Adsorption Characteristics and Enrichment of Emodin from Marine-Derived Aspergillus flavipes HN4-13 Extract by Macroporous Resin XAD-16
Abstract
:1. Introduction
2. Results
2.1. Resin Screening
2.2. Effect of the Solution pH on XAD-16 Resin Adsorption Capacity
2.3. Adsorption Kinetics Experiments
2.4. Adsorption Isotherms and Thermodynamic Experiments
2.5. Dynamic Breakthrough Curves of Emodin on XAD-16
2.6. Optimal Eluent Concentration and Flow Rate for Dynamic Desorption
2.7. Optimal Reaction Time for Conversion of Questin to Emodin
2.8. Purification of Emodin
3. Discussion
4. Materials and Methods
4.1. Materials and Reagents
4.2. Preparation of Sample Solution
4.3. Static Adsorption and Desorption Experiments
4.3.1. Resin Screening
4.3.2. Effect of pH on Adsorption Capacity
4.3.3. Adsorption Kinetics Experiments
4.3.4. Adsorption Isotherms and Thermodynamics Experiments
4.4. Dynamic Adsorption and Desorption Experiments
4.5. Demethylation of Questin
4.6. HPLC Analysis of Emodin and Questin
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fang, L.; Zhao, F.; Iwanowycz, S.; Wang, J.F.; Yin, S.; Wang, Y.Z.; Fan, D.P. Anticancer activity of emodin is associated with downregulation of CD155. Int. Immunopharmacol. 2019, 75, 105763. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Ni, Y.; Zhou, Q.; Liu, H.; Xiang, H.; Sui, H.; Shang, D. Emodin Attenuates Severe Acute Pancreatitis via Antioxidant and Anti-inflammatory Activity. Inflammation 2019, 42, 2129–2138. [Google Scholar] [CrossRef]
- Zhang, H.M.; Ge, X.P.; Liu, B.; Teng, T.; Zhou, Q.L.; Sun, C.X.; Song, C.Y. Comparative transcriptomic and proteomic analysis of the antibacterial activity of emodin on Aeromonas hydrophila. Aquaculture 2020, 529, 735589. [Google Scholar] [CrossRef]
- Xue, J.F.; Ding, W.J.; Liu, Y. Anti-diabetic effects of emodin involved in the activation of PPARgamma on high-fat diet-fed and low dose of streptozotocin-induced diabetic mice. Fitoterapia 2010, 81, 173–177. [Google Scholar] [CrossRef]
- Song, Y.D.; Li, X.Z.; Wu, Y.X.; Shen, Y.; Liu, F.F.; Gao, P.P.; Sun, L.; Qian, F. Emodin alleviates alternatively activated macrophage and asthmatic airway inflammation in a murine asthma model. Acta Pharmacol. Sin. 2018, 39, 1317–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Q.H.; Ye, C.Y.; Chen, E.M.; Zhang, W.; Wang, X.H. Emodin ameliorates cartilage degradation in osteoarthritis by inhibiting NF-kappaB and Wnt/beta-catenin signaling in-vitro and in-vivo. Int. Immunopharmacol. 2018, 61, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, S.T.; Xu, J.Q.; Watanabe, N.; Mayo, K.H.; Li, J.; Li, X.M. Emodin inhibits aggregation of amyloid-beta peptide 1-42 and improves cognitive deficits in Alzheimer’s disease transgenic mice. J. Neurochem. 2020, 157, 1992–2007. [Google Scholar] [CrossRef] [PubMed]
- Hu, N.H.; Liu, J.; Xue, X.Y.; Li, Y.X. The effect of emodin on liver disease—Comprehensive advances in molecular mechanisms. Eur. J. Pharmacol. 2020, 882, 173269. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Wang, J.W.; Sheng, A.M.; Huang, S.; Tang, Y.Y.; Ma, S.T.; Hong, G. Emodin Inhibits the Proliferation of MCF-7 Human Breast Cancer Cells Through Activation of Aryl Hydrocarbon Receptor (AhR). Front. Pharmacol. 2020, 11, 622046. [Google Scholar] [CrossRef]
