Carotenoids Biosynthesis, Accumulation, and Applications of a Model Microalga Euglenagracilis
Abstract
:1. Introduction
2. Composition and Structures of Carotenoids in Euglena
3. Carotenoids Biosynthesis Pathways in Euglena
3.1. IDI to GGPP
3.2. GGPP to Lycopene
3.3. Lycopene to α-Carotene and Derivatives
3.4. Lycopene to β-Carotene and Derivatives
4. Genes of Carotenoids Biosynthesis
5. Cultivation Conditions and Carotenoids Accumulation
5.1. Environmental Stresses
5.2. Cultivation Conditions
5.3. Extraction and Analysis
6. Applications
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, J.Y.; Liu, C.C.; Du, M.Z.; Zhou, X.Y.; Hu, Z.L.; Lei, A.P.; Wang, J.X. Metabolic Responses of a Model Green Microalga Euglena gracilis to Different Environmental Stresses. Front. Bioeng. Biotechnol. 2021, 9. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Zhu, J.; Jiang, J.-G. Carotenoids biosynthesis and cleavage related genes from bacteria to plants. Crit. Rev. Food Sci. Nutr. 2017, 58, 2314–2333. [Google Scholar] [CrossRef] [PubMed]
- Ambati, R.R.; Gogisetty, D.; Aswathanarayana, R.G.; Ravi, S.; Bikkina, P.N.; Bo, L.; Yuepeng, S. Industrial potential of carotenoid pigments from microalgae: Current trends and future prospects. Crit. Rev. Food Sci. Nutr. 2018, 59, 1880–1902. [Google Scholar] [CrossRef]
- Takaichi, S. Carotenoids in Algae: Distributions, Biosyntheses and Functions. Mar. Drugs 2011, 9, 1101–1118. [Google Scholar] [CrossRef] [PubMed]
- Gerber, S.; Häder, D.-P. Effects of Enhanced UV-B Irradiation on the Red Coloured Freshwater Flagellate Euglena sanguinea. FEMS Microbiol. EcoL. 1994, 13, 177–184. [Google Scholar] [CrossRef]
- Heelis, D.V.; Kernick, W.; Phillips, G.O.; Davies, K. Separation and Identification of the Carotenoid Pigments of Stigmata Isolated from Light-grown Cells of Euglena gracilis strain Z. Arch. Microbiol. 1979, 121, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Walne, P.L.; Arnott, H.J. The Comparative Ultrastructure and Possible Function of Eyespots: Euglena granulata and Chlamydomonas eugametos. Planta 1967, 77, 325–353. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Ozasa, K.; Maeda, M.; Tanno, Y.; Tamaki, S.; Higuchi-Takeuchi, M.; Numata, K.; Kodama, Y.; Sato, M.; Toyooka, K.; et al. Carotenoids in the eyespot apparatus are required for triggering phototaxis in Euglena gracilis. Plant J. 2019, 101, 1091–1102. [Google Scholar] [CrossRef] [Green Version]
- Vílchez, C.; Forján, E.; Cuaresma, M.; Bédmar, F.; Garbayo, I.; Vega, J.M. Marine Carotenoids: Biological Functions and Commercial Applications. Mar. Drugs 2011, 9, 319–333. [Google Scholar] [CrossRef] [Green Version]
- Becker, E.W. Microalgae in Human and Animal Nutrition. In Handbook of Microalgal Culture: Applied Phycology and Biotechnology, 2nd ed.; Richmond, A., Hu, Q., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2013; pp. 461–503. [Google Scholar]
- Takashi, M. Recent Progress in Structural Studies of Carotenoids in Animals and Plants. Arch. Biochem. Biophys. 2009, 483, 191–195. [Google Scholar]
- Tamaki, S.; Tanno, Y.; Kato, S.; Ozasa, K.; Wakazaki, M.; Sato, M.; Toyooka, K.; Maoka, T.; Ishikawa, T.; Maeda, M.; et al. Carotenoid accumulation in the eyespot apparatus required for phototaxis is independent of chloroplast development in Euglena gracilis. Plant Sci. 2020, 298, 110564. [Google Scholar] [CrossRef] [PubMed]
- Fernández-García, E.; Carvajal-Lérida, I.; Jarén-Galán, M.; Garrido-Fernández, J.; Pérez-Gálvez, A.; Hornero-Méndez, D. Carotenoids bioavailability from foods: From plant pigments to efficient biological activities. Food Res. Int. 2012, 46, 438–450. [Google Scholar] [CrossRef]
