A Review on a Hidden Gem: Phycoerythrin from Blue-Green Algae
Abstract
:1. Introduction
The Odyssey of Phycoerythrin Research
2. Structure of C-PE
3. C-PE Producer Species
4. Cultivation Methods
4.1. Cultivation Mode
4.2. Light
4.3. Temperature, pH, and Salinity
4.4. Nutrients (Nitrogen, Carbon, and Phosphorus)
Nutrients | Cyanobacteria | Source | Concentration Range (g L−1) | Optimal Condition (Source; Concentration (g L−1)) | C-PE Content | Reference |
---|---|---|---|---|---|---|
Nitrogen | Anabaena fertilissima (PUPCCC 410.5) | KNO3,KNO2 | 0.2–0.5 | KNO2; 0.2 | 193.2 | [48] |
Anabaena sp. | NaNO3, urea, NH4+ | 0–0.5 | 0 | TPB: 127.5 | [49] | |
Arthrospira platensis | NaNO3, KNO3, NH4Cl | 2.4 | NaNO3; 2.4 | 1.84%DW | [61] | |
Fischerella sp. | NaNO3, NH4+ | 0–1.0 | NaNO3; 0.2 | 126.5 | [63] | |
Nodularia sphaerocarpa (PUPCCC 420.1) | KNO3, NaNO2 | 0.2, 0.5, 1.0, 1.5 | KNO3; 0.5, NaNO2; 1.0 | n/a (Increase 40%) | [52] | |
Nostoc sp. (S36) | NaNO3 | 0, 2 | 0 | ~ 160 | [67] | |
Phormidium sp. | NaNO3, KNO3, NH4Cl | 1.5 | NH4Cl; 1.5 | 1.67%DW | [61] | |
Pseudoscillatoria sp. | NaNO3, KNO3, NH4Cl | 1.5 | NH4Cl; 1.5 | 1.36%DW | [61] | |
Spirulina maxima | NaNO3 | 2.5 | NaNO3, 2.5 | 0.02 | [62] | |
Phosphorus | Oscillatoria sp. (OSCI_UFPS001) | K2HPO4 | 0.04 | K2HPO4; 0.04 | 1.8%DW | [71] |
Spirulina maxima | K2HPO4 | 0.5 | K2HPO4, 0.5 | 0.02 | [62] | |
Carbon | Anabaena azollae | Glucose, jaggery, sucrose | 5 | Sucrose; 5 | 0.2 (Increase up to 90%) | [78] |
Anabaena fertilissima (PUPCCC 410.5) | Fructose glucose, sucrose | 5 | Sucrose; 5 | 197.9 | [48] | |
Calothrix elenkenii | Glucose | 5 | Glucose; 5 | 0.12 | [76] | |
Calothrix sp. | Glucose | 1 | Glucose; 1 | n/a | [81] | |
Nodularia sphaerocarpa (PUPCCC 420.1) | Fructose glucose, sucrose | 5, 10 | Sucrose; 5 | n/a (Increase 40%) | [52] | |
Nostoc sp. | Glucose, sugarcane molasses, sucrose, | 0-5 | Glucose; 1 | 2.633 * | [79] | |
Sucrose; 0.5 | 0.84 * | |||||
Sugarcane molasses; 1 | 1.44 * | |||||
Nostoc sp. (2S7B) | Glucose, glycerol | 0–3 | Glycerol; 3 | n/a | [80] | |
Oscillatoria sp. (OSCI_UFPS001) | NaHCO3 | 0.16 | NaHCO3; 0.16 | 1.8%DW | [71] | |
Spirulina platensis | NaHCO3 | 0, 4.5, 9, 18 | NaHCO3; 9 | 1.97 | [53] | |
Lignite | 0–0.06 | Lignite; 0.06 | 0.60 | [82] | ||
Trichromus sp. | NaHCO3 | 0.02 | NaHCO3; 0.02 | 5%DW | [77] |
5. Downstream Processing of C-PE
5.1. Extraction of C-PE
5.2. Purification of C-PE
6. Strategies to Improve the Stability of C-PE
7. Application of C-PE
7.1. PE in Pharmaceuticals, Nutraceuticals, & Therapeutics
7.2. PE in Cosmetics
7.3. PE in Food and Feed Industries
7.4. PE in Detection, Diagnosis, and Biotechnology
8. SWOT Analysis of C-PE Derived from Cyanobacteria
8.1. Strengths and Opportunities
8.2. Weaknesses and Threats
9. C-PE Market Drive and Commercial Relevance
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramu Ganesan, A.; Kannan, M.; Karthick Rajan, D.; Pillay, A.A.; Shanmugam, M.; Sathishkumar, P.; Johansen, J.; Tiwari, B.K. Phycoerythrin: A Pink Pigment from Red Sources (Rhodophyta) for a Greener Biorefining Approach to Food Applications. Crit. Rev. Food Sci. Nutr. 2022, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Bryant, D.A. Phycoerythrocyanin and Phycoerythrin: Properties and Occurrence in Cyanobacteria. J. Gen. Microbiol. 1982, 128, 835–844. [Google Scholar] [CrossRef] [Green Version]
- Hsieh-Lo, M.; Castillo, G.; Ochoa-Becerra, M.A.; Mojica, L. Phycocyanin and Phycoerythrin: Strategies to Improve Production Yield and Chemical Stability. Algal Res. 2019, 42, 101600. [Google Scholar] [CrossRef]
- Ghosh, T.; Mishra, S. Studies on Extraction and Stability of C-Phycoerythrin From a Marine Cyanobacterium. Front. Sustain. Food Syst. 2020, 4, 1–12. [Google Scholar] [CrossRef]
- Bryant, D.A.; Guglielmi, G.; de Marsac, N.T.; Castets, A.M.; Cohen-Bazire, G. The Structure of Cyanobacterial Phycobilisomes: A Model. Arch. Microbiol. 1979, 123, 113–127. [Google Scholar] [CrossRef]
- Onay, M. Enhancing Phycoerythrin and Phycocyanin Production from Porphyridium Cruentum CCALA 415 in Synthetic Wastewater: The Application of Theoretical Methods on Microalgae. Süleyman Demirel Üniversitesi Fen Bilim. Enstitüsü Derg. 2021, 25, 499–512. [Google Scholar] [CrossRef]
- Punampalam, R.; Khoo, K.S.; Sit, N.W. Evaluation of Antioxidant Properties of Phycobiliproteins and Phenolic Compounds Extracted from Bangia atropurpurea. Malays. J. Fundam. Appl. Sci. 2018, 14, 289–297. [Google Scholar] [CrossRef]
- Pez Jaeschke, D.; Rocha Teixeira, I.; Damasceno Ferreira Marczak, L.; Domeneghini Mercali, G. Phycocyanin from Spirulina: A Review of Extraction Methods and Stability. Food Res. Int. 2021, 143, 110314. [Google Scholar] [CrossRef] [PubMed]
- Kuddus, M.; Singh, P.; Thomas, G.; Al-Hazimi, A. Recent Developments in Production and Biotechnological Applications of C-Phycocyanin. Biomed Res. Int. 2013, 2013, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hemlata; Afreen, S.; Fatma, T. Extraction, Purification and Characterization of Phycoerythrin from Michrochaete and Its Biological Activities. Biocatal. Agric. Biotechnol. 2018, 13, 84–89. [Google Scholar] [CrossRef]