- Liu, Q.; Hodge, J.; Wang, J.F.; Wang, Y.Z.; Wang, L.M.; Singh, U.P.; Li, Y.; Yao, Y.Z.; Wang, D.W.; Ai, W.; et al. Emodin reduces Breast Cancer Lung Metastasis by suppressing Macrophage-induced Breast Cancer Cell Epithelial-mesenchymal transition and Cancer Stem Cell formation. Theranostics 2020, 10, 8365–8381. [Google Scholar] [CrossRef]
- Dai, G.L.; Ding, K.; Cao, Q.Y.; Xu, T.; He, F.; Liu, S.J.; Ju, W.Z. Emodin suppresses growth and invasion of colorectal cancer cells by inhibiting VEGFR2. Eur. J. Pharmacol. 2019, 859, 172525. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.; Yan, J. Large-scale separation of hydroxyanthraquinones from Rheum palmatum L. by pH-zone-refining counter-current chromatography. J. Chromatogr. A 2007, 1176, 163–168. [Google Scholar] [CrossRef]
- Guo, L.; Wang, C. Optimized production and isolation of antibacterial agent from marine Aspergillus flavipes against Vibrio harveyi. 3 Biotech 2017, 7, 383. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.X.; Fu, J.; Yin, X.B.; Cao, S.L.; Li, X.C.; Lin, L.F.; Huyiligeqi; Ni, J. Emodin: A review of its pharmacology, toxicity and pharmacokinetics. Phytother. Res. 2016, 30, 1207–1218. [Google Scholar] [CrossRef] [PubMed]
- Chalothorn, T.; Rukachaisirikul, V.; Phongpaichit, S.; Pannara, S.; Tansakul, C. Synthesis and antibacterial activity of emodin and its derivatives against methicillin-resistant Staphylococcus aureus. Tetrahedron Lett. 2019, 60, 151004. [Google Scholar] [CrossRef]
- Wang, P.L.; Li, D.-Y.; Xie, L.-R.; Wu, X.; Hua, H.-M.; Li, Z.-L. Two new compounds from a marine-derived fungus Penicilliumoxalicum. Nat. Prod. Res. 2014, 28, 290–293. [Google Scholar] [CrossRef]
- Qiu, X.H.; Gong, L.Z.; Xin, X.J.; An, F.L. Enhancement of Emodin Production by Medium Optimization and KH2PO4 Supplementation in Submerged Fermentation of Marine-Derived Aspergillus favipes HN4-13. Mar. Drugs 2021, 19, 421. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Li, J.; Chen, L.; Wang, Z. Adsorption and desorption of chlorogenic acid by macroporous adsorbent resins during extraction of Eucommia ulmoides leaves. Ind. Crops Prod. 2020, 149, 112336. [Google Scholar] [CrossRef]
- Wu, X.Y.; Tang, Y.; Sun, Y.X.; Xiang, D.B.; Wan, Y.; Wu, Q.; Zhao, G. Extraction of flavonoids and kinetics of purification by macroporous resins from quinoa. J. Nanopart. Res. 2020, 22, 181. [Google Scholar]
- Zhuang, M.Y.; Zhao, M.M.; Lin, L.Z.; Dong, Y.; Chen, H.P.; Feng, M.Y.; Sun-Waterhouse, D.X.; Su, G.W. Macroporous resin purification of peptides with umami taste from soy sauce. Food Chem. 2016, 190, 338–344. [Google Scholar] [CrossRef]
- Daignault, S.A.; Noot, D.K.; Williams, D.T.; Huck, P.M. A review of the use of XAD resins to concentrate organic compounds in water. Water Res. 1988, 22, 803–813. [Google Scholar] [CrossRef]
- Lepane, V. Comparison of XAD resins for the isolation of humic substances from seawater. J. Chromatogr. 1999, 845, 329–335. [Google Scholar] [CrossRef]