- Deli, J.; Gonda, S.; Nagy, L.; Szabó, I.; Gulyás-Fekete, G.; Agócs, A.; Marton, K.; Vasas, G. Carotenoid composition of three bloom-forming algae species. Food Res. Int. 2014, 65, 215–223. [Google Scholar] [CrossRef]
- Czeczuga, B. Carotenoids in Euglena rubida Mainx. Comp. Biochem. Physiol. B Comp. Biochem. 1974, 48, 349–354. [Google Scholar] [CrossRef]
- Yokota, A.; Okamoto, K.; Kitaoka, S. Composition and Variation by Illumination of Carotenoid in Streptomycin-bleached Mutant of Euglena gracilis. J. Agric. Chem. 1978, 52, 97–99. [Google Scholar]
- Gross, J.A.; Stroz, R.J.; Britton, G. The Carotenoid Hydrocarbons of Euglena gracilis and Derived Mutants. Plant Physiol. 1975, 55, 175–177. [Google Scholar] [CrossRef]
- Jens, S.; Hartmut, L. Regulation of Two Carotenoid Biosynthesis Genes Coding for Phytoene Synthase and Carotenoid Hydroxylase during Stress-induced Astaxanthin Formation in the Green Alga Haematococcus pluvialis. Plant Physiol. 2001, 125, 810–817. [Google Scholar]
- Tamaki, S.; Mochida, K.; Suzuki, K. Diverse Biosynthetic Pathways and Protective Functions against Environmental Stress of Antioxidants in Microalgae. Plants 2021, 10, 1250. [Google Scholar] [CrossRef] [PubMed]
- Lorena, P.; Claudia, S. Light-dependent Regulation of Carotenoid Biosynthesis in Plants. Cienc. Investig. Agrar. 2009, 36, 143–162. [Google Scholar]
- Gupta, A.K.; Seth, K.; Maheshwari, K.; Baroliya, P.K.; Meena, M.; Kumar, A.; Vinayak, V.; Harish. Biosynthesis and Extraction of High-value Carotenoid from Algae. Front. Biosci.-landmrk. 2021, 26, 171–190. [Google Scholar]
- Hartmut, K.L.; Jorg, S.; Andrea, D.; Michel, R. Biosynthesis of Isoprenoids in Higher Plant Chloroplasts Proceeds via a Mevalonate Independent Pathway. FEBS Lett. 1996, 400, 271–274. [Google Scholar]
- Lohr, M.; Schwender, J.; Polle, J.E. Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae. Plant Sci. 2011, 185–186, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Schwender, J.; Zeidler, J.; Gröner, R.; Müller, C.; Focke, M.; Braun, S.; Lichtenthaler, F.W.; Lichtenthaler, H.K. Incorporation of 1-deoxy-D-xylulose into isoprene and phytol by higher plants and algae. FEBS Lett. 1997, 414, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Lichtenthaler, H.K. Biosynthesis, Accumulation and Emission of Carotenoids, Alpha-tocopherol, Plastoquinone, and Isoprene in Leaves under High Hotosynthetic Irradiance. Photosynth. Res. 2007, 92, 163–179. [Google Scholar] [CrossRef]
- Henry, M.M. Enzymes of the Mevalonate Pathway of Isoprenoid Biosynthesis. Arch. Biochem. Biophys. 2011, 505, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Zairen, S.; Francis, X.C.; Elisabeth, G. Differential Expression of Two Isopentenyl Pyrophosphate Isomerases and Enhanced Carotenoid Accumulation in a Unicellular Chlorophyte. Plant Biol. 1996, 95, 11482–11488. [Google Scholar]
- Goodwin, T.W.; Gross, J.A. Carotenoid Distribution in Bleached Substrains of Eugelna gracilis. J. Protozool. 1958, 5, 292–295. [Google Scholar] [CrossRef]
- Kato, S.; Takaichi, S.; Ishikawa, T.; Asahina, M.; Takahashi, S.; Shinomura, T. Identification and functional analysis of the geranylgeranyl pyrophosphate synthase gene (crtE) and phytoene synthase gene (crtB) for carotenoid biosynthesis in Euglena gracilis. BMC Plant Biol. 2016, 16, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Miras, M.B.; Pedreño, Á.M.; Romero, A.L. Bioactivity and Bioavailability of Phytoene and Strategies to Improve its Production. Phytochem. Rev. 2019, 18, 359–376. [Google Scholar] [CrossRef]
