Nutrient Deprivation Coupled with High Light Exposure for Bioactive Chrysolaminarin Production in the Marine Microalga Isochrysis zhangjiangensis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification of the Microalga Strain
2.2. Chrysolaminarin Production under Different Nutrient Deprivations and Light Intensities
2.2.1. Biomass Production
2.2.2. Photosynthetic Activity
2.2.3. Chrysolaminarin Production
2.3. Preliminary Characterization of Chrysolaminarin from I. zhangjiangensis
2.3.1. Chemical Composition
2.3.2. FTIR Spectra Analysis
2.3.3. Antioxidant Activity
Hydroxyl Radical Scavenging Activity
1,1-Diphenyl-2-picrylhydrazyl (DPPH) Radical Scavenging Activity
Ferric Reducing Antioxidant Power (FRAP) Activity
3. Materials and Methods
3.1. Algal Strain and Culture Conditions
3.2. Morphology Identification and 18S rDNA Gene Sequence Analysis
3.3. Experimental Design
3.4. Experimental Design
3.4.1. Growth Measurement
3.4.2. Chrysolaminarin Content
3.4.3. Protein Content
3.4.4. Neutral Lipid
3.5. Photosynthetic Activity Analysis
3.6. Extraction and Purification of Intracellular Polysaccharides
3.7. Chrysolaminarin Content in the Extracted Polysaccharides
3.8. Fourier Transform Infrared Spectroscopy (FTIR)
3.9. Antioxidant Activity Assessment
3.9.1. Hydroxyl Radical Scavenging Activity Assay
3.9.2. DPPH Radical Scavenging Activity Assay
3.9.3. Ferric Reducing Antioxidant Power (FRAP) Activity Assay
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pelizon, A.C.; Kaneno, R.; Soares, A.M.V.C.; Meira, D.A.; Sastori, A. Immunomodulatory activities associated with β-glucan derived from Saccharomyces cerevisiae. Physiol. Res. 2005, 54, 557–564. Available online: https://repositorio.unesp.br/handle/11449/68495%EF%BC%8C (accessed on 23 January 2022).
- Ji, Y.B.; Ji, C.F.; Zhang, H. Laminarin induces apoptosis of human colon cancer lovo cells through a mitochondrial pathway. Molecules 2012, 17, 9947–9960. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Ming, J.; Gao, R.; Wang, Y.; Liang, Q.; Yu, H.; Zhao, G. Characterization and antioxidant activity of the complex of tea polyphenols and oat beta-glucan. J. Agric. Food Chem. 2011, 59, 10737–10746. [Google Scholar] [CrossRef] [PubMed]
- Kofuji, K.; Aoki, A.; Tsubaki, K.; Konishi, M.; Isobe, T.; Murata, Y. Antioxidant activity of beta-glucan. ISRN Pharm. 2012, 2012, 125864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samuelsen, A.B.C.; Schrezenmeir, J.; Knutsen, S.H. Effects of orally administered yeast-derived beta-glucans: A review. Mol. Nutr. Food Res. 2014, 58, 183–193. [Google Scholar] [CrossRef]
- El Khoury, D.; Cuda, C.; Luhovyy, B.L.; Anderson, G.H. Beta glucan: Health benefits in obesity and metabolic syndrome. J. Nutr. Metab. 2012, 2012, 851362. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F.M.; Du, B.; Xu, B.J. A critical review on production and industrial applications of beta-glucans. Food Hydrocoll. 2016, 52, 275–288. [Google Scholar] [CrossRef]
- Maheshwari, G.; Sowrirajan, S.; Joseph, B. Extraction and isolation of beta-glucan from grain sources-a review. J. Food Sci. 2017, 82, 1535–1545. [Google Scholar] [CrossRef] [Green Version]
