Structural Characterization and Anticoagulant Activities of a Keratan Sulfate-like Polysaccharide from the Sea Cucumber Holothuria fuscopunctata
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Characterization of AG
2.2. Preparation of Oligosaccharides with Deacetylation–Deaminative Depolymerization
2.3. Low-Molecular-Weight Products Produced with Free Radical Depolymerization
2.4. Structure Identification of Oligosaccharide Released with Mild Acid Hydrolysis
2.5. Structural Characteristic of Natural AG Using a Bottom-Up Strategy
2.6. Anticoagulant Activities
3. Materials and Methods
3.1. Materials and Reagents
3.2. Extraction and Purification of Natural AG
3.3. Deaminative Depolymerization of AG and Purification of Oligosaccharide
3.4. Free Radical Depolymerization
3.5. Mild Acid Hydrolysis of AG
3.6. Determination of Homogeneity and Molecular Weight
3.7. 1D/2D NMR and ESI-Q-TOF MS Spectroscopy
3.8. Anticoagulant Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Yuan, Q.; Lv, K.; Ma, H.; Gao, C.; Liu, Y.; Zhang, S.; Zhao, L. Low-molecular-weight fucosylated glycosaminoglycan and its oligosaccharides from sea cucumber as novel anticoagulants: A review. Carbohydr. Polym. 2021, 251, 117034. [Google Scholar] [CrossRef]
- Xu, H.; Zhou, Q.; Liu, B.; Chen, F.; Wang, M. Holothurian fucosylated chondroitin sulfates and their potential benefits for human health: Structures and biological activities. Carbohydr. Polym. 2022, 275, 118691. [Google Scholar] [CrossRef]
- Pomin, V.H. Marine non-glycosaminoglycan sulfated glycans as potential pharmaceuticals. Pharmaceuticals 2015, 8, 848–864. [Google Scholar] [CrossRef]
- Sun, H.; Gao, N.; Ren, L.; Liu, S.; Lin, L.; Zheng, W.; Zhou, L.; Yin, R.; Zhao, J. The components and activities analysis of a novel anticoagulant candidate dHG-5. Eur. J. Med. Chem. 2020, 207, 112796. [Google Scholar] [CrossRef]
- Zhao, L.; Wu, M.; Xiao, C.; Yang, L.; Zhou, L.; Gao, N.; Li, Z.; Chen, J.; Chen, J.; Liu, J.; et al. Discovery of an intrinsic tenase complex inhibitor: Pure nonasaccharide from fucosylated glycosaminoglycan. Proc. Natl. Acad. Sci. USA 2015, 112, 8284–8289. [Google Scholar] [CrossRef]
- Cai, Y.; Yang, W.; Li, X.; Zhou, L.; Wang, Z.; Lin, L.; Chen, D.; Zhao, L.; Li, Z.; Liu, S.; et al. Precise structures and anti-intrinsic tenase complex activity of three fucosylated glycosaminoglycans and their fragments. Carbohydr. Polym. 2019, 224, 115146. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.; Zhou, L.; Gao, N.; Lin, L.; Sun, H.; Chen, D.; Cai, Y.; Zuo, Z.; Hu, K.; Huang, S.; et al. Unveiling the disaccharide-branched glycosaminoglycan and anticoagulant potential of its derivatives. Biomacromolecules 2021, 22, 1244–1255. [Google Scholar] [CrossRef]
- Shang, F.; Mou, R.; Zhang, Z.; Gao, N.; Lin, L.; Li, Z.; Wu, M.; Zhao, J. Structural analysis and anticoagulant activities of three highly regular fucan sulfates as novel intrinsic factor Xase inhibitors. Carbohydr. Polym. 2018, 195, 257–266. [Google Scholar] [CrossRef]