- Kato, S.; Soshino, M.; Takaichi, S.; Ishikawa, T.; Nagata, N.; Asahina, M.; Shinomura, T. Suppression of the Phytoene Synthase Gene (EgcrtB) Alters Carotenoid Content and Intracellular Structure of Euglena gracilis. BMC Plant Biol. 2017, 17, 1–10. [Google Scholar] [CrossRef]
- Sathasivam, R.; Radhakrishnan, R.; Kim, J.K.; Park, S.U. An update on biosynthesis and regulation of carotenoids in plants. S. Afr. J. Bot. 2020, 140, 290–302. [Google Scholar] [CrossRef]
- Kato, S.; Tanno, Y.; Takaichi, S.; Shinomura, T. Low Temperature Stress Alters the Expression of Phytoene Desaturase Genes (crtP1 and crtP2) and the Zeta-Carotene Desaturase Gene (crtQ) Together with the Cellular Carotenoid Content of Euglena gracilis. Plant Cell Physiol. 2019, 60, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, K.; Takahashi, K.; Nakazawa, K.; Yamada, M.; Kota, S.; Shinomura, T.; Nagashima, Y.; Suzuki, H.; Ara, T.; Harada, J.; et al. Oxygenic Phototrophs Need Zeta-Carotene Isomerase (Z-ISO) for Carotene Synthesis: Functional Analysis in Arthrospira and Euglena. Plant Cell Physiol. 2020, 61, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, L.; Chi, S.; Wang, G.; Wang, X.; Liu, T.; Tang, X. Phylogenetic Analyses of the Genes Involved in Carotenoid Biosynthesis in Algae. Acta Oceanol. Sin. 2018, 37, 89–101. [Google Scholar] [CrossRef]
- Krubasik, P.; Sandman, G. Molecular Evolution of Lycopene Cyclases Involved in the Formation of Carotenoids with Ionone End Groups. Biochem. Soc. Trans. 2000, 28, 806–810. [Google Scholar] [CrossRef]
- Deng, Y.Y.; Cheng, L.; Wang, Q.; Ge, Z.H.; Zheng, H.; Cao, T.J.; Lu, Q.Q.; Yang, L.E.; Lu, S. Functional Characterization of Lycopene Cyclases Illustrates the Metabolic Pathway toward Lutein in Red Algal Seaweeds. J. Agri. Food Chem. 2020, 68, 1354–1363. [Google Scholar] [CrossRef]
- Cui, H.L.; Wang, Y.C.; Qin, S. Molecular Evolution of Lycopene Cyclases Involved in the Formation of Carotenoids in Eukaryotic Algae. Plant Mol. Biol. Rep. 2011, 29, 1013–1020. [Google Scholar] [CrossRef]
- Carsten, H.M.; Walter, S. Nutritional Supplementation to Prevent Cataract Formation. Nutr. Eye 2005, 38, 103–119. [Google Scholar]
- Francis, X.C., Jr.; Barry, P.; Zairen, S.; Kelly, A.M.; Dean, D.; Elisabeth, G. Functional Analysis of the β and ϵ Lycopene Cyclase Enzymes of Arabidopsis Reveals a Mechanism for Control of Cyclic Carotenoid Formation. Plant Cell 1996, 8, 1613–1626. [Google Scholar]
- Neilson, J.A.; Durnford, D.G. Structural and Functional Diversification of the Light-Harvesting Complexes in Photosynthetic Eukaryotes. Photosynth. Res. 2010, 106, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.F.; Yan, H.C.; Wang, K.B.; Kuang, T.Y.; Zhang, J.P.; Gui, L.L.; An, X.M.; Chang, W.R. Crystal Structure of Spinach Major Light Harvesting Complex at 2.72 Å Resolution. Nature 2004, 428, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Hager, A. Studies on Light-induced Reversible Xanthophyll-conversions in Chlorella and Spinach Leaves. Planta 1966, 72, 148–172. [Google Scholar]
- Dautermann, O.; Lohr, M. A functional zeaxanthin epoxidase from red algae shedding light on the evolution of light-harvesting carotenoids and the xanthophyll cycle in photosynthetic eukaryotes. Plant J. 2017, 92, 879–891. [Google Scholar] [CrossRef]