- Soni, B.; Visavadiya, N.P.; Dalwadi, N.; Madamwar, D.; Winder, C.; Khalil, C. Purified C-Phycoerythrin: Safety Studies in Rats and Protective Role against Permanganate-Mediated Fibroblast-DNA Damage. J. Appl. Toxicol. 2010, 30, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Nowruzi, B.; Fahimi, H.; Lorenzi, A.S. Recovery of Pure C-Phycoerythrin from a Limestone Drought Tolerant Cyanobacterium Nostoc sp. and Evaluation of Its Biological Activity. An. Biol. 2020, 13, 115–128. [Google Scholar] [CrossRef]
- Chen, H.; Qi, H.; Xiong, P. Phycobiliproteins—A Family of Algae-Derived Biliproteins: Productions, Characterization and Pharmaceutical Potentials. Mar. Drugs 2022, 20, 450. [Google Scholar] [CrossRef]
- Román, R.B.; Alvárez-Pez, J.M.; Fernández, F.G.A.; Grima, E.M. Recovery of Pure B-Phycoerythrin from the Microalga Porphyridium cruentum. J. Biotechnol. 2002, 93, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.T.; Yeh, H.Y.; Lung, W.Q.C.; Huang, J.; Chen, Y.J.; Chen, B.; Nan, F.H.; Lee, M.C. R-Phycoerythrin from Colaconema formosanum (Rhodophyta), an Anti-Allergic and Collagen Promoting Material for Cosmeceuticals. Appl. Sci. 2021, 11, 9425. [Google Scholar] [CrossRef]
- Pagels, F.; Guedes, A.C.; Amaro, H.M.; Kijjoa, A.; Vasconcelos, V. Phycobiliproteins from Cyanobacteria: Chemistry and Biotechnological Applications. Biotechnol. Adv. 2019, 37, 422–443. [Google Scholar] [CrossRef]
- Yuan, B.; Li, Z.; Shan, H.; Dashnyam, B.; Xu, X.; McClements, D.J.; Zhang, B.; Tan, M.; Wang, Z.; Cao, C. A Review of Recent Strategies to Improve the Physical Stability of Phycocyanin. Curr. Res. Food Sci. 2022, 5, 2329–2337. [Google Scholar] [CrossRef]
- Srivastava, A.; Kalwani, M.; Chakdar, H.; Pabbi, S.; Shukla, P. Biosynthesis and Biotechnological Interventions for Commercial Production of Microalgal Pigments: A Review. Bioresour. Technol. 2022, 352, 127071. [Google Scholar] [CrossRef]
- Rather, L.J.; Mir, S.S.; Ganie, S.A.; Shahid-ul-Islam; Li, Q. Research Progress, Challenges, and Perspectives in Microbial Pigment Production for Industrial Applications—A Review. Dye. Pigment. 2023, 210, 110989. [Google Scholar] [CrossRef]
- Prabha, S.; Vijay, A.K.; Paul, R.R.; George, B. Cyanobacterial Biorefinery: Towards Economic Feasibility through the Maximum Valorization of Biomass. Sci. Total Environ. 2022, 814, 152795. [Google Scholar] [CrossRef]
- Dagnino-leone, J.; Pinto, C.; Latorre, M.; Donoso, A.; Vallejos-almirall, A.; Agurto-muñoz, A.; Pavón, J.; Agurto-muñoz, C. Phycobiliproteins: Structural Aspects, Functional Characteristics, and Biotechnological Perspectives. Comput. Struct. Biotechnol. J. 2022, 20, 1506–1527. [Google Scholar] [CrossRef] [PubMed]
- Ram, S.; Mitra, M.; Shah, F.; Tirkey, S.R.; Mishra, S. Bacteria as an Alternate Biofactory for Carotenoid Production: A Review of Its Applications, Opportunities and Challenges. J. Funct. Foods 2020, 67, 103867. [Google Scholar] [CrossRef]
- Stengel, D.B.; Connan, S. Natural Products from Marine Algae: Methods and Protocols. Nat. Prod. From Mar. Algae Methods Protoc. 2015, 1308, 1–439. [Google Scholar] [CrossRef]
- Ardiles, P.; Cerezal-Mezquita, P.; Salinas-Fuentes, F.; Órdenes, D.; Renato, G.; Ruiz-Domínguez, M.C. Biochemical Composition and Phycoerythrin Extraction from Red Microalgae: A Comparative Study Using Green Extraction Technologies. Processes 2020, 8, 1628. [Google Scholar] [CrossRef]
- Frances, E.M.; Onate, C.E. Cyanobacteria and Microalgae in the Production of Valuable Bioactive Compounds. Microalgal Biotechnol. 2018, 6, 105–128. [Google Scholar]
- Adir, N.; Dines, M.; Klartag, M.; McGregor, A.; Melamed-Frank, M. Assembly and Disassembly of Phycobilisomes. In Complex Intracellular Structures in Prokaryotes; Springer: Berlin/Heidelberg, Germany, 2006; pp. 47–77. ISBN 9783540325246. [Google Scholar]
- Stadnichuk, I.N.; Tropin, I.V. Phycobiliproteins: Structure, Functions and Biotechnological Applications. Appl. Biochem. Microbiol. 2017, 53, 1–10. [Google Scholar] [CrossRef]
- Sidler, W.A. Phycobilisome and Phycobiliprotein Structures. In The Molecular Biology of Cyanobacteria; Springer: Dordrecht, The Netherlands, 1994; Volume 7002, pp. 140–216. ISBN 978-0-7923-3273-2. [Google Scholar]
- Frank, H.A.; Cogdell, R.J. Light Capture in Photosynthesis; Elsevier Ltd.: Amsterdam, The Netherlands, 2012; Volume 8, ISBN 9780080957180. [Google Scholar]
- Mimuro, M.; Kikuchi, H. Antenna Systems and Energy Transfer in Cyanophyta and Rhodophyta. In Light-Harvesting Antennas in Photosynthesis; Springer: Dordrecht, The Netherlands, 2003; pp. 281–306. [Google Scholar]
- Chakdar, H.; Pabbi, S. Cyanobacterial Phycobilins: Production, Purification, and Regulation. In Frontier Discoveries and Innovations in Interdisciplinary Microbiology; Springer: New Delhi, India, 2016; pp. 45–69. ISBN 9788132226109. [Google Scholar]
- Everroad, C.; Six, C.; Partensky, F.; Thomas, J.C.; Holtzendorff, J.; Wood, A.M. Biochemical Bases of Type IV Chromatic Adaptation in Marine Synechococcus spp. J. Bacteriol. 2006, 188, 3345–3356. [Google Scholar] [CrossRef] [Green Version]
- Sonani, R.R.; Roszak, A.W.; Ortmann de Percin Northumberland, C.; Madamwar, D.; Cogdell, R.J. An Improved Crystal Structure of C-Phycoerythrin from the Marine Cyanobacterium Phormidium sp. A09DM. Photosynth. Res. 2018, 135, 65–78. [Google Scholar] [CrossRef]
