/ mL | ||||
HCT 116 colon cancer | IC50 = 7.0 µg/ mL | ||||
MCF-7 breast adenocarcinoma | IC50 = 0.6 µg/ mL | ||||
Thyrsenol B | Cytotoxic Activity Against Tumor Cell Lines | Murine lymphoid neoplasm P-388 cells | IC50 = 0.016 μM | Cytotoxicity assays on human cells | [74] |
Inhibitory activity | Protein phosphatase PP2A | Inhibition > 90% ([PP2A] > 10 μM) | Enzymatic assay | [75] | |
Saiyacenol B | Antiproliferative activity Against Tumor Cell Lines | MM144 (human multiple myeloma) Jurkat (human T-cell acute leukemia) | IC50 = 11.0 μM | Cytotoxicity assays on human cells | [78] |
HeLa (human cervical carcinoma) | IC50 = 24.5 μM | ||||
CADO-ES1 (human Ewing’s sarcoma) | IC50 = 14.0 μM | ||||
Jurkat (human T-cell acute leukemia | IC50 = 2.7 μM | ||||
Antifouling activity | Navicula cf. salinicola | IC50 = 17.2 μM | Diatom growth inhibition | ||
Cylindrotheca sp. | IC50 = 17.0 μM | Inhibition of macroalgal spore germination | |||
Anti-protozoal activity | Leishmania amazonensis | IC50 = 10.3 μM | In vitro susceptibility assay | [80] | |
28-iodo-saiyacenol B | Anti-protozoal activity | Leishmania amazonensis | IC50 = 5.4 μM | In vitro susceptibility assay | [80] |
Alisiaquinone C | Antimalarial activity (in vitro) | MC29 CQR | IC50 = 0.08 μM | [3H]- Hypoxanthine incorporation | [90] |
B1 CQR | IC50 = 0.21 μM | ||||
F32 CQS | IC50 = 0.15 μM | ||||
Antimalarial activity (in vivo) | Rodent malaria | Mortality day 5 = 0 (5 mg/kg/day) Mortality day 5 = 80 (20 mg/kg/day) | four-day suppressive in vivo assay | ||
(−)-1S-Myrothecol | Antioxidant activity | EC50 = 1.2 µg/mL | ABTS assay | [100] | |
μM Trolox Equiv/μM = 1.4 | ORAC assay | ||||
(+)-1R-Myrothecol | Antioxidant activity | EC50 = 1.4 µg/mL | ABTS assay | ||
μM Trolox Equiv/μM = 1.2 | ORAC assay | ||||
(+)-Varitriol | Cytotoxic activity to cancer cell lines | RXF-393 (Renal cancer cell) | GI50 = 0.16 μM | Cytotoxicity assays | [104] |
SNB-75 (CNS cancer cell) | GI50 = 0.24 μM | Cytotoxicity assays | |||
DU-145 (breast cancer cell) | GI50 = 0.11 μM | Cytotoxicity assays |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Andrés, P.; Fernández-Peña, L.; Díez-Poza, C.; Barbero, A. The Tetrahydrofuran Motif in Marine Lipids and Terpenes. Mar. Drugs 2022, 20, 642. https://doi.org/10.3390/md20100642
González-Andrés P, Fernández-Peña L, Díez-Poza C, Barbero A. The Tetrahydrofuran Motif in Marine Lipids and Terpenes. Marine Drugs. 2022; 20(10):642. https://doi.org/10.3390/md20100642
Chicago/Turabian StyleGonzález-Andrés, Paula, Laura Fernández-Peña, Carlos Díez-Poza, and Asunción Barbero. 2022. "The Tetrahydrofuran Motif in Marine Lipids and Terpenes" Marine Drugs 20, no. 10: 642. https://doi.org/10.3390/md20100642
APA StyleGonzález-Andrés, P., Fernández-Peña, L., Díez-Poza, C., & Barbero, A. (2022). The Tetrahydrofuran Motif in Marine Lipids and Terpenes. Marine Drugs, 20(10), 642. https://doi.org/10.3390/md20100642