- Goss, R.; Latowski, D. Lipid Dependence of Xanthophyll Cycling in Higher Plants and Algae. Front. Plant Sci. 2020, 11, 455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dautermann, O.; Lyska, D.; Andersen-Ranberg, J.; Becker, M.; Fröhlich-Nowoisky, J.; Gartmann, H.; Krämer, L.C.; Mayr, K.; Pieper, D.; Rij, L.M.; et al. An algal enzyme required for biosynthesis of the most abundant marine carotenoids. Sci. Adv. 2020, 6, eaaw9183. [Google Scholar] [CrossRef] [Green Version]
- Stransky, H.; Hager, A. Das Carotinoidmuster und die Verbreitung des Lichtinduzierten Xanthophyllcyclus in Verschiedenen Algenklassen. Arch. Microbiol. 1970, 71, 164–190. [Google Scholar]
- Saini, R.K.; Moon, S.H.; Gansukh, E.; Keum, Y.-S. An efficient one-step scheme for the purification of major xanthophyll carotenoids from lettuce, and assessment of their comparative anticancer potential. Food Chem. 2018, 266, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Bhosale, P.; Bernstein, P.S. Microbial xanthophylls. Appl. Microbiol. Biotechnol. 2005, 68, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Fiksdahl, A.; Liaaen-Jensen, S. Diacetylenic carotenoids from Euglena viridis. Phytochemistry 1988, 27, 1447–1450. [Google Scholar] [CrossRef]
- Nomura, T.; Inoue, K.; Uehara-Yamaguchi, Y.; Yamada, K.; Iwata, O.; Suzuki, K.; Mochida, K. Highly Efficient Transgene-free Targeted Mutagenesis and Single-stranded Oligodeoxynucleotide-mediated Precise Knock-in in the Industrial Microalga Euglena gracilis Using Cas9 Ribonucleoproteins. Plant Biotechnol. J. 2019, 17, 2032–2034. [Google Scholar] [CrossRef] [Green Version]
- Maresca, J.A.; Graham, J.E.; Wu, M.; Eisen, J.A.; Bryant, D.A. Identification of a fourth family of lycopene cyclases in photosynthetic bacteria. Proc. Natl. Acad. Sci. USA 2007, 104, 11784–11789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamaki, S.; Sato, R.; Koshitsuka, Y.; Asahina, M.; Kodama, Y.; Ishikawa, T.; Shinomura, T. Suppression of the Lycopene Cyclase Gene Causes Downregulation of Ascorbate Peroxidase Activity and Decreased Glutathione Pool Size, Leading to H2O2 Accumulation in Euglena gracilis. Front. Plant Sci. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, S.; Kato, S.; Shinomura, T.; Ishikawa, T.; Imaishi, H. Physiological role of β-carotene monohydroxylase (CYP97H1) in carotenoid biosynthesis in Euglena gracilis. Plant Sci. 2019, 278, 80–87. [Google Scholar] [CrossRef]
- Cui, H.; Yu, X.; Wang, Y.; Cui, Y.; Li, X.; Liu, Z.; Qin, S. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae. BMC Genom. 2013, 14, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, M.; Bassi, A. Carotenoids from microalgae: A review of recent developments. Biotechnol. Adv. 2016, 34, 1396–1412. [Google Scholar] [CrossRef]
- Singh, P.; Kumari, S.; Guldhe, A.; Misra, R.; Rawat, I.; Bux, F. Trends and novel strategies for enhancing lipid accumulation and quality in microalgae. Renew. Sustain. Energy Rev. 2016, 55, 1–16. [Google Scholar] [CrossRef]
- Coesel, S.N.; Baumgartner, A.C.; Teles, L.M.; Ramos, A.A.; Henriques, N.M.; Cancela, L.; Varela, J.C. Nutrient Limitation is the Main Regulatory Factor for Carotenoid Accumulation and for Psy and Pds Steady State Transcript Levels in Dunaliella salina (Chlorophyta) Exposed to High Light and Salt Stress. Mar. Biotechnol. 2008, 10, 602–611. [Google Scholar] [CrossRef]
- Boussiba, S.; Vonshak, A. Astaxanthin Accumulation in the Green Alga Haematococcus pluvialis1. Plant Cell Physiol. 1991, 32, 1077–1082. [Google Scholar] [CrossRef] [Green Version]
- Terhi, A.A.; Kari, M.H.; Marja-Liisa, R. Solubility of Acenaphthene, Anthracene, and Pyrene in Water at 50 °C to 300 °C. J. Chem. Eng. Data 2005, 50, 1177–1183. [Google Scholar]