- Freitas, M.V.; Pacheco, D.; Cotas, J.; Mouga, T.; Afonso, C.; Pereira, L. Red Seaweed Pigments from a Biotechnological Perspective. Phycology 2021, 2, 1. [Google Scholar] [CrossRef]
- Freitas, M.V.; Inácio, L.G.; Martins, M.; Afonso, C.; Pereira, L.; Mouga, T. Primary Composition and Pigments of 11 Red Seaweed Species from the Center of Portugal. J. Mar. Sci. Eng. 2022, 10, 1168. [Google Scholar] [CrossRef]
- Mishra, S.K.; Shrivastav, A.; Mishra, S. Preparation of Highly Purified C-Phycoerythrin from Marine Cyanobacterium Pseudanabaena sp. Protein Expr. Purif. 2011, 80, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.T.; Yusoff, F.M.; Khaw, Y.S.; Nazarudin, M.F.; Noor Mazli, N.A.I.; Ahmad, S.A.; Shaharuddin, N.A.; Toda, T. Characterisation and Selection of Freshwater Cyanobacteria for Phycobiliprotein Contents. Aquac. Int. 2022, 1–31. [Google Scholar] [CrossRef]
- Rodríguez, H.; Rivas, J.; Guerrero, M.G.; Losada, M. Enhancement of Phycobiliprotein Production in Nitrogen-Fixing Cyanobacteria. J. Biotechnol. 1991, 20, 263–270. [Google Scholar] [CrossRef]
- Keithellakpam, O.S.; Nath, T.O.; Oinam, A.S.; Thingujam, I.; Oinam, G.; Dutt, S.G. Effect of External PH on Cyanobacterial Phycobiliproteins Production and Ammonium Excretion. J. Appl. Biol. Biotechnol. 2015, 3, 38–42. [Google Scholar] [CrossRef] [Green Version]
- Fujita, Y.; Hattori, A. Effect of Chromatic Lights on Phycobilin Formation in a Blue-Green Tolypothrix tenuis. Plant Cell Physiol. 1960, 1, 293–303. [Google Scholar]
- Sonani, R.R. Recent Advances in Production, Purification and Applications of Phycobiliproteins. World J. Biol. Chem. 2016, 7, 100. [Google Scholar] [CrossRef] [PubMed]
- Venkata Mohan, S.; Rohit, M.V.; Chiranjeevi, P.; Chandra, R.; Navaneeth, B. Heterotrophic Microalgae Cultivation to Synergize Biodiesel Production with Waste Remediation: Progress and Perspectives. Bioresour. Technol. 2015, 184, 169–178. [Google Scholar] [CrossRef]
- Bachchhav, M.B.; Kulkarni, M.V.; Ingale, A.G. Enhanced Phycocyanin Production from Spirulina platensis Using Light Emitting Diode. J. Inst. Eng. Ser. E 2017, 98, 41–45. [Google Scholar] [CrossRef]
- Vonshak, A.; Cheung, S.M.; Chen, F. Mixotrophic Growth Modifies the Response of Spirulina (Arthrospira) Platensis (Cyanobacteria) Cells to Light. J. Phycol. 2000, 36, 675–679. [Google Scholar] [CrossRef] [Green Version]
- Stowe, W.C.; Brodie-Kommit, J.; Stowe-Evans, E. Characterization of Complementary Chromatic Adaptation in Gloeotrichia UTEX 583 and Identification of a Transposon-like Insertion in the CpeBA Operon. Plant Cell Physiol. 2011, 52, 553–562. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.K.; Shrivastav, A.; Maurya, R.R.; Patidar, S.K.; Haldar, S.; Mishra, S. Effect of Light Quality on the C-Phycoerythrin Production in Marine Cyanobacteria Pseudanabaena sp. Isolated from Gujarat Coast, India. Protein Expr. Purif. 2012, 81, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Mullineaux, C.W.; Emlyn-Jones, D. State Transitions: An Example of Acclimation to Low-Light Stress. J. Exp. Bot. 2005, 56, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Khattar, J.I.S.; Kaur, S.; Kaushal, S.; Singh, Y.; Singh, D.P.; Rana, S.; Gulati, A. Hyperproduction of Phycobiliproteins by the Cyanobacterium Anabaena fertilissima PUPCCC 410.5 under Optimized Culture Conditions. Algal Res. 2015, 12, 463–469. [Google Scholar] [CrossRef]
- Hemlata; Fatma, T. Screening of Cyanobacteria for Phycobiliproteins and Effect of Different Environmental Stress on Its Yield. Bull. Environ. Contam. Toxicol. 2009, 83, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Maurya, S.S.; Maurya, J.N.; Pandey, V.D. Factors Regulating Phycobiliprotein Production in Cyanobacteria. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 764–771. [Google Scholar]
- Blas-Valdivia, V.; Rojas-Franco, P.; Serrano-Contreras, J.I.; Sfriso, A.A.; Garcia-Hernandez, C.; Franco-Colín, M.; Cano-Europa, E. C-Phycoerythrin from Phormidium Persicinum Prevents Acute Kidney Injury by Attenuating Oxidative and Endoplasmic Reticulum Stress. Mar. Drugs 2021, 19, 589. [Google Scholar] [CrossRef]
- Kaushal, S.; Singh, Y.; Khattar, J.I.S.; Singh, D.P. Phycobiliprotein Production by a Novel Cold Desert Cyanobacterium Nodularia sphaerocarpa PUPCCC 420.1. J. Appl. Phycol. 2017, 29, 1819–1827. [Google Scholar] [CrossRef]
- Sharma, G.; Kumar, M.; Ali, M.I.; Jasuja, N.D. Effect of Carbon Content, Salinity and PH on Spirulina platensis for Phycocyanin, Allophycocyanin and Phycoerythrin Accumulation. J. Microb. Biochem. Technol. 2014, 6, 202–206. [Google Scholar] [CrossRef] [Green Version]
- Johnson, E.M.; Kumar, K.; Das, D. Physicochemical Parameters Optimization, and Purification of Phycobiliproteins from the Isolated Nostoc sp. Bioresour. Technol. 2014, 166, 541–547. [Google Scholar] [CrossRef]
- Sudhir, P.R.; Pogoryelov, D.; Kovács, L.; Garab, G.; Murthy, S.D.S. The Effects of Salt Stress on Photosynthetic Electron Transport and Thylakoid Membrane Proteins in the Cyanobacterium Spirulina platensis. J. Biochem. Mol. Biol. 2005, 38, 481–485. [Google Scholar] [CrossRef] [Green Version]