- Vizhi, V.K.; Many, J.N. Study on estimation, extraction and analysis of barley beta-glucan. Int. J. Sci. Res. 2014, 3, 1480–1484. [Google Scholar]
- Kollar, R.; Reinhold, B.B.; Petrakova, E.; Yeh, H.J.; Ashwell, G.; Drgonova, J.; Kapteyn, J.C.; Klis, F.M.; Cabib, E. Architecture of the yeast cell wall. Beta(1→6)-glucan interconnects mannoprotein, beta(1→3)-glucan, and chitin. J. Biol. Chem. 1997, 272, 17762–17775. [Google Scholar] [CrossRef] [Green Version]
- Schulze, C.; Wetzel, M.; Reinhardt, J.; Schmidt, M.; Felten, L.; Mundt, S. Screening of microalgae for primary metabolites including β-glucans and the influence of nitrate starvation and irradiance on β-glucan production. J. Appl. Phycol. 2016, 28, 2719–2725. [Google Scholar] [CrossRef]
- Reitan, K.I.; Øie, G.; Jørgensen, H.; Wang, X. Chemical composition of selected marine microalgae, with emphasis on lipid and carbohydrate production for potential use as feed resources. J. Appl. Phycol. 2021, 33, 3831–3842. [Google Scholar] [CrossRef]
- Myklestad, S.M.; Granum, E. Biology of (1,3)-β-glucans and related glucans in protozoans and chromistans. In Chemistry, Biochemistry, and Biology of 1-3 Beta Glucans and Related Polysaccharides; Fincher, G.B., Bacic, A., Stone, B.A., Eds.; Academic Press: San Diego, NY, USA, 2009; pp. 353–385. [Google Scholar] [CrossRef]
- Brembu, T.; Muhlroth, A.; Alipanah, L.; Bones, A.M. The effects of phosphorus limitation on carbon metabolism in diatoms. Philos. Trans. R. Soc. B 2017, 372, 20160406. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Wei, D.; Xie, J. Diatoms as cell factories for high-value products: Chrysolaminarin, eicosapentaenoic acid, and fucoxanthin. Crit. Rev. Biotechnol. 2020, 40, 993–1009. [Google Scholar] [CrossRef]
- Sadovskaya, I.; Souissi, A.; Souissi, S.; Grard, T.; Lencel, P.; Greene, C.M.; Duin, S.; Dmitrenok, P.S.; Chizhov, A.O.; Shashkov, A.S.; et al. Chemical structure and biological activity of a highly branched (1→3,1→6)-beta-d-glucan from Isochrysis galbana. Carbohydr. Polym. 2014, 111, 139–148. [Google Scholar] [CrossRef]
- Ma, M.; Li, Y.; Chen, J.; Wang, F.; Yuan, L.; Li, Y.; Zhang, B.; Ye, D.; Han, D.; Jin, H.; et al. High-cell-density cultivation of the flagellate alga Poterioochromonas malhamensis for biomanufacturing the water-soluble beta-1,3-glucan with multiple biological activities. Bioresour Technol 2021, 337, 125447. [Google Scholar] [CrossRef]
- Vogler, B.W.; Brannum, J.; Chung, J.W.; Seger, M.; Posewitz, M.C. Characterization of the Nannochloropsis gaditana storage carbohydrate: A 1,3-beta glucan with limited 1,6-branching. Algal Res. 2018, 36, 152–158. [Google Scholar] [CrossRef]
- Xia, S.; Gao, B.; Li, A.; Xiong, J.; Ao, Z.; Zhang, C. Preliminary characterization, antioxidant properties and production of chrysolaminarin from marine diatom Odontella aurita. Mar. Drugs 2014, 12, 4883–4897. [Google Scholar] [CrossRef] [Green Version]
- Carballo, C.; Chronopoulou, E.G.; Letsiou, S.; Maya, C.; Labrou, N.E.; Infante, C.; Power, D.M.; Manchado, M. Antioxidant capacity and immunomodulatory effects of a chrysolaminarin-enriched extract in senegalese sole. Fish Shellfish. Immunol. 2018, 82, 1–8. [Google Scholar] [CrossRef]