- William, R.G.; John, P.G. Photo—Induced Toxicity of Anthracene to the Green Alga, Selenastrum capricornutum. Arch. Environ. Con. Tox. 1992, 23, 316–323. [Google Scholar]
- Behera, B.K.; Das, A.; Sarkar, D.J.; Weerathunge, P.; Parida, P.K.; Das, B.K.; Thavamani, P.; Ramanathan, R.; Bansal, V. Polycyclic Aromatic Hydrocarbons (PAHs) in Inland Aquatic Ecosystems: Perils and Remedies through Biosensors and Bioremediation. Environ. Pollut. 2018, 241, 212–233. [Google Scholar] [CrossRef] [PubMed]
- Sikkema, J.; Poolman, B.; Konings, W.N.; A de Bont, J. Effects of the membrane action of tetralin on the functional and structural properties of artificial and bacterial membranes. J. Bacteriol. 1992, 174, 2986–2992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kottuparambil, S.; Park, J. Anthracene phytotoxicity in the freshwater flagellate alga Euglena agilis Carter. Sci. Rep. 2019, 9, 15323. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wakisaka, M. Application of lignosulfonate as the growth promotor for freshwater microalgaEuglena gracilis to increase productivity of biomass and lipids. Fuel 2020, 283, 118920. [Google Scholar] [CrossRef]
- Yamane, Y.-I.; Utsunomiya, T.; Watanabe, M.; Sasaki, K. Biomass production in mixotrophic culture of Euglena gracilis under acidic condition and its growth energetics. Biotechnol. Lett. 2001, 23, 1223–1228. [Google Scholar] [CrossRef]
- Tahira, S.; Khan, S.; Samrana, S.; Shahi, L.; Ali, I.; Murad, W.; Rehman, Z.U.; Azizullah, A. Bio-assessment and remediation of arsenic (arsenite As-III) in water by Euglena gracilis. J. Appl. Phycol. 2018, 31, 423–433. [Google Scholar] [CrossRef]
- Marčenko, E. Effect of light and temperature on the bleaching of the yellow mutant y-1 ofEuglena gracilis. Protoplasma 1974, 82, 119–123. [Google Scholar] [CrossRef]
- Tanno, Y.; Kato, S.; Takahashi, S.; Tamaki, S.; Takaichi, S.; Kodama, Y.; Sonoike, K.; Shinomura, T. Light Dependent Accumulation of Beta-carotene Enhances Photo-Acclimation of Euglena gracilis. J. Photoch. Photobio. A 2020, 209. [Google Scholar]
- Alan, W.; Sarah, J.R.; Dennis, R.H. Arsenic in Ground Water of the United States: An Overview. Water Well J. 2001, 2, 30–33. [Google Scholar]
- Tuan le, Q.; Huong, T.T.; Hong, P.T.; Kawakami, T.; Shimanouchi, T.; Umakoshi, H.; Kuboi, R. Arsenic (V) Induces a Fluidization of Algal Cell and Liposome Membranes. Toxicol. In Vitro 2008, 22, 1632–1638. [Google Scholar] [CrossRef]
- Häder, D.-P.; Häder, M.A. Ultraviolet-B inhibition of motility in green and dark bleachedEuglena gracilis. Curr. Microbiol. 1988, 17, 215–220. [Google Scholar] [CrossRef]
- Wang, H.-T.; Meng, Y.-Y.; Cao, X.-P.; Ai, J.-N.; Zhou, J.-N.; Xue, S.; Wang, W.-L. Coordinated response of photosynthesis, carbon assimilation, and triacylglycerol accumulation to nitrogen starvation in the marine microalgae Isochrysis zhangjiangensis (Haptophyta). Bioresour. Technol. 2015, 177, 282–288. [Google Scholar] [CrossRef] [PubMed]
- GarciaFerris, C.; de los Rios, A.; Ascaso, C.; Moreno, J. Correlated Biochemical and Ultrastructural Changes in Nitrogen-starved Euglena gracilis. Eur. J. Phycol. 1996, 32, 953–963. [Google Scholar] [CrossRef]
- Tossavainen, M.; Ilyass, U.; Ollilainen, V.; Valkonen, K.; Ojala, A.; Romantschuk, M. Influence of Long-term Nitrogen Lim-itation on Lipid, Protein and Pigment Production of Euglena gracilis in Photoheterotrophic Cultures. PEERJ 2019, 7, e6624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sammy, B.; Wang, B.; Jian-Ping, Y.; Aliza, Z.; Feng, C. Changes in Pigments Profile in the Green Alga Haeamtococcus pluvialis Exposed to Environmental Stresses. Biotechnol. Lett. 1999, 21, 601–604. [Google Scholar]