- Vogt, J.C.; Abed, R.M.M.; Albach, D.C.; Palinska, K.A. Bacterial and Archaeal Diversity in Hypersaline Cyanobacterial Mats Along a Transect in the Intertidal Flats of the Sultanate of Oman. Microb. Ecol. 2018, 75, 331–347. [Google Scholar] [CrossRef] [PubMed]
- Rafiqul, I.M.; Hassan, A.; Sulebele, G.; Orosco, C.A.; Roustaian, P.; Jalal, K.C.A. Salt Stress Culture of Blue-Green Algae Spirulina fusiformis. Pak. J. Biol. Sci. 2003, 6, 648–650. [Google Scholar] [CrossRef] [Green Version]
- Pajot, A.; Huynh, G.H.; Picot, L.; Marchal, L.; Nicolau, E. Fucoxanthin from Algae to Human, an Extraordinary Bioresource: Insights and Advances in up and Downstream Processes. Mar. Drugs 2022, 20, 222. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Juárez, V.; Bennasar-Figueras, A.; Sureda-Gomila, A.; Ramis-Munar, G.; Agawin, N.S.R. Differential Effects of Varying Concentrations of Phosphorus, Iron, and Nitrogen in N2-Fixing Cyanobacteria. Front. Microbiol. 2020, 11, 541558. [Google Scholar] [CrossRef]
- Klotz, A.; Georg, J.; Bučinská, L.; Watanabe, S.; Reimann, V.; Januszewski, W.; Sobotka, R.; Jendrossek, D.; Hess, W.R.; Forchhammer, K. Awakening of a Dormant Cyanobacterium from Nitrogen Chlorosis Reveals a Genetically Determined Program. Curr. Biol. 2016, 26, 2862–2872. [Google Scholar] [CrossRef] [Green Version]
- Khazi, M.I.; Demirel, Z.; Dalay, M.C. Evaluation of Growth and Phycobiliprotein Composition of Cyanobacteria Isolates Cultivated in Different Nitrogen Sources. J. Appl. Phycol. 2018, 30, 1513–1523. [Google Scholar] [CrossRef]
- Maza, L.D.L.R.; Guevara, M.; Gómez, B.J.; Arredondo-Vega, B.; Cortez, R.; Licet, B. Production of Pigments from Arthrospira maxima Cultivated in Photobioreactors. Rev. Colomb. Biotecnol. 2017, 19, 108–114. [Google Scholar] [CrossRef]
- Soltani, N.; Khavarinezhad, R.A.; Tabatabaei, Y.S.; Shokravi, S. Growth and Some Metabolic Features of Cyanobacterium Fischerella sp. FS18 in Different Combined Nitrogen. J. Sci. 2007, 18, 123–128. [Google Scholar]
- Liotenberg, S.; Campbell, D.; Rippka, R.; Houmard, J.; Tandeau De Marsac, N. Effect of the Nitrogen Source on Phycobiliprotein Synthesis and Cell Reserves in a Chromatically Adapting Filamentous Cyanobacterium. Microbiology 1996, 142, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Glazer, A.N. Phycobilisomes. In Methods in Enzymology; Academic Press: Cambridge, UK, 1988; Volume 167, pp. 304–312. [Google Scholar]
- Ting, C.S.; Rocap, G.; King, J.; Chisholm, S.W. Cyanobacterial Photosynthesis in the Oceans: The Origins and Significance of Divergent Light-Harvesting Strategies. Trends Microbiol. 2002, 10, 134–142. [Google Scholar] [CrossRef]
- Simeunović, J.; Bešlin, K.; Svirčev, Z.; Kovač, D.; Babić, O. Impact of Nitrogen and Drought on Phycobiliprotein Content in Terrestrial Cyanobacterial Strains. J. Appl. Phycol. 2013, 25, 597–607. [Google Scholar] [CrossRef]
- Zehr, J.P. Nitrogen Fixation by Marine Cyanobacteria. Trends Microbiol. 2011, 19, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Sohm, J.A.; Webb, E.A.; Capone, D.G. Emerging Patterns of Marine Nitrogen Fixation. Nat. Rev. Microbiol. 2011, 9, 499–508. [Google Scholar] [CrossRef]
- Geider, R.J.; La Roche, J. Redfield Revisited: Variability of C:N:P in Marine Microalgae and Its Biochemical Basis. Eur. J. Phycol. 2002, 37, 1–17. [Google Scholar] [CrossRef]
- Zuorro, A.; Leal-Jerez, A.G.; Morales-Rivas, L.K.; Mogollón-Londoño, S.O.; Sanchez-Galvis, E.M.; García-Martínez, J.B.; Barajas-Solano, A.F. Enhancement of Phycobiliprotein Accumulation in Thermotolerant Oscillatoria sp. Through Media Optimization. ACS Omega 2021, 6, 10527–10536. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.; Wilhelm, S.W.; Lin, S.; Wang, X. Response of Microcystis Aeruginosa FACHB-905 to Different Nutrient Ratios and Changes in Phosphorus Chemistry. J. Oceanol. Limnol. 2018, 36, 1040–1052. [Google Scholar] [CrossRef]
- Guildford, S.J.; Hecky, R.E. Total Nitrogen, Total Phosphorus, and Nutrient Limitation in Lakes and Oceans: Is There a Common Relationship? Limnol. Oceanogr. 2000, 45, 1213–1223. [Google Scholar] [CrossRef] [Green Version]
- Sañudo-Wilhelmy, S.A.; Kustka, A.B.; Gobler, C.J.; Hutchins, D.A.; Yang, M.; Lwiza, K.; Burns, J.; Capone, D.G.; Raven, J.A.; Carpenter, E.J. Phosphorus Limitation of Nitrogen Fixation by Trichodesmium in the Central Atlantic Ocean. Nature 2001, 411, 66–69. [Google Scholar] [CrossRef]
- Adhikary, S.P.; Pattnaik, H. Growth Response of Westiellopsis prolifica Janet to Organic Substrates in Light and Dark. Hydrobiologia 1979, 67, 241–247. [Google Scholar] [CrossRef]
- Prasanna, R.; Pabby, A.; Singh, P.K. Effect of Glucose and Light-Dark Environment on Pigmentation Profiles in the Cyanobacterium Calothrix elenkenii. Folia Microbiol. 2004, 49, 26–30. [Google Scholar] [CrossRef]
- Haddad, M.F.; Dayioglu, T.; Yaman, M.; Nalbantoglu, B.; Cakmak, T. Long-Term Diazotrophic Cultivation of Trichormus sp. IMU26: Evaluation of Physiological Changes Related to Elevated Phycobiliprotein Content. J. Appl. Phycol. 2020, 32, 881–888. [Google Scholar] [CrossRef]