- Xia, S.; Wan, L.; Li, A.; Sang, M.; Zhang, C. Effects of nutrients and light intensity on the growth and biochemical composition of a marine microalga Odontella aurita. Chin. J. Oceanol. Limnol. 2013, 31, 1163–1173. [Google Scholar] [CrossRef]
- Gao, B.Y.; Chen, A.l.; Zhang, W.Y.; Li, A.F.; Zhang, C.W. Co-production of lipids, eicosapentaenoic acid, fucoxanthin, and chrysolaminarin by Phaeodactylum tricornutum cultured in a flat-plate photobioreactor under varying nitrogen conditions. J. Ocean. Univ. China 2017, 16, 916–924. [Google Scholar] [CrossRef]
- Xia, S.; Gao, B.; Fu, J.; Xiong, J.; Zhang, C. Production of fucoxanthin, chrysolaminarin, and eicosapentaenoic acid by Odontella aurita under different nitrogen supply regimes. J. Biosci. Bioeng. 2018, 126, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Marchand, J.; Blanckaert, V.; Lukomska, E.; Ulmann, L.; Wielgosz-Collin, G.; Rabesaotra, V.; Moreau, B.; Bougaran, G.; Mimouni, V.; et al. Nitrogen and phosphorus limitations induce carbon partitioning and membrane lipid remodelling in the marine diatom Phaeodactylum tricornutum. Eur. J. Phycol. 2019, 54, 342–358. [Google Scholar] [CrossRef]
- González-Fernández, C.; Ballesteros, M. Linking microalgae and cyanobacteria culture conditions and key-enzymes for carbohydrate accumulation. Biotechnol. Adv. 2012, 30, 1655–1661. [Google Scholar] [CrossRef]
- Vårum, K.M.; Myklestad, S. Effects of light, salinity and nutrient limitation on the production of β-1,3-d-glucan and exo-d-glucanase activity in Skeletonema costatum (grev.) cleve. J. Exp. Mar. Biol. Ecol. 1984, 83, 13–25. [Google Scholar] [CrossRef]
- Shaikh, K.M.; Nesamma, A.A.; Abdin, M.Z.; Jutur, P.P. Molecular profiling of an oleaginous trebouxiophycean alga Parachlorella kessleri subjected to nutrient deprivation for enhanced biofuel production. Biotechnol. Biofuels 2019, 12, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Lv, H.; Cui, X.; Wahid, F.; Xia, F.; Zhong, C.; Jia, S. Analysis of the physiological and molecular responses of Dunaliella salina to macronutrient deprivation. PLoS ONE 2016, 11, e0152226. [Google Scholar] [CrossRef]
- Ruiz-Domínguez, M.C.; Vaquero, I.; Obregón, V.; Morena, B.d.l.; Vílchez, C.; Vega, J.M. Lipid accumulation and antioxidant activity in the eukaryotic acidophilic microalga Coccomyxa sp. (strain onubensis) under nutrient starvation. J. Appl. Phycol. 2014, 27, 1099–1108. [Google Scholar] [CrossRef]
- Eixler, S.; Karsten, U.; Selig, U. Phosphorus storage in Chlorella vulgaris (trebouxiophyceae, chlorophyta) cells and its dependence on phosphate supply. Phycologia 2006, 45, 53–60. [Google Scholar] [CrossRef]
- Cakmak, T.; Angun, P.; Demiray, Y.E.; Ozkan, A.D.; Elibol, Z.; Tekinay, T. Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii. Biotechnol. Bioeng. 2012, 109, 1947–1957. [Google Scholar] [CrossRef]