- Akiho, Y.; Atsushi, H.; Shozaburo, K. Characterization of Ribulose 1,5-Bisphosphate Carboxylase Oxygenase from Euglena gracilis Z. J. Biochem. 1988, 105, 400–405. [Google Scholar]
- Kitaya, Y.; Azuma, H.; Kiyota, M. Effects of Temperature, CO2/O2 Concentrations and Light Intensity on Cellular Multiplication of Microalgae, Euglena gracilis. Adv. Space. Res. 2005, 35, 1584–1588. [Google Scholar] [CrossRef]
- Viegas, C.V.; Hachemi, I.; Mäki-Arvela, P.; Smeds, A.; Aho, A.; Freitas, S.P.; Gorgônio, C.M.D.S.; Carbonetti, G.; Peurla, M.; Paranko, J.; et al. Algal products beyond lipids: Comprehensive characterization of different products in direct saponification of green alga Chlorella sp. Algal Res. 2015, 11, 156–164. [Google Scholar] [CrossRef]
- Azizullah, A.; Richter, P.; Häder, D.-P. Photosynthesis and photosynthetic pigments in the flagellate Euglena gracilis – As sensitive endpoints for toxicity evaluation of liquid detergents. J. Photochem. Photobiol. B Biol. 2014, 133, 18–26. [Google Scholar] [CrossRef]
- Frassanito, R.; Cantonati, M.; Mancini, I.; Flaim, G.; Guella, G. A new method for the identification and the structural characterisation of carotenoid esters in freshwater microorganisms by liquid chromatography/electrospray ionisation tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2008, 22, 3531–3539. [Google Scholar] [CrossRef]
- Aslam, A.; Bahadar, A.; Liaquat, R.; Saleem, M.; Waqas, A.; Zwawi, M. Algae as an attractive source for cosmetics to counter environmental stress. Sci. Total Environ. 2021, 772, 144905. [Google Scholar] [CrossRef]
- Parniakov, O.; Apicella, E.; Koubaa, M.; Barba, F.J.; Grimi, N.; Lebovka, N.; Pataro, G.; Ferrari, G.; Vorobiev, E. Ultrasound-assisted Green Solvent Extraction of High-added Value Compounds from Microalgae Nannochloropsis spp. Bioresour. Technol. 2015, 198, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Cheirsilp, B.; Maneechote, W. Insight on Zero Waste Approach for Sustainable Microalgae Biorefinery: Sequential Fractionation, Conversion and Applications for High-to-low Value-added Products. Bioresour. Technol. 2022, 18. [Google Scholar] [CrossRef]
- Chiellini, C.; Guglielminetti, L.; Pistelli, L.; Ciurli, A. Screening of Trace Metal Elements for Pollution Tolerance of Freshwater and Marine Microalgal Strains: Overview and Perspectives. Algal. Res. 2020, 45, 1–13. [Google Scholar] [CrossRef]
- Piovan, A.; Filippini, R.; Corbioli, G.; Costa, V.D.; Giunco, E.M.V.; Burbello, G.; Pagetta, A.; Giusti, P.; Zusso, M. Carotenoid Extract Derived from Euglena gracilis Overcomes Lipopolysaccharide-Induced Neuroinflammation in Microglia: Role of NF-kappa B and Nrf2 Signaling Pathways. Mol. Neurobiol. 2021, 58, 3515–3528. [Google Scholar] [CrossRef] [PubMed]
- Berman, J.; Zorrilla-López, U.; Farré, G.; Zhu, C.; Sandmann, G.; Twyman, R.M.; Capell, T.; Christou, P. Nutritionally Important Carotenoids as Consumer Products. Phytochem. Rev. 2014, 14, 727–743. [Google Scholar] [CrossRef]
- Chiu, H.-F.; Liao, J.-Y.; Lu, Y.-Y.; Han, Y.-C.; Shen, Y.-C.; Venkatakrishnan, K.; Golovinskaia, O.; Wang, C.-K. Anti-proliferative, Anti-inflammatory and Pro-apoptotic Effects of Dunaliella salinaon Human KB Oral Carcinoma Cells. J. Food Biochem. 2017, 41, 1–8. [Google Scholar] [CrossRef]