- Kiwaan, H.A.; Atwee, T.M.; Azab, E.A.; El-Bindary, A.A. Efficient photocatalytic degradation of Acid Red 57 using synthesized ZnO nanowires. J. Chin. Chem. Soc. 2019, 66, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Elwakeel, K.Z.; El-Bindary, A.A.; Kouta, E.Y. Retention of copper, cadmium and lead from water by Na-Y-Zeolite confined in methyl methacrylate shell. J. Environ. Chem. Eng. 2017, 5, 3698–3710. [Google Scholar] [CrossRef]
- Buran, T.J.; Sandhu, A.K.; Li, Z.; Rock, C.R.; Yang, W.W.; Gu, L.W. Adsorption/desorption characteristics and separation of anthocyanins and polyphenols from blueberries using macroporous adsorbent resins. J. Food Eng. 2014, 128, 167–173. [Google Scholar] [CrossRef]
- Hou, M.Y.; Hu, W.Z.; Xiu, Z.L.; Shi, Y.S.; Hao, K.X.; Cao, D.; Guan, Y.G.; Yin, H.L. Efficient enrichment of total flavonoids from Pteris ensiformis Burm. extracts by macroporous adsorption resins and in vitro evaluation of antioxidant and antiproliferative activities. J. Chromatogr. B 2020, 1138, 121960. [Google Scholar] [CrossRef]
- Liu, C.Q.; Jiao, R.H.; Yao, L.Y.; Zhang, Y.P.; Lu, Y.H.; Tan, R.X. Adsorption characteristics and preparative separation of chaetominine from Aspergillus fumigatus mycelia by macroporous resin. J. Chromatogr. B 2016, 1015, 135–141. [Google Scholar] [CrossRef]
- Tang, L.; Wei, X.C.; An, F.L.; Lu, Y.H. Preparative separation of TL1-1 from Daldinia eschscholzii extract by macroporous resin and evaluation of its antimicrobial activities. J. Chromatogr. B 2017, 1060, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.L.; Deng, Y.F.; Zhang, J.P.; Chen, J. Adsorption of phenol from water by N-butylimidazolium functionalized strongly basic anion exchange resin. J. Colloid Interface Sci. 2011, 364, 462–468. [Google Scholar] [CrossRef]
- Wang, T.; Lu, S.M.; Xia, Q.L.; Fang, Z.X.; Johnson, S. Separation and purification of amygdalin from thinned bayberry kernels by macroporous adsorption resins. J. Chromatogr. B 2015, 975, 52–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, J.L.; Yang, Y.; Zhang, R.; Yao, H.W.; Ge, K.K.; Zhang, M.Y.; Ma, L. Enrichment of chelidonine from Chelidonium majus L. using macroporous resin and its antifungal activity. J. Chromatogr. B 2017, 1070, 7–14. [Google Scholar] [CrossRef]
- Rajabi, M.; Barfi, B.; Asghari, A.; Najafi, F.; Aran, R. Hybrid Amine-Functionalized Titania/Silica Nanoparticles for Solid-Phase Extraction of Lead, Copper, and Zinc from Food and Water Samples: Kinetics and Equilibrium Studies. Food Anal. Methods 2014, 8, 815–824. [Google Scholar] [CrossRef]
- Wu, Y.F.; Zhang, L.; JianWei, M.; ShiWang, L.; Jun, H.; Ru, Y.Y.; He, M.L. Kinetic and thermodynamic studies of sulforaphane adsorption on macroporous resin. J. Chromatogr. B 2016, 1028, 231–236. [Google Scholar]
- Gao, Z.P.; Yu, Z.F.; Yue, T.L.; Quek, S.Y. Adsorption isotherm, thermodynamics and kinetics studies of polyphenols separation from kiwifruit juice using adsorbent resin. J. Food Eng. 2013, 116, 195–201. [Google Scholar] [CrossRef]