- Cakmak, T.; Angun, P.; Ozkan, A.D.; Cakmak, Z.; Olmez, T.T.; Tekinay, T. Nitrogen and sulfur deprivation differentiate lipid accumulation targets of Chlamydomonas reinhardtii. Bioengineered 2012, 3, 343–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, S.H.; Chen, C.Y.; Chang, J.S. Effect of light intensity and nitrogen starvation on co2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus cnw-n. Bioresour. Technol. 2012, 113, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence-a practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Saroussi, S.; Sanz-Luque, E.; Kim, R.G.; Grossman, A.R. Nutrient scavenging and energy management: Acclimation responses in nitrogen and sulfur deprived chlamydomonas. Curr. Opin. Plant Biol. 2017, 39, 114–122. [Google Scholar] [CrossRef]
- Zhang, Z.; Shrager, J.; Jain, M.; Chang, C.W.; Vallon, O.; Grossman, A.R. Insights into the survival of Chlamydomonas reinhardtii during sulfur starvation based on microarray analysis of gene expression. Eukaryot Cell 2004, 3, 1331–1348. [Google Scholar] [CrossRef] [Green Version]
- Song, P.; Li, L.; Liu, J. Proteomic analysis in nitrogen-deprived Isochrysis galbana during lipid accumulation. PLoS ONE 2013, 8, e82188. [Google Scholar] [CrossRef] [Green Version]
- García-Ferrs, C.; Moreno, J. Oxidative modification and breakdown of ribulose-1,5-bisphosphate carboxylase/oxygenase induced in Euglena gracilis by nitrogen starvation. Planta 1994, 193, 208–215. [Google Scholar] [CrossRef]
- Wang, H.T.; Yao, C.H.; Ai, J.N.; Cao, X.P.; Xue, S.; Wang, W.L. Identification of carbohydrates as the major carbon sink of the marine microalga Isochrysis zhangjiangensis (haptophyta) and optimization of its productivity by nitrogen manipulation. Bioresour. Technol. 2014, 171, 298–304. [Google Scholar] [CrossRef]
- Ran, W.; Wang, H.; Liu, Y.; Qi, M.; Xiang, Q.; Yao, C.; Zhang, Y.; Lan, X. Storage of starch and lipids in microalgae: Biosynthesis and manipulation by nutrients. Bioresour. Technol. 2019, 291, 121894. [Google Scholar] [CrossRef]
- Otero, A.; Vincenzini, M. Nostoc(cyanophyceae) goes nude: Extracellular polysaccharides serve as a sink for reducing power under unbalanced c/n metabolism. J. Phycol. 2004, 40, 78–81. [Google Scholar] [CrossRef]
- Yang, Z.; Geng, L.; Wang, W.; Zhang, J. Combined effects of temperature, light intensity, and nitrogen concentration on the growth and polysaccharide content of Microcystis aeruginosa in batch culture. Biochem. Syst. Ecol. 2012, 41, 130–135. [Google Scholar] [CrossRef]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of proline under changing environments. Plant Signal. Behav. 2012, 7, 1456–1466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Branyikova, I.; Marsalkova, B.; Doucha, J.; Branyik, T.; Bisova, K.; Zachleder, V.; Vitova, M. Microalgae-novel highly efficient starch producers. Biotechnol. Bioeng. 2011, 108, 766–776. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Ai, J.; Cao, X.; Xue, S.; Zhang, W. Enhancing starch production of a marine green microalga tetraselmis subcordiformis through nutrient limitation. Bioresour. Technol. 2012, 118, 438–444. [Google Scholar] [CrossRef]
- Yao, C.H.; Ai, J.N.; Cao, X.P.; Xue, S. Salinity manipulation as an effective method for enhanced starch production in the marine microalga Tetraselmis subcordiformis. Bioresour. Technol. 2013, 146, 663–671. [Google Scholar] [CrossRef]
- Li, Y.; Han, D.; Hu, G.; Sommerfeld, M.; Hu, Q. Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol. Bioeng. 2010, 107, 258–268. [Google Scholar] [CrossRef]