- Venugopal, V.; Prasanna, R.; Sood, A.; Jaiswal, P.; Kaushik, B.D. Stimulation of Pigment Accumulation in Anabaena Azollae Strains: Effect of Light Intensity and Sugars. Folia Microbiol. 2006, 51, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Borsari, R.R.J.; Morioka, L.R.I.; Ribeiro, M.L.L.; Buzato, J.B.; Pinotti, M.H.P. Mixotrophic Growth of Nostoc sp. on Glucose, Sucrose and Sugarcane Molasses for Phycobiliprotein Production. Acta Sci.-Biol. Sci. 2007, 29, 9–13. [Google Scholar]
- Kovač, D.; Babić, O.; Milovanović, I.; Mišan, A.; Simeunović, J. The Production of Biomass and Phycobiliprotein Pigments in Filamentous Cyanobacteria: The Impact of Light and Carbon Sources. Appl. Biochem. Microbiol. 2017, 53, 539–545. [Google Scholar] [CrossRef]
- Lebedeva, N.V.; Boichenko, V.A.; Semenova, L.R.; Pronina, N.A.; Stadnichuk, I.N. Effects of Glucose during Photoheterotrophic Growth of the Cyanobacterium Calothrix sp. PCC 7601 Capable for Chromatic Adaptation. Russ. J. Plant Physiol. 2005, 52, 235–241. [Google Scholar] [CrossRef]
- Rivera Gonzalez, M.V.; Gómez Gómez, L.; Cubillos Hinojosa, J.G.; Peralta Castilla, A. Effect of Coal Type Lignite on Growth and Production of Pigments of Arthrospira platensis. Rev. Colomb. Biotecnol. 2016, 18, 73–80. [Google Scholar] [CrossRef]
- Denis, C.; Ledorze, C.; Jaouen, P.; Fleurence, J. Comparison of Different Procedures for the Extraction and Partial Purification of R-Phycoerythrin from the Red Macroalga Grateloupia turuturu. Bot. Mar. 2009, 52, 278–281. [Google Scholar] [CrossRef]
- Parmar, A.; Singh, N.K.; Kaushal, A.; Sonawala, S.; Madamwar, D. Purification, Characterization and Comparison of Phycoerythrins from Three Different Marine Cyanobacterial Cultures. Bioresour. Technol. 2011, 102, 1795–1802. [Google Scholar] [CrossRef]
- Sonani, R.R.; Singh, N.K.; Kumar, J.; Thakar, D.; Madamwar, D. Concurrent Purification and Antioxidant Activity of Phycobiliproteins from Lyngbya sp. A09DM: An Antioxidant and Anti-Aging Potential of Phycoerythrin in Caenorhabditis elegans. Process Biochem. 2014, 49, 1757–1766. [Google Scholar] [CrossRef]
- Kamble, S.P.; Vikhe, G.P.; Chamle, D.R. Extraction and Purification of Phycoerythrin-A Natural Colouring Agent from Spirulina platensis. J. Pharm. Chem. Biol. Sci. 2018, 6, 78–84. [Google Scholar]
- Zavřel, T.; Chmelík, D.; Sinetova, M.A.; Červený, J. Spectrophotometric Determination of Phycobiliprotein Content in Cyanobacterium Synechocystis. J. Vis. Exp. 2018, 139, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julianti, E.; Susanti; Singgih, M.; Neti Mulyani, L. Optimization of Extraction Method and Characterization of Phycocyanin Pigment from Spirulina platensis. J. Math. Fundam. Sci. 2019, 51, 168–176. [Google Scholar] [CrossRef]
- Tan, H.T.; Khong, N.M.H.; Khaw, Y.S.; Ahmad, S.A.; Yuso, F.M. Optimization of the Freezing-Thawing Method for Extracting Phycobiliproteins from Arthrospira sp. Molecules 2020, 25, 3894. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, T.; Timasheff, S.N. The Stabilization of Proteins by Osmolytes. Biophys. J. 1985, 47, 411–414. [Google Scholar] [CrossRef]
- Pan-utai, W.; Iamtham, S. Physical Extraction and Extrusion Entrapment of C-Phycocyanin from Arthrospira platensis. J. King Saud Univ.-Sci. 2019, 31, 1535–1542. [Google Scholar] [CrossRef]
- Dumay, J.; Clément, N.; Morançais, M.; Fleurence, J. Optimization of Hydrolysis Conditions of Palmaria palmata to Enhance R-Phycoerythrin Extraction. Bioresour. Technol. 2013, 131, 21–27. [Google Scholar] [CrossRef]
- Mercier, L.; Peltomaa, E.; Ojala, A. Comparative Analysis of Phycoerythrin Production in Cryptophytes. J. Appl. Phycol. 2022, 34, 789–797. [Google Scholar] [CrossRef]
- Patel, A.; Mishra, S.; Pawar, R.; Ghosh, P.K. Purification and Characterization of C-Phycocyanin from Cyanobacterial Species of Marine and Freshwater Habitat. Protein Expr. Purif. 2005, 40, 248–255. [Google Scholar] [CrossRef]
- Rito-Palomares, M.; Nuez, L.; Amador, D. Practical Application of Aqueous Two-Phase Systems for the Development of a Prototype Process for c-Phycocyanin Recovery from Spirulina maxima. J. Chem. Technol. Biotechnol. 2001, 76, 1273–1280. [Google Scholar] [CrossRef]
- Kannaujiya, V.K.; Sinha, R.P. Thermokinetic Stability of Phycocyanin and Phycoerythrin in Food-Grade Preservatives. J. Appl. Phycol. 2016, 28, 1063–1070. [Google Scholar] [CrossRef]
- Chaiklahan, R.; Chirasuwan, N.; Bunnag, B. Stability of Phycocyanin Extracted from Spirulina sp.: Influence of Temperature, PH and Preservatives. Process Biochem. 2012, 47, 659–664. [Google Scholar] [CrossRef]
- Mishra, S.K.; Shrivastav, A.; Pancha, I.; Jain, D.; Mishra, S. Effect of Preservatives for Food Grade C-Phycoerythrin, Isolated from Marine Cyanobacteria Pseudanabaena sp. Int. J. Biol. Macromol. 2010, 47, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Munier, M.; Jubeau, S.; Wijaya, A.; Morançais, M.; Dumay, J.; Marchal, L.; Jaouen, P.; Fleurence, J. Physicochemical Factors Affecting the Stability of Two Pigments: R-Phycoerythrin of Grateloupia turuturu and B-Phycoerythrin of Porphyridium cruentum. Food Chem. 2014, 150, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Bekasova, O.D.; Borzova, V.A.; Shubin, V.V.; Kovalyov, L.I.; Stein-Margolina, V.A.; Kurganov, B.I. An Increase in the Resistance of R-Phycoerythrin to Thermal Aggregation by Silver Nanoparticles Synthesized in Nanochannels of the Pigment. Appl. Biochem. Microbiol. 2016, 52, 98–104. [Google Scholar] [CrossRef]