- Pereira, M.S.; Mulloy, B.; Mourão, P.A.S. Structure and anticoagulant activity of sulfated fucans: Comparison between the regular, repetitive, and linear fucans from echinoderms with the more heterogeneous and branched polymers from brown algae. J. Biol. Chem. 1999, 274, 7656–7667. [Google Scholar] [CrossRef]
- Kim, S.B.; Farrag, M.; Mishra, S.K.; Misra, S.K.; Sharp, J.S.; Doerksen, R.J.; Pomin, V.H. Selective 2-desulfation of tetrasaccharide-repeating sulfated fucans during oligosaccharide production by mild acid hydrolysis. Carbohydr. Polym. 2023, 301, 120316. [Google Scholar] [CrossRef]
- Yu, L.; Xu, X.; Xue, C.; Chang, Y.; Ge, L.; Wang, Y.; Zhang, C.; Liu, G.; He, C. Enzymatic preparation and structural determination of oligosaccharides derived from sea cucumber (Acaudina molpadioides) fucoidan. Food Chem. 2013, 139, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Hu, Y.; Yu, L.; McClements, D.J.; Xu, X.; Liu, G.; Xue, C. Primary structure and chain conformation of fucoidan extracted from sea cucumber Holothuria tubulosa. Carbohydr. Polym. 2016, 136, 1091–1097. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Xue, C.; Chang, Y.; Xu, X.; Ge, L.; Liu, G.; Wang, Y. Structure elucidation of fucoidan composed of a novel tetrafucose repeating unit from sea cucumber Thelenota ananas. Food Chem. 2014, 146, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Wu, M.; Xu, L.; Lian, W.; Xiang, J.; Lu, F.; Gao, N.; Xiao, C.; Wang, S.; Zhao, J. Comparison of physicochemical characteristics and anticoagulant activities of polysaccharides from three sea cucumbers. Mar. Drugs 2013, 11, 399–417. [Google Scholar] [CrossRef]
- Zheng, W.; Zhou, L.; Lin, L.; Cai, Y.; Sun, H.; Zhao, L.; Gao, N.; Yin, R.; Zhao, J. Physicochemical characteristics and anticoagulant activities of the polysaccharides from sea cucumber Pattalus mollis. Mar. Drugs 2019, 17, 198. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Chen, R.; Mou, R.; Xiang, J.; Zhou, K.; Li, Z.; Zhao, J. Purification, structural characterization and anticoagulant activities of four sulfated polysaccharides from sea cucumber Holothuria fuscopunctata. Int. J. Biol. Macromol. 2020, 164, 3421–3428. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Xu, C.; Tao, X.; Zuo, Z.; Ning, Z.; Wang, L.; Gao, N.; Zhao, J. Structure elucidation of fucan sulfate from sea cucumber Holothuria fuscopunctata through a bottom-up strategy and the antioxidant activity analysis. Int. J. Mol. Sci. 2022, 23, 4488. [Google Scholar] [CrossRef]
- Caterson, B.; Melrose, J. Keratan sulfate, a complex glycosaminoglycan with unique functional capability. Glycobiology 2018, 28, 182–206. [Google Scholar] [CrossRef]
- Pomin, V.H. Keratan sulfate: An up-to-date review. Int. J. Biol. Macromol. 2015, 72, 282–289. [Google Scholar] [CrossRef]
- Ustyuzhanina, N.E.; Bilan, M.I.; Nifantiev, N.E.; Usov, A.I. Structural analysis of holothurian fucosylated chondroitin sulfates: Degradation versus non-destructive approach. Carbohydr. Res. 2019, 476, 8–11. [Google Scholar] [CrossRef]