- Li, X.; Přibyl, P.; Bišová, K.; Kawano, S.; Cepák, V.; Zachleder, V.; Čížková, M.; Brányiková, I.; Vítová, M. The microalga Parachlorella kessleri-a novel highly efficient lipid producer. Biotechnol. Bioeng. 2013, 110, 97–107. [Google Scholar] [CrossRef]
- Wang, F.; Gao, B.; Dai, C.; Su, M.; Zhang, C. Comprehensive utilization of the filamentous oleaginous microalga Tribonema utriculosum for the production of lipids and chrysolaminarin in a biorefinery concept. Algal Res. 2020, 50, 101973–101980. [Google Scholar] [CrossRef]
- Dai, L.; Tan, L.; Jin, X.; Wu, H.; Wu, H.; Li, T.; Xiang, W. Evaluating the potential of carbohydrate-rich microalga Rhodosorus sp. Scsio-45730 as a feedstock for biofuel and β-glucans using strategies of phosphate optimization and low-cost harvest. J. Appl. Phycol. 2020, 32, 3051–3061. [Google Scholar] [CrossRef]
- Nie, M.; Luo, J.; Xiao, M.; Chen, J.; Bao, K.; Zhang, W.; Chen, J.; Li, B. Structural differences between fusarium strains investigated by ft-ir spectroscopy. Biochem. 2007, 72, 61–67. [Google Scholar] [CrossRef]
- Qian, J.Y.; Chen, W.; Zhang, W.M.; Zhang, H. Adulteration identification of some fungal polysaccharides with sem, xrd, ir and optical rotation: A primary approach. Carbohydr. Polym. 2009, 78, 620–625. [Google Scholar] [CrossRef]
- Zhang, Y.; Dai, L.; Kong, X.; Chen, L. Characterization and in vitro antioxidant activities of polysaccharides from pleurotus ostreatus. Int. J. Biol. Macromol. 2012, 51, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Maity, P.; Nandi, A.K.; Manna, D.K.; Pattanayak, M.; Sen, I.K.; Bhanja, S.K.; Samanta, S.; Panda, B.C.; Paloi, S.; Acharya, K.; et al. Structural characterization and antioxidant activity of a glucan from meripilus giganteus. Carbohydr. Polym. 2017, 157, 1237–1245. [Google Scholar] [CrossRef] [PubMed]
- Qi, l.; Gang, l.; Huang, F.; Zhao, L.; Zhou, S.q.; Huang, H.L. The antioxidant activities of six (1→3)-beta-d-glucan derivatives prepared from yeast cell wall. Int. J. Biol. Macromol. 2017, 98, 216–221. [Google Scholar] [CrossRef]
- Soare, J.R.; Dinis, T.C.P.; Cunha, A.P.; Almeida, L. Antioxidant activities of some extracts of thymus zygis. Free. Radic. Res. 1997, 26, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Xu, B.j. Oxygen radical absorbance capacity (orac) and ferric reducing antioxidant power (frap) of β-glucans from different sources with various molecular weight. Bioact. Carbohydr. Diet. Fibre 2014, 3, 11–16. [Google Scholar] [CrossRef]
- Cheng, P.; Chang, T.; Wang, C.; Yao, C.; Zhou, C.; Liu, T.; Wang, G.; Yan, X.; Ruan, R. High cobalt exposure facilitates bioactive exopolysaccharides production with a novel molecular structure in Botryococcus braunii. Chem. Eng. J. 2022, 442, 136294–136306. [Google Scholar] [CrossRef]
- Lodhi, M.A.; Ye, G.-N.; Weeden, N.F.; Reisch, B.I. A simple and efficient method for DNA extraction from grapevine cultivars and vitis species. Plant Mol. Biol. Report. 1994, 12, 6–13. [Google Scholar] [CrossRef]