- Martelli, G.; Folli, C.; Visai, L.; Daglia, M.; Ferrari, D. Thermal Stability Improvement of Blue Colorant C-Phycocyanin from Spirulina platensis for Food Industry Applications. Process Biochem. 2014, 49, 154–159. [Google Scholar] [CrossRef]
- Selig, M.J.; Malchione, N.M.; Gamaleldin, S.; Padilla-Zakour, O.I.; Abbaspourrad, A. Protection of Blue Color in a Spirulina Derived Phycocyanin Extract from Proteolytic and Thermal Degradation via Complexation with Beet-Pectin. Food Hydrocoll. 2018, 74, 46–52. [Google Scholar] [CrossRef]
- Yan, M.; Liu, B.; Jiao, X.; Qin, S. Preparation of Phycocyanin Microcapsules and Its Properties. Food Bioprod. Process. 2014, 92, 89–97. [Google Scholar] [CrossRef]
- Purnamayati, L.; Dewi, E.; Kurniasih, R.A. Phycocyanin Stability in Microcapsules Processed by Spray Drying Method Using Different Inlet Temperature. In Proceedings of the IOP Conference Series: Earth and Environmental Science, 3rd International Conference on Tropical and Coastal Region Eco Development 2017, Yogyakarta, Indonesia, 2–4 October 2017; p. 012076. [Google Scholar] [CrossRef]
- Hirata, T.; Tanaka, M.; Ooike, M.; Tsunomura, T.; Sakaguchi, M. Antioxidant Activities of Phycocyanobilin Prepared from Spirulina platensis. J. Appl. Phycol. 2000, 12, 435–439. [Google Scholar] [CrossRef]
- Sonani, R.R. Antioxidant Potential of Phycobiliproteins: Role in Anti-Aging Research. Biochem. Anal. Biochem. 2015, 4, 2161-1009. [Google Scholar] [CrossRef] [Green Version]
- Pendyala, B.; Patras, A.; Dash, C. Phycobilins as Potent Food Bioactive Broad-Spectrum Inhibitors Against Proteases of SARS-CoV-2 and Other Coronaviruses: A Preliminary Study. Front. Microbiol. 2021, 12, 645713. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, Y.; Liu, G.; Liu, H.; Zhu, F.; Ji, H.; Li, B. C-Phycocyanin Exerts Anti-Cancer Effects via the MAPK Signaling Pathway in MDA-MB-231 Cells. Cancer Cell Int. 2018, 18, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bei, H.; Guang-Ce, W.; Chen-Kui, Z.; Zhen-Gang, L. The Experimental Research of R-Phycoerythrin Subunits on Cancer Treatment: A New Photosensitizer in PDT. Cancer Biother. Radiopharm. 2002, 17, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Soni, B.; Visavadiya, N.P.; Madamwar, D. Ameliorative Action of Cyanobacterial Phycoerythrin on CCl4-Induced Toxicity in Rats. Toxicology 2008, 248, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Soni, B.; Visavadiya, N.P.; Madamwar, D. Attenuation of Diabetic Complications by C-Phycoerythrin in Rats: Antioxidant Activity of C-Phycoerythrin Including Copper-Induced Lipoprotein and Serum Oxidation. Br. J. Nutr. 2009, 102, 102–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sathasivam, R.; Radhakrishnan, R.; Hashem, A.; Abd_Allah, E.F. Microalgae Metabolites: A Rich Source for Food and Medicine. Saudi J. Biol. Sci. 2019, 26, 709–722. [Google Scholar] [CrossRef]
- Nowruzi, B.; Sarvari, G.; Blanco, S. The Cosmetic Application of Cyanobacterial Secondary Metabolites. Algal Res. 2020, 49, 101959. [Google Scholar] [CrossRef]
- D’Agnolo, E.; Rizzo, R.; Paoletti, S.; Murano, E. R-Phycoerythrin from the Red Alga Gracilaria longa. Phytochemistry 1994, 35, 693–696. [Google Scholar] [CrossRef]
- Vaibhav, V.; Sahastrabuddhe, S. ‘BLUE’ Is the New ‘GREEN’ for Cosmetic Industry. Int. J. Res. Trends Innov. 2018, 3, 134–144. [Google Scholar]
- García, A.B.; Longo, E.; Murillo, M.C.; Bermejo, R. Using a B-Phycoerythrin Extract as a Natural Colorant: Application in Milk-Based Products. Molecules 2021, 26, 297. [Google Scholar] [CrossRef]
- Dufossé, L.; Galaup, P.; Yaron, A.; Arad, S.M.; Blanc, P.; Murthy, K.N.C.; Ravishankar, G.A. Microorganisms and Microalgae as Sources of Pigments for Food Use: A Scientific Oddity or an Industrial Reality? Trends Food Sci. Technol. 2005, 16, 389–406. [Google Scholar] [CrossRef]
- Patel, S.N.; Sonani, R.R.; Jakharia, K.; Bhastana, B.; Patel, H.M.; Chaubey, M.G.; Singh, N.K.; Madamwar, D. Antioxidant Activity and Associated Structural Attributes of Halomicronema Phycoerythrin. Int. J. Biol. Macromol. 2018, 111, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.-N.; Su, H.-N.; Yan, S.-G.; Shao, S.-M.; Xie, B.-B.; Chen, X.-L.; Zhang, X.-Y.; Zhou, B.-C.; Zhang, Y.-Z. Probing the PH Sensitivity of R-Phycoerythrin: Investigations of Active Conformational and Functional Variation. Biochim. Biophys. Acta-Bioenerg. 2009, 1787, 939–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, H.; Liu, Y.; Qi, X.; Liang, H.; Chen, H.; Jiang, P.; Wang, D. Dietary Recombinant Phycoerythrin Modulates the Gut Microbiota of H22 Tumor-Bearing Mice. Mar. Drugs 2019, 17, 665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glazer, A.N. Phycobiliproteins—A Family of Valuable, Widely Used Fluorophores. J. Appl. Phycol. 1994, 6, 105–112. [Google Scholar] [CrossRef]
- Bailey, M.P.; Rocks, B.F.; Riley, C. On the Use of Fluorescent Labels in Immunoassay. J. Pharm. Biomed. Anal. 1987, 5, 649–658. [Google Scholar] [CrossRef]