- Bienkowski, M.J.; Conrad, H.E. Structural characterization of the oligosaccharides formed by depolymerization of heparin with nitrous acid. J. Biol. Chem. 1985, 260, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Shaklee, P.N.; Conrad, H.E. Hydrazinolysis of heparin and other glycosaminoglycans. Biochem. J. 1984, 217, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, P.K. NMR Spectroscopy in the structural elucidation of oligosaccharides and glycosides. Phytochemistry 1992, 31, 3307–3330. [Google Scholar] [CrossRef]
- Bezrodnykh, E.A.; Blagodatskikh, I.V.; Kulikov, S.N.; Zelenikhin, P.V.; Yamskov, I.A.; Tikhonov, V.E. Consequences of chitosan decomposition by nitrous acid: Approach to non-branched oligochitosan oxime. Carbohydr. Polym. 2018, 195, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Allison, C.L.; Lutzke, A.; Reynolds, M.M. Examining the effect of common nitrosating agents on chitosan using a glucosamine oligosaccharide model system. Carbohydr. Polym. 2019, 203, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Tømmeraas, K.; Vårum, K.M.; Christensen, B.E.; Smidsrød, O. Preparation and characterisation of oligosaccharides produced by nitrous acid depolymerisation of chitosans. Carbohydr. Res. 2001, 333, 137–144. [Google Scholar] [CrossRef]
- Amicucci, M.J.; Nandita, E.; Galermo, A.G.; Castillo, J.J.; Chen, S.; Park, D.; Smilowitz, J.T.; German, J.B.; Mills, D.A.; Lebrilla, C.B. A nonenzymatic method for cleaving polysaccharides to yield oligosaccharides for structural analysis. Nat. Commun. 2020, 11, 3963. [Google Scholar] [CrossRef]
- Chen, R.; Yin, R.; Li, S.; Pan, Y.; Mao, H.; Cai, Y.; Lin, L.; Wang, W.; Zhang, T.; Zhou, L.; et al. Structural characterization of oligosaccharides from free radical depolymerized fucosylated glycosaminoglycan and suggested mechanism of depolymerization. Carbohydr. Polym. 2021, 270, 118368. [Google Scholar] [CrossRef]
- Panagos, C.; Thomson, D.; Bavington, C.D.; Uhrín, D. Structural characterisation of oligosaccharides obtained by Fenton-type radical depolymerisation of dermatan sulfate. Carbohydr. Polym. 2012, 87, 2086–2092. [Google Scholar] [CrossRef]
- Mourao, P.A.; Pereira, M.S.; Pavao, M.S.; Mulloy, B.; Tollefsen, D.M.; Mowinckel, M.C.; Abildgaard, U. Structure and anticoagulant activity of a fucosylated chondroitin sulfate from echinoderm. Sulfated fucose branches on the polysaccharide account for its high anticoagulant action. J. Biol. Chem. 1996, 271, 23973–23984. [Google Scholar] [CrossRef]
- Cegelski, L. Bottom-up and top-down solid-state NMR approaches for bacterial biofilm matrix composition. J. Magn. Reson. 2015, 253, 91–97. [Google Scholar] [CrossRef]
- Wu, M.; Xu, S.; Zhao, J.; Kang, H.; Ding, H. Preparation and characterization of molecular weight fractions of glycosaminoglycan from sea cucumber Thelenata ananas using free radical depolymerization. Carbohydr. Res. 2010, 345, 649–655. [Google Scholar] [CrossRef]