- Huang, J.; Jiang, X. Isolation of Schizochytrium sp. Fju512 with high yield of dha and comparative analysis on its 18s rrna gene sequence. Appl. Environ. Biol. 2005, 11, 202–207. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, Z.; Zhang, W.; Yu, X.; Jin, M. Improved hydrogen photoproduction regulated by carbonylcyanide m-chlorophenylhrazone from marine green alga platymonas subcordiformis grown in co2-supplemented air bubble column bioreactor. Biotechnol. Lett. 2008, 30, 877–883. [Google Scholar] [CrossRef]
- Chi, L.; Yao, C.; Cao, X.; Xue, S. Coordinated regulation of nitrogen supply mode and initial cell density for energy storage compounds production with economized nitrogen utilization in a marine microalga isochrysis zhangjiangensis. Bioresour. Technol. 2016, 200, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Granum, E.; Myklestad, S.M. A simple combined method for determination of β-1,3-glucan and cell wall polysaccharides in diatoms. Hydrobiologia 2002, 477, 155–161. [Google Scholar] [CrossRef]
- Lal, S.B.; Jaisingh, K.; Ramesh, S. A modified anthrone-sulfuric acid method for the determination of fructose in the presence of certain proteins. Anal. Biochem. 1987, 167, 327–330. [Google Scholar] [CrossRef]
- Rausch, T. The estimation of micro-algal protein content and its meaning to the evaluation of algal biomass i. Comparison of methods for extracting protein. Hydrobiologia 1981, 78, 237–251. [Google Scholar] [CrossRef]
- Doan, Y.T.T.; Obbard, P.J. Improved nile red staining of Nannochloropsis sp. J. Appl. Phycol. 2010, 23, 895–901. [Google Scholar] [CrossRef]
- Liu, Z.y.; Wang, G.c. Effect of Fe3+ on the growth and lipid content of Isochrysis galbana. Chin. J. Oceanol. Limnol. 2014, 32, 47–53. [Google Scholar] [CrossRef]
- Strasser, R.J.; Srivastava, A.; Govindjee. Polyphasic chlorophyll al-pha fluorescence transient in plants and cyanobacteria. Photochem. Photobiol. 1995, 61, 32–42. [Google Scholar] [CrossRef]
- Yang, X.; Wang, R.; Zhang, S.; Zhu, W.; Tang, J.; Liu, J.; Chen, P.; Zhang, D.; Ye, W.; Zheng, Y. Polysaccharides from Panax japonicus C.A. Meyer and their antioxidant activities. Carbohydr. Polym. 2014, 101, 386–391. [Google Scholar] [CrossRef]
Culture Conditions | LL (Day 3) | HL (Day 4) | ||||||
---|---|---|---|---|---|---|---|---|
NR | -N | -P | -S | NR | -N | -P | -S | |
Biomass productivity (mg/L/day) | 524.60 ± 80.67 a | 213.17 ± 15.57 c | 480.20 ± 10.89 a | 313.58± 7.36 b | 640.73± 22.86 a | 230.67± 12.67 d | 562.52 ± 25.44 b | 290.90 ± 10.82 c |
Chrysolaminarin productivity (mg/L/day) | 15.23 ± 0.68 d | 90.31 ± 5.25 b | 41.34 ± 5.12 c | 145.93± 1.61 a | 55.06 ± 2.64 d | 98.71 ± 5.71 c | 132.39 ± 4.41 b | 155.08 ± 5.94 a |
Chrysolaminarin content (pg/cell) | 3.48 ± 0.69 d | 40.97 ± 1.90 b | 8.95 ± 0.84 c | 45.31 ± 1.30 a | 8.71 ± 0.09 d | 40.58 ± 1.21 b | 23.10 ± 1.56 c | 50.72 ± 1.50 a |
Neutral lipid (RFU/cell) | 22.86 ± 4.21 c | 109.30 ± 31.68 a | 32.37 ± 10.50 bc | 64.80 ± 6.25 b | 18.23 ± 8.67 d | 119.73 ± 3.60 a | 38.32 ± 4.37 c | 55.49 ± 7.28 b |
Protein (pg/cell) | 31.19 ± 2.46 a | 19.83 ± 0.78 b | 26.80 ± 3.52 a | 18.38 ± 0.72 b | 22.30 ± 0.48 a | 16.65 ± 1.12 b | 17.19 ± 1.60 b | 15.20 ± 1.77 b |
Strain | Culture Conditions | Biomass Productivity (mg/L/day) | Chrysolaminarin Content (%DW) | Chrysolaminarin Yield (mg/L) | Chrysolaminarin Productivity (mg/L/day) | Reference | |