- Ding, L.; Deng, H.P.; Wu, C.; Han, X. Affecting factors, equilibrium, kinetics and thermodynamics of bromide removal from aqueous solutions by MIEX resin. Chem. Eng. J. 2012, 181-182, 360–370. [Google Scholar] [CrossRef]
- Lin, L.Z.; Zhao, H.F.; Dong, Y.; Yang, B.; Zhao, M.M. Macroporous resin purification behavior of phenolics and rosmarinic acid from Rabdosia serra (MAXIM.) HARA leaf. Food Chem. 2012, 130, 417–424. [Google Scholar] [CrossRef]
- Gökmen, V.; Serpen, A. Equilibrium and kinetic studies on the adsorption of dark colored compounds from apple juice using adsorbent resin. J. Food Eng. 2002, 53, 221–227. [Google Scholar] [CrossRef]
- Kiwaan, H.A.; El-Mowafy, A.S.; El-Bindary, A.A. Synthesis, spectral characterization, DNA binding, catalytic and in vitro cytotoxicity of some metal complexes. J. Mol. Liq. 2021, 326. [Google Scholar] [CrossRef]
Resin | Polarity | Surface Area (m2/g) | Average Pore Diameter (nm) | Particle Diameter (mm) |
---|---|---|---|---|
D101 | non-polar | 400–600 | 10–12 | 0.2–0.6 |
HP-10 | non-polar | 500–650 | 15–50 | 0.6–0.7 |
HP-20 | non-polar | 850–1000 | 25–50 | 0.6–0.7 |
X-5 | non-polar | 500–600 | 29–30 | 0.3–1.25 |
XAD-16 | non-polar | 800 | 15 | 0.7 |
DM130 | weak polar | 100 | 25–30 | 0.3–1.25 |
AB-8 | weak polar | 480–520 | 13–14 | 0.3–1.25 |
YWD | weak polar | 500–550 | 9–10 | 0.3–1.2 |
ADS-17 | middle polar | 90–150 | 25–30 | 0.3–1.25 |
ADS-7 | polar | 100 | 25–30 | 0.3–1.25 |
S-8 | polar | 100–120 | 28–30 | 0.3–1.25 |
Kinetic Model | Equation | R2 | Parameters |
---|---|---|---|
Pseudo-first-order model | 0.9652 | ||
Pseudo-second-order model | 0.9995 | ||
Weber and Morris intra-particle diffusion model | 0.9459 |
T (K) | Langmuir Model | Freundlich Model | |||||||
---|---|---|---|---|---|---|---|---|---|
Qm | KL | R2 | KF | 1/n | R2 | (kJ/mol) | (kJ/mol) | (kJ/mol) | |
298 | 69.44 | 48.00 | 0.9215 | 149.5 | 0.4421 | 0.9993 | −9.591 | −22.97 | −0.045 |
303 | 59.88 | 41.75 | 0.9702 | 129.3 | 0.4522 | 0.9896 | −9.401 | ||
308 | 58.14 | 34.40 | 0.9624 | 120.3 | 0.4742 | 0.9895 | −9.060 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, L.; Wu, Y.; Qiu, X.; Xin, X.; An, F.; Guo, M. Adsorption Characteristics and Enrichment of Emodin from Marine-Derived Aspergillus flavipes HN4-13 Extract by Macroporous Resin XAD-16. Mar. Drugs 2022, 20, 231. https://doi.org/10.3390/md20040231
Gong L, Wu Y, Qiu X, Xin X, An F, Guo M. Adsorption Characteristics and Enrichment of Emodin from Marine-Derived Aspergillus flavipes HN4-13 Extract by Macroporous Resin XAD-16. Marine Drugs. 2022; 20(4):231. https://doi.org/10.3390/md20040231
Chicago/Turabian StyleGong, Lizhi, Yuzhen Wu, Xiaohan Qiu, Xiujuan Xin, Faliang An, and Miaomiao Guo. 2022. "Adsorption Characteristics and Enrichment of Emodin from Marine-Derived Aspergillus flavipes HN4-13 Extract by Macroporous Resin XAD-16" Marine Drugs 20, no. 4: 231. https://doi.org/10.3390/md20040231
APA StyleGong, L., Wu, Y., Qiu, X., Xin, X., An, F., & Guo, M. (2022). Adsorption Characteristics and Enrichment of Emodin from Marine-Derived Aspergillus flavipes HN4-13 Extract by Macroporous Resin XAD-16. Marine Drugs, 20(4), 231. https://doi.org/10.3390/md20040231