- Cezare-Gomes, E.A.; Mejia-Da-Silva, L.D.C.; Pérez-Mora, L.S.; Matsudo, M.C.; Ferreira-Camargo, L.S.; Singh, A.K.; de Carvalho, J.C.M. Potential of Microalgae Carotenoids for Industrial Application. Appl. Biochem. Biotechnol. 2019, 188, 602–634. [Google Scholar] [CrossRef] [PubMed]
- Guerin, M.; Huntley, M.E.; Olaizola, M. Haematococcus astaxanthin: Applications for human health and nutrition. Trends Biotechnol. 2003, 21, 210–216. [Google Scholar] [CrossRef]
- Otton, R.; Marin, D.P.; Bolin, A.P.; De Cássia Macedo Dos Santos, R.; Polotow, T.G.; Sampaio, S.C.; de Barros, M.P. Astaxanthin ameliorates the redox imbalance in lymphocytes of experimental diabetic rats. Chem. Interact. 2010, 186, 306–315. [Google Scholar] [CrossRef]
- Monroy-Ruiz, J.; Sevilla, M.; Carrón, R.; Montero, M.-J. Astaxanthin-enriched-diet reduces blood pressure and improves cardiovascular parameters in spontaneously hypertensive rats. Pharmacol. Res. 2011, 63, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, H.; Watanabe, M.M.; Kaya, K. Echinenone production of a dark red-coloured strain of Botryococcus braunii. J. Appl. Phycol. 2011, 24, 973–977. [Google Scholar] [CrossRef]
- Iwata, S.; Imai, T.; Shimazawa, M.; Ishibashi, T.; Hayashi, M.; Hara, H.; Nakamura, S. Protective effects of the astaxanthin derivative, adonixanthin, on brain hemorrhagic injury. Brain Res. 2018, 1698, 130–138. [Google Scholar] [CrossRef]
- Kotake-Nara, E.; Asai, A.; Nagao, A. Neoxanthin and fucoxanthin induce apoptosis in PC-3 human prostate cancer cells. Cancer Lett. 2005, 220, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Izumi, K.; Masashi, H.; Tokutake, S.; Takashi, M.; Kazuo, M. Suppressive Effects of Alloxanthin and Diatoxanthin from Halocynthia roretzi on LPS-induced Expression of Pro-inflammatory Genes in RAW264.7 Cells. J. OLEO Sci. 2008, 57, 181–189. [Google Scholar]
- Rao, A.R.; Reddy, R.L.R.; Baskaran, V.; Sarada, R.; Ravishankar, G.A. Characterization of Microalgal Carotenoids by Mass Spectrometry and Their Bioavailability and Antioxidant Properties Elucidated in Rat Model. J. Agric. Food Chem. 2010, 58, 8553–8559. [Google Scholar] [CrossRef]
- Hoyoku, N.; Michiaki, M.; Tsunehiro, I.; Manabu, T.; Masashi, K.; Motohiro, K.; Mou, X.Y.; Saeri, W.; Mitsuharu, M.; Yasuhito, O.; et al. Carotenoids in Cancer Chemoprevention. Cancer Metast. Rev. 2002, 21, 257–264. [Google Scholar]
- Stahl, W.; Sundquist, A.R.; Hanusch, M.; Schwarz, W.; Sies, H. Separation of beta-carotene and lycopene geometrical isomers in biological samples. Clin. Chem. 1993, 39, 810–814. [Google Scholar] [CrossRef]
- Dugas, T.R.; Morel, D.W.; Harrison, E.H. Dietary Supplementation with β-carotene, but not with Lycopene, Inhibits Endothelial Cell-mediated Oxidation of Low-density Lipoprotein. Free Radical. Biol. Med. 1999, 26, 1238–1244. [Google Scholar] [CrossRef]
- Ben-Amotz, A.; Yatziv, S.; Sela, M.; Greenberg, S.; Rachmilevich, B.; Shwarzman, M.; Weshler, Z. Effect of Natural Beta-carotene Supplementation in Children Exposed to Radiation from the Chernobyl Accident. Radiat. Environ. Biophys. 1998, 37, 187–193. [Google Scholar] [CrossRef]
- Ma, L.; Lin, X.-M. Effects of lutein and zeaxanthin on aspects of eye health. J. Sci. Food Agric. 2010, 90, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Greenstein, V.C.; Chiosi, F.; Baker, P.; Seiple, W.; Holopigian, K.; Braunstein, R.E.; Sparrow, J.R. Scotopic sensitivity and color vision with a blue-light-absorbing intraocular lens. J. Cataract Refract. Surg. 2007, 33, 667–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landrum, J.T.; Bone, R.A. Lutein, Zeaxanthin, and the Macular Pigment. Arch. Biochem. Biophys. 2001, 385, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Tominaga, K.; Hongo, N.; Karato, M.; Yamashita, E. Cosmetic benefits of astaxanthin on humans subjects. Acta Biochim. Pol. 2012, 59. [Google Scholar] [CrossRef]