---|---|---|---|---|---|---|---|
Isochrysis zhanjiangensis | HL (150 μmol photons m−2 s−1) | -N | 231 | 31.90 | 407 | 98.7 | This study |
-S | 291 | 41.71 | 632 | 155.1 | |||
Tribonema utriculosum | Initial nitrogen concentration | 3 mM | - | 10.70 | 664 | - | [49] |
9 mM | - | 14.66 | 815 | - | |||
18 mM | - | 14.17 | 757 | - | |||
Rhodosorus sp. SCSIO-45730 | Phosphate concentration | 0 mg/L | 114 | 6.6 | 191 | 8.3 | [50] |
120 mg/L | 541 | 19.4 | 2386 | 108.1 | |||
240 mg/L | 582 | 14.5 | 1914 | 86.1 | |||
Odontella aurita | Nitrogen concentration | 6 mM | 238 | 60.33 | 2383 | 142.7 | [23] |
18 mM | 373 | 46.27 | 2702 | 161.5 | |||
Phaeodactylum tricornutum | Nitrogen concentration | 14.5 mM | 339 | 17.1 | 693 | 73.6 | [22] |
2.9 mM | 292 | 14.66 | 403 | 58.0 | |||
Odontella aurita | LL (100 μmol photons m−2 s−1) | H-N (18 mM) | 304 | 59.33 | 2397 | 240.0 | [19] |
L-N (6 mM) | 323 | 34.05 | 1440 | 144.0 | |||
HL (300 μmol photons m−2 s−1) | H-N (18 mM) | 324 | 63.11 | 2676 | 268.0 | ||
L-N (6 mM) | 536 | 48.16 | 3063 | 306.0 | |||
Odontella aurita | LL (150 μmol photons m−2 s−1) | L-N (3.53 mM) | 191 | 50.4 | 1824 | 117.7 | [21] |
L-P (0.36 mM) | 167 | 29.2 | 952 | 59.6 | |||
L-Si (0.11 mM) | 290 | 43.1 | 2198 | 142.6 | |||
L-S (8.17 mM) | 350 | 45.4 | 2724 | 177.7 | |||
HL (300 μmol photons m−2 s−1) | L-N (3.53 mM) | 97 | 45.3 | 997 | 62.6 | ||
L-P (0.36 mM) | 150 | 27.5 | 825 | 51.1 | |||
L-Si (0.11 mM) | 337 | 42.3 | 2453 | 159.6 | |||
L-S (8.17 mM) | 363 | 43.4 | 2691 | 175.5 |
Polysaccharide | Carbohydrate (%) | Chrysolaminarin (%) | Protein (%) | Lipid (%) |
---|---|---|---|---|
Iz-N | 90.77 ± 0.57 | 86.55 ± 0.26 | 1.33 ± 0.083 | 0.09 ± 0.04 |
Iz-S | 89.12 ± 1.03 | 87.07 ± 0.00 | 0.04 ± 0.003 | 0.41 ± 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ran, X.; Shen, Y.; Jiang, D.; Wang, C.; Li, X.; Zhang, H.; Pan, Y.; Xie, C.; Xie, T.; Zhang, Y.; et al. Nutrient Deprivation Coupled with High Light Exposure for Bioactive Chrysolaminarin Production in the Marine Microalga Isochrysis zhangjiangensis. Mar. Drugs 2022, 20, 351. https://doi.org/10.3390/md20060351
Ran X, Shen Y, Jiang D, Wang C, Li X, Zhang H, Pan Y, Xie C, Xie T, Zhang Y, et al. Nutrient Deprivation Coupled with High Light Exposure for Bioactive Chrysolaminarin Production in the Marine Microalga Isochrysis zhangjiangensis. Marine Drugs. 2022; 20(6):351. https://doi.org/10.3390/md20060351
Chicago/Turabian StyleRan, Xiuyuan, Yuhan Shen, Dongjian Jiang, Chenqi Wang, Xinghui Li, Haoyu Zhang, Yunyun Pan, Chenglin Xie, Tonghui Xie, Yongkui Zhang, and et al. 2022. "Nutrient Deprivation Coupled with High Light Exposure for Bioactive Chrysolaminarin Production in the Marine Microalga Isochrysis zhangjiangensis" Marine Drugs 20, no. 6: 351. https://doi.org/10.3390/md20060351
APA StyleRan, X., Shen, Y., Jiang, D., Wang, C., Li, X., Zhang, H., Pan, Y., Xie, C., Xie, T., Zhang, Y., & Yao, C. (2022). Nutrient Deprivation Coupled with High Light Exposure for Bioactive Chrysolaminarin Production in the Marine Microalga Isochrysis zhangjiangensis. Marine Drugs, 20(6), 351. https://doi.org/10.3390/md20060351