- Zhou, L.; Gao, N.; Sun, H.; Xiao, C.; Yang, L.; Lin, L.; Yin, R.; Li, Z.; Zhang, H.; Ji, X.; et al. Effects of native fucosylated glycosaminoglycan, its depolymerized derivatives on intrinsic factor Xase, coagulation, thrombosis, and hemorrhagic risk. Thromb. Haemost. 2020, 120, 607–619. [Google Scholar] [CrossRef]
- Mao, H.; Cai, Y.; Li, S.; Sun, H.; Lin, L.; Pan, Y.; Yang, W.; He, Z.; Chen, R.; Zhou, L.; et al. A new fucosylated glycosaminoglycan containing disaccharide branches from Acaudina molpadioides: Unusual structure and anti-intrinsic tenase activity. Carbohydr. Polym. 2020, 245, 116503. [Google Scholar] [CrossRef]
- Li, S.; Zhong, W.; Pan, Y.; Lin, L.; Cai, Y.; Mao, H.; Zhang, T.; Li, S.; Chen, R.; Zhou, L.; et al. Structural characterization and anticoagulant analysis of the novel branched fucosylated glycosaminoglycan from sea cucumber Holothuria nobilis. Carbohydr. Polym. 2021, 269, 118290. [Google Scholar] [CrossRef]
- Wu, M.; Wen, D.; Gao, N.; Xiao, C.; Yang, L.; Xu, L.; Lian, W.; Peng, W.; Jiang, J.; Zhao, J. Anticoagulant and antithrombotic evaluation of native fucosylated chondroitin sulfates and their derivatives as selective inhibitors of intrinsic factor Xase. Eur. J. Med. Chem. 2015, 92, 257–269. [Google Scholar] [CrossRef]
oAG-2 | oAG-3 | ||||||||
---|---|---|---|---|---|---|---|---|---|
A, β-D-Gal4S6S-1, | A, β-D-Gal3S4S6S-1, | ||||||||
H1 | 4.647 | J(1,2) = 7.84 | C1 | 103.94 | H1 | 4.732 | J(1,2) = 7.68 | C1 | 103.96 |
H2 | 4.197 | J(2,3) = 10.00 | C2 | 81.03 | H2 | 4.303 | J(2,3) = 10.0 | C2 | 78.09 |
H3 | 3.923 | J(3,4) = 3.28 | C3 | 73.18 | H3 | 4.484 | J(3,4) = 3.12 | C3 | 78.10 |
H4 | 4.993 | J(4,5) = -- | C4 | 79.20 | H4 | 4.993 | J(4,5) = -- | C4 | 77.52 |
H5 | 4.073 | J(5,6) = 3.36 | C5 | 75.01 | H5 | 4.121 | J(5,6) = 3.20 | C5 | 74.88 |
H6 | 4.242 | J(6,6′) = 10.80 | C6 | 70.41 | H6 | 4.239 | J(6,6′) = 10.56 | C6 | 70.42 |
H6′ | 4.172 | J(5,6′) = 8.64 | H6′ | 4.182 | J(5,6′) = 8.80 | ||||
B, -4-D-aMan6S | B, -4-D-aMan6S | ||||||||
H1 | 5.054 | J(1,2) = 5.84 | C1 | 91.88 | H1 | 5.054 | J(1,2) = 5.92 | C1 | 91.87 |
H2 | 3.748 | J(2,3) = 5.52 | C2 | 87.99 | H2 | 3.749 | J(2,3) = 5.12 | C2 | 88.14 |
H3 | 4.361 | J(3,4) = 4.48 | C3 | 79.04 | H3 | 4.375 | J(3,4) = 4.32 | C3 | 79.10 |
H4 | 4.696 | J(4,5) = 5.20 | C4 | 88.96 | H4 | 4.201 | J(4,5) = 5.76 | C4 | 89.21 |
H5 | 4.234 | J(5,6′) = 4.32 | C5 | 82.73 | H5 | 4.249 | J(5,6′) = 5.36 | C5 | 82.83 |
H6 | 4.168 | C6 | 70.02 | H6 | 4.169 | J(5,6) = 3.36 | C6 | 70.15 |
bAG-1 | bAG-1 | ||||||||
---|---|---|---|---|---|---|---|---|---|
A α-D-GalNAc4S6S-1- | A’ α-D-GalNAc4S6S-1- | ||||||||
H1 | 5.019 | J(1,2) = 3.92 | C1 | 102.77 | H1 | 5.141 | J(1,2) = 3.76 | C1 | 101.05 |
H2 | 4.147 | J(2,3) = 11.20 | C2 | 52.28 | H2 | 4.123 | J(2,3) = 11.20 | C2 | 53.17 |
H3 | 4.006 | J(3,4) = 2.64 | C3 | 69.34 | H3 | 4.006 | J(3,4) = 2.64 | C3 | 69.34 |
H4 | 4.706 | / | C4 | 79.15 | H4 | 4.718 | C4 | 79.45 | |