Strains | Pigments | Common Pigment | Analysis Method | References |
---|---|---|---|---|
E. sanguine | Diatoxanthin; Lutein; β-carotene | β-carotene | HPLC | [14] |
E. rubida | Astaxanthin; Mutatoxanthin; β-carotene | β-carotene | HPLC | [15] |
E. gracilis | Diadinoxanthin; β-carotene; Diatoxanthin; Neoxanthin | β-carotene | HPLC | [12] |
SM-bleached of E. gracilis | Euglenanon; Antheraxanthin; β-carotene | β-carotene | HPLC | [16] |
Pressure-bleached of E. gracilis | Phytofluene; ξ-carotene; β-carotene, β-zeacarotene | β-carotene | TLC | [17] |
EgcrtB-suppressed E. gracilis | β-carotene; Astaxanthin; Zeaxanthin; Canthaxan-thin | β-carotene | HPLC | [12] |
SM-bleached of E. gracilis Z | β-carotene; Astaxanthin; Zeaxanthin; Canthaxan-thin | β-carotene | HPLC | [12] |
Strains | Parameters | Treatment/Time | Result | References |
---|---|---|---|---|
E. sanguinea | Field | UV-B; 16 h | Increased | [5] |
E. gracilis (NIES-48) | L:D 12:12h;T:25 °C; M: CM | HAM; 25 days | Increased | [65] |
E. gracilis (CCAP 1224/5Z) | L:D 16:8T:25 °C; M: Hutner | (NH4)2SO4; 25 days | Increased | [66] |
E. gracilis Z | L:D 24:0;T:24 °C; M: Checcucciet | As2O3; 7 days | 0.4~1.8 μg/mL | [67] |
E. gracilis Z | L:D 24:0; T:25 °C; M: CM | 20 °C; 7 days | Reduced | [68] |
E. gracilis | L:D 16:8; T:25 °C; M: mineral medium; | Anthracene; 96 h | Reduced | [64] |
E. gracilis Z | L:D NS; T:28 °C; M: Oda | Autotrophic; mixotrophic &heterotrophic cultures; 125 h | mixotrophic > autotrophic > heterotrophic | [16] |
E.gracilis Z | L:D 12:12; T:25 °C; M: CM | Low identity blue and red light; 24 h | Increased | [69] |
E. gracilis Z | L:D NS;T: 27 °C; M: Hunter | Light; 10 days | Darkness < light | [15] |
Strains | Carotenoids | Applications | References |
---|---|---|---|
Euglena | β-carotene | Natural colorant and additive in the cosmetic and food industries; Anticancer; | [87,88] |
E. sanguine, E. rubida | Astaxanthin | Dietary supplement; Protecting neurons; Antiobese; Softening; Diabetes effects; Hepatoprotector; Anticancer | [89,90,91,92] |
E. gracilis Z | Echinenone | Edible orange pigments; Antioxidants; Cosmetic industries | [93] |
E. sanguine | Adonixanthin | Anti-inflammatory and antioxidant | [94] |
E. sanguine, E. rubida, E. gracilis | Neoxanthin | Antioxidant | [95] |
E. sanguine | Diatoxanthin | Anti-inflammatory | [96] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, R.; Fu, W.; Du, M.; Chen, Z.-X.; Lei, A.-P.; Wang, J.-X. Carotenoids Biosynthesis, Accumulation, and Applications of a Model Microalga Euglenagracilis. Mar. Drugs 2022, 20, 496. https://doi.org/10.3390/md20080496
Yao R, Fu W, Du M, Chen Z-X, Lei A-P, Wang J-X. Carotenoids Biosynthesis, Accumulation, and Applications of a Model Microalga Euglenagracilis. Marine Drugs. 2022; 20(8):496. https://doi.org/10.3390/md20080496
Chicago/Turabian StyleYao, Rao, Wen Fu, Ming Du, Zi-Xi Chen, An-Ping Lei, and Jiang-Xin Wang. 2022. "Carotenoids Biosynthesis, Accumulation, and Applications of a Model Microalga Euglenagracilis" Marine Drugs 20, no. 8: 496. https://doi.org/10.3390/md20080496
APA StyleYao, R., Fu, W., Du, M., Chen, Z. -X., Lei, A. -P., & Wang, J. -X. (2022). Carotenoids Biosynthesis, Accumulation, and Applications of a Model Microalga Euglenagracilis. Marine Drugs, 20(8), 496. https://doi.org/10.3390/md20080496