- Wilson, M.R.; Crowley, S.; Odgers, G.A.; Shaw, L. Immunofluorescent Labeling Using Covalently Linked Anti-phycoerythrin Antibodies and Phycoerythrin Polymers. Cytometry 1991, 12, 373–377. [Google Scholar] [CrossRef]
- Intrarapuk, A.; Awakairt, S.; Thammapalerd, N.; Mahannop, P.; Pattanawong, U.; Suppasiri, T. Comparison between R-Phycocyanin-Labeled and R-Phycoerythrin-Labeled Monoclonal Antibody (MAb) Probes for the Detection of Entamoeba histolytica Trophozoites. Southeast Asian J. Trop. Med. Public Health 2001, 32, 165–171. [Google Scholar]
- Aráoz, R.; Lebert, M.; Häder, D.P. Electrophoretic Applications of Phycobiliproteins. Electrophoresis 1998, 19, 215–219. [Google Scholar] [CrossRef]
- Li, S.; Ji, L.; Shi, Q.; Wu, H.; Fan, J. Advances in the Production of Bioactive Substances from Marine Unicellular Microalgae Porphyridium spp. Bioresour. Technol. 2019, 292, 122048. [Google Scholar] [CrossRef]
- Issa, A.A.; Abd-Alla, M.H.; Ohyama, T. Nitrogen Fixing Cyanobacteria: Future Prospect. In Advances in Biology and Ecology of Nitrogen Fixation; InTech: London, UK, 2014; Volume 2, pp. 24–48. [Google Scholar]
- da Silva, A.F.; Lourenço, S.O.; Chaloub, R.M. Effects of Nitrogen Starvation on the Photosynthetic Physiology of a Tropical Marine Microalga Rhodomonas sp. (Cryptophyceae). Aquat. Bot. 2009, 91, 291–297. [Google Scholar] [CrossRef]
- Pathak, J.; Rajneesh; Maurya, P.K.; Singh, S.P.; Häder, D.P.; Sinha, R.P. Cyanobacterial Farming for Environment Friendly Sustainable Agriculture Practices: Innovations and Perspectives. Front. Environ. Sci. 2018, 6, 7. [Google Scholar] [CrossRef]
- Singh, J.S.; Kumar, A.; Rai, A.N.; Singh, D.P. Cyanobacteria: A Precious Bio-Resource in Agriculture, Ecosystem, and Environmental Sustainability. Front. Microbiol. 2016, 7, 529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Kate, B.N.; Banecjee, U.C. Bioactive Compounds from Cyanobacteria and Microalgae: An Overview. Crit. Rev. Biotechnol. 2005, 25, 73–95. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.; Wan Maznah, W.O.; Faradina Merican, M.S.M.; Convey, P.; Najimudin, N.; Alias, S.A. A Comparative Study of Phycobilliprotein Production in Two Strains of Pseudanabaena Isolated from Arctic and Tropical Regions in Relation to Different Light Wavelengths and Photoperiods. Polar Sci. 2019, 20, 3–8. [Google Scholar] [CrossRef]
- Berla, B.M.; Saha, R.; Immethun, C.M.; Maranas, C.D.; Moon, T.S.; Pakrasi, H.B. Synthetic Biology of Cyanobacteria: Unique Challenges and Opportunities. Front. Microbiol. 2013, 4, 246. [Google Scholar] [CrossRef] [Green Version]
- Novoveská, L.; Ross, M.E.; Stanley, M.S.; Pradelles, R.; Wasiolek, V.; Sassi, J.F. Microalgal Carotenoids: A Review of Production, Current Markets, Regulations, and Future Direction. Mar. Drugs 2019, 17, 640. [Google Scholar] [CrossRef] [Green Version]
- Reis, A.; Mendes, A.; Lobo-Fernandes, H.; Empis, J.A.; Novais, J.M. Production, Extraction and Purification of Phycobiliproteins from Nostoc sp. Bioresour. Technol. 1998, 66, 181–187. [Google Scholar] [CrossRef]
- Pantelić, D.; Svirčev, Z.; Simeunović, J.; Vidović, M.; Trajković, I. Cyanotoxins: Characteristics, Production and Degradation Routes in Drinking Water Treatment with Reference to the Situation in Serbia. Chemosphere 2013, 91, 421–441. [Google Scholar] [CrossRef]
- Abbas, T.; Kajjumba, G.W.; Ejjada, M.; Masrura, S.U.; Marti, E.J.; Khan, E.; Jones-lepp, T.L. Recent Advancements in the Removal of Cyanotoxins from Water Using Conventional and Modified Adsorbents—A Contemporary Review. Water 2020, 12, 2756. [Google Scholar] [CrossRef]
- Westrick, J.A.; Szlag, D.C.; Southwell, B.J.; Sinclair, J. A Review of Cyanobacteria and Cyanotoxins Removal/Inactivation in Drinking Water Treatment. Anal. Bioanal. Chem. 2010, 397, 1705–1714. [Google Scholar] [CrossRef]
- Moreira, J.B.; Vaz, B.D.S.; Cardias, B.B.; Cruz, C.G.; de Almeida, A.C.A.; Costa, J.A.V.; de Morais, M.G. Microalgae Polysaccharides: An Alternative Source for Food Production and Sustainable Agriculture. Polysaccharides 2022, 3, 441–457. [Google Scholar] [CrossRef]
- Araújo, R.; Vázquez Calderón, F.; Sánchez López, J.; Azevedo, I.C.; Bruhn, A.; Fluch, S.; Garcia Tasende, M.; Ghaderiardakani, F.; Ilmjärv, T.; Laurans, M.; et al. Current Status of the Algae Production Industry in Europe: An Emerging Sector of the Blue Bioeconomy. Front. Mar. Sci. 2021, 7, 1247. [Google Scholar] [CrossRef]
- Wang, C.; Shen, Z.; Cui, X.; Jiang, Y.; Jiang, X. Response Surface Optimization of Enzyme-Assisted Extraction of R-Phycoerythrin from Dry Pyropia yezoensis. J. Appl. Phycol. 2020, 32, 1429–1440. [Google Scholar] [CrossRef]
- Mittal, R.; Raghavarao, K.S.M.S. Extraction of R-Phycoerythrin from Marine Macro-Algae, Gelidium pusillum, Employing Consortia of Enzymes. Algal Res. 2018, 34, 1–11. [Google Scholar] [CrossRef]
- Phuong, H.; Massé, A.; Dumay, J.; Vandanjon, L.; Mith, H.; Legrand, J.; Arhaliass, A. Enhanced Liberation of Soluble Sugar, Protein, and R-Phycoerythrin Under Enzyme-Assisted Extraction on Dried and Fresh Gracilaria gracilis Biomass. Front. Chem. Eng. 2022, 4, 718857. [Google Scholar] [CrossRef]
- Insights Phycoerythrin Market Overview. 2022. Available online: https://www.futuremarketinsights.com/reports/phycoerythrin-market (accessed on 28 August 2022).