H5 | 4.358 | J(5,6) = 2.80 J(5,6′) = 8.88 | C5 | 71.80 | H5 | 4.466 | J(5,6) = 4.56 J(5,6′) = 7.92 | C5 | 71.28 |
H6 | 4.238 | / | C6 | 70.79 | H6 | 4.195 | J(6,6′) = 10.88 | C6 | 70.26 |
H6′ | 4.112 | J(6,6′) = 11.44 | H6′ | 4.089 | / | ||||
C7 | 177.39 | C7 | 177.39 | ||||||
H8 | 1.954 | / | C8 | 24.71 | H8 | 1.969 | / | C8 | 24.75 |
F -2-α-L-Fuc3S | F’ 2-β-L-Fuc3S | ||||||||
H1 | 5.327 | J(1,2) = 3.92 | C1 | 94.29 | H1 | 4.556 | J(1,2) = 7.76 | C1 | 97.72 |
H2 | 3.636 | J(2,3) = 10.32 | C2 | 80.55 | H2 | 3.389 | J(2,3) = 10.00 | C2 | 82.44 |
H3 | 3.875 | J(3,4) = 3.20 | C3 | 71.30 | H3 | 3.716 | J(3,4) = 3.44 | C3 | 76.28 |
H4 | 3.717 | / | C4 | 75.08 | H4 | 3.602 | / | C4 | 74.56 |
H5 | 4.153 | J(5,6) = 6.56 | C5 | 68.75 | H5 | 4.705 | J(5,6) = 6.48 | C5 | 73.46 |
H6 | 1.106 | / | C6 | 18.14 | H6 | 1.151 | C6 | 18.23 |
Sample | Mw a (kDa) | Mn a (kDa) | PD | 2 × APTT b (μg/mL) | 2 × PT (μg/mL) | 2 × TT b (μg/mL) |
---|---|---|---|---|---|---|
LMWH | 4.4 | / | / | 5.20 ± 0.06 | >128 | 1.38 ± 0.07 |
AG | 39.1 | 31.2 | 1.25 | 8.54 ± 0.08 | >128 | 15.75 ± 3.82 |
dAG1 | 35.9 | 30.0 | 1.20 | 11.37 ± 0.24 | >128 | 19.63 ± 1.04 |
dAG2 | 26.7 | 22.1 | 1.21 | 11.11 ± 0.29 | >128 | 23.85 ± 0.17 |
dAG3 | 18.6 | 15.6 | 1.19 | 12.27 ± 0.48 | >128 | 44.97 ± 0.81 |
dAG4 | 12.3 | 10.0 | 1.23 | 19.97 ± 1.05 | >128 | >128 |
dAG5 | 7.5 | 6.3 | 1.19 | 16.10 ± 0.46 | >128 | >128 |
dAG6 | 5.3 | 4.5 | 1.18 | 36.45 ± 0.14 | >128 | >128 |
dAG7 | 3.7 | 3.1 | 1.19 | 59.42 ± 1.91 | >128 | >128 |
dAG8 | 2.6 | 2.2 | 1.18 | >128 | >128 | >128 |
dAG9 | 1.4 | 1.2 | 1.17 | >128 | >128 | >128 |
oAG-3 | 0.73 | 0.73 | 1 | 83.99 ± 1.33 | >128 | >128 |
oAG-2 | 0.63 | 0.63 | 1 | >128 | >128 | >128 |
oAG-1 | 0.48 | 0.48 | 1 | >128 | >128 | >128 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, R.; Wang, W.; Yin, R.; Pan, Y.; Xu, C.; Gao, N.; Luo, X.; Zhao, J. Structural Characterization and Anticoagulant Activities of a Keratan Sulfate-like Polysaccharide from the Sea Cucumber Holothuria fuscopunctata. Mar. Drugs 2023, 21, 632. https://doi.org/10.3390/md21120632
Chen R, Wang W, Yin R, Pan Y, Xu C, Gao N, Luo X, Zhao J. Structural Characterization and Anticoagulant Activities of a Keratan Sulfate-like Polysaccharide from the Sea Cucumber Holothuria fuscopunctata. Marine Drugs. 2023; 21(12):632. https://doi.org/10.3390/md21120632
Chicago/Turabian StyleChen, Ru, Weili Wang, Ronghua Yin, Ying Pan, Chen Xu, Na Gao, Xiaodong Luo, and Jinhua Zhao. 2023. "Structural Characterization and Anticoagulant Activities of a Keratan Sulfate-like Polysaccharide from the Sea Cucumber Holothuria fuscopunctata" Marine Drugs 21, no. 12: 632. https://doi.org/10.3390/md21120632
APA StyleChen, R., Wang, W., Yin, R., Pan, Y., Xu, C., Gao, N., Luo, X., & Zhao, J. (2023). Structural Characterization and Anticoagulant Activities of a Keratan Sulfate-like Polysaccharide from the Sea Cucumber Holothuria fuscopunctata. Marine Drugs, 21(12), 632. https://doi.org/10.3390/md21120632