Cyanobacteria | Optimal Cultivation Parameters | Cultivation Mode | C-PE Content (mg g−1) | References |
---|---|---|---|---|
Anabaena sp. | M: BG 11 + HEPES; I: 100; LP: 12:12 h; LC: Green; pH: 8; T: 30 °C | autotrophic | 102 | [38] |
Anabaena fertilissima (PUPCCC 410.5) | M: Chu-10 medium; I: 44.5; LP: 14:10 h; LC: white; pH: 8; T: 28 °C | mixotrophic | 105.8 | [48] |
M: Chu-10 medium; I: 44.5; LP: 14:10 h; LC:blue; pH: 8; T: 28 °C | 214.5 | |||
Fremyella diplosiphon | M: BG 11 + HEPES; I: 15; LP: n/a; LC: Green; pH: 8; T: 27 °C | autotrophic | 559.69 | [45] |
Gloeotrichia sp. | M: BG 11 + HEPES; I: 15; LP: n/a; LC: Green; pH: 8; T: 27 °C | autotrophic | 414.18 | [45] |
Lyngbya sp. (CCNM 2053) | M: ASN-III; I: 60; LP: 12:12 h; LC: n/a; pH: n/a; T: 25 °C; S: n/a | autotrophic | 22.99 | [4] |
Nodularia sphaerocarpa (PUPCCC 420.1) | M: Chu-10 medium; I: 44.5; LP: 14:10 h; LC: green; pH: 8; T: 28 °C | mixotrophic | 283 | [52] |
Nostoc sp. BTA-61 | M: BG11; I: 54-67; LP: 14:10 h; LC: white; pH: 7.0; T: 28 °C | autotrophic | 125.11 | [39] |
Phormidium persicinum | M: synthetic NM; I: 3000 LUX; LP: 12:12 h; LC: n/a; pH: n/a; T: 21 °C; S: n/a | mixotrophic | 32.98 | [51] |
Pseudanabaena sp. | M: ASN-III; I: 75-110; LP: 12:12 h; LC: Green/blue; pH: n/a; T: 25 °C; S: n/a | mixotrophic | 30 | [46] |
M: BG 11; I: 40; LP: 12:12 h; LC: n/a; pH: 7; T: 25 °C | autotrophic | 92.57 | [37] | |
Spirulina platensis | M: Zarrouk’s medium; I: n/a; LP: n/a; LC: n/a; pH: n/a; T: 30 °C; S: 0.4 M | mixotrophic | 1.61 | [53] |
M: Zarrouk’s medium; I: n/a; LP: n/a; LC: n/a; pH: 7; T: 30 °C; S: n/a | 1.44 | |||
Tolypothrix tenuis | M: N-free mineral medium; I: 200 LUX; LP: 12:12 h; LC: Green; pH: n/a; T: 20–25 °C | mixotrophic | 660 | [40] |
Cyanobacteria | Extraction Method | Solvent | Purification | C-PE Content | Purity of C-PE | References |
---|---|---|---|---|---|---|
Halomicronema sp. A27DM. | Freezing–thawing | Tris Cl buffer + sodium azide (3 mM), pH 8.1 | Ammonium sulfate precipitation + Gel permeation chromatography (Sephadex G-150) | 5.76 mg mL−1 (66.2%) | 4.0 | [84] |
Lyngbya sp. (CCNM 2053) | Freezing–thawing | Phosphate buffer (0.1 M), pH 8 | n/a | 22.40 mg g−1 | 3.84 | [4] |
Lyngbya sp. (A09 DM) | Freezing–thawing | Potassium phosphate buffer (20 mm), pH 7.2 | Ammonium sulfate precipitation (Triton X-100) | 23.76 mg | 1.59 | [85] |
Ion exchange chromatography + Gel permeation chromatography (Sephadex G-150) | 20.92 mg | 6.75 | ||||
Lyngbya sp. (A09 DM) | Freezing–thawing | Tris Cl buffer + sodium azide (3 mM), pH 8.1 | Ammonium sulfate precipitation + Gel permeation chromatography (Sephadex G-150) | 8.89 mg mL−1 (64.9%) | 3.7 | [84] |
Phormidium sp. (A27DM) | Freezing–thawing | Tris Cl buffer + sodium azide (3 mM), pH 8.1 | Ammonium sulfate precipitation + Gel permeation chromatography (Sephadex G-150) | 9.95 mg mL−1 (62.6%) | 3.90 | [84] |
Phormidium persicinum | Freezing–thawing | Distilled water | Size exclusion chromatography | 5.09 µg mL−1 | 2.39 | [51] |
Ammonium sulfate precipitation | 15.58 µg mL−1 | 3.99 | ||||
Dialysis (phosphate buffer) | 32.98 µg mL−1 | 4.35 | ||||
Pseudanabaena sp. | Sonication + Freezing–thawing | Sodium phosphate buffer (0.1 mM), pH 7.0 | n/a | 0.03 mg mL−1 | n/a | [46] |
Pseudanabaena sp. | Freezing–thawing | Potassium phosphate buffer (100 mm), pH 7.2 | Ammonium sulfate precipitation | 5.69 mg mL−1 | 2.10 | [36] |
Ammonium sulfate precipitation + Size exclusion chromatography | 5.77 mg mL−1 | 5.32 | ||||
Ammonium sulfate precipitation + Size exclusion chromatography + Ion exchange chromatography | 5.91 mg mL−1 | 6.86 | ||||
Spirulina platensis | Freezing–thawing | Acetate buffer [Sodium chloride (50 mM) + 0.002 M sodium azide (0.002 M)], pH 5.10 | Ammonium sulfate precipitation | 384 µg mL−1 | 2.59 | [86] |
Ammonium sulfate precipitation + Dialysis (Acetate buffer) | 299 µg mL−1 | 2.61 | ||||
Ammonium sulfate precipitation + Ion exchange chromatography | 374 µg mL−1 | 4.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, H.T.; Yusoff, F.M.; Khaw, Y.S.; Noor Mazli, N.A.I.; Nazarudin, M.F.; Shaharuddin, N.A.; Katayama, T.; Ahmad, S.A. A Review on a Hidden Gem: Phycoerythrin from Blue-Green Algae. Mar. Drugs 2023, 21, 28. https://doi.org/10.3390/md21010028
Tan HT, Yusoff FM, Khaw YS, Noor Mazli NAI, Nazarudin MF, Shaharuddin NA, Katayama T, Ahmad SA. A Review on a Hidden Gem: Phycoerythrin from Blue-Green Algae. Marine Drugs. 2023; 21(1):28. https://doi.org/10.3390/md21010028
Chicago/Turabian StyleTan, Hui Teng, Fatimah Md. Yusoff, Yam Sim Khaw, Nur Amirah Izyan Noor Mazli, Muhammad Farhan Nazarudin, Noor Azmi Shaharuddin, Tomoyo Katayama, and Siti Aqlima Ahmad. 2023. "A Review on a Hidden Gem: Phycoerythrin from Blue-Green Algae" Marine Drugs 21, no. 1: 28. https://doi.org/10.3390/md21010028
APA StyleTan, H. T., Yusoff, F. M., Khaw, Y. S., Noor Mazli, N. A. I., Nazarudin, M. F., Shaharuddin, N. A., Katayama, T., & Ahmad, S. A. (2023). A Review on a Hidden Gem: Phycoerythrin from Blue-Green Algae. Marine Drugs, 21(1), 28. https://doi.org/10.3390/md21010028