Preparation and Characterization of a Multicomponent Arthrospira platensis Biomass Hydrolysate with Superior Anti-Hypertensive, Anti-Hyperlipidemic and Antioxidant Activities via Selective Proteolysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Amino Acid Composition
2.2. Peptide Composition
2.3. Total Carbohydrate Content of Extracts
2.4. Total Phenol Content of Extracts
2.5. Elemental Composition of Extracts
2.6. In Vitro Bioactive Properties of Arthrospira platensis sp. Extracts
2.6.1. Anti-Hypertensive Activity
2.6.2. Anti-Hyperlipidemic Activity: Inhibition of Pancreatic Lipase
2.6.3. Anti-Hyperlipidemic Activity Analyses: Inhibition of Pancreatic Cholesterol Esterase
2.6.4. Antioxidant Activity
ABST and ORAC Methods
3. Materials and Methods
3.1. Materials
3.2. Enzyme-Assisted Extraction of Arthrospira platensis Biocomponents
3.3. Analysis and Characterization of Hydrophilic Extracts
3.3.1. Amino Acid Composition
3.3.2. Peptide Identification by LC ESI-MS MS
3.3.3. Total Carbohydrates Content
3.3.4. Elemental Analyses
3.3.5. Anti-Hypertensive Activity
3.3.6. Anti-Hyperlipidemic Activity: Inhibition of Pancreatic Lipase Assay
3.3.7. Anti-Hyperlipidemic Activity: Inhibition of Pancreatic Cholesterol Esterase
3.3.8. Antioxidant Activity
ABTS Assay
Hydroxyl Radical Scavenging Assay (ORAC-Fluorescein Assay)
Total Phenol Content by FCR
3.3.9. Statistical Analyses
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raven, J.A. The possible roles of algae in restricting the increase in atmospheric CO2 and global temperature. Eur. J. Phycol. 2017, 52, 506–522. [Google Scholar] [CrossRef]
- Ruffing, A.M. Metabolic Engineering and Systems Biology for Free Fatty Acid Production in Cyanobacteria. In Cyanobacteria: Omics and Manipulation; Los, D.A., Ed.; Caister Academic Press: Poole, UK, 2017; pp. 161–186. [Google Scholar] [CrossRef]
- Ejike, C.E.C.C.; Collins, S.A.; Balasuriya, N.; Swanson, A.K.; Mason, B.; Udenigwe, C.C. Prospects of microalgae proteins in producing peptide-based functional foods for promoting cardiovascular health. Trends Food Sci. Technol. 2017, 59, 30–36. [Google Scholar] [CrossRef]
- Becker, E.W. Micro-algae as a source of protein. Biotechnol. Adv. 2007, 25, 27–210. [Google Scholar] [CrossRef] [PubMed]
- Barka, A.; Blecker, C. Microalgae as a potential source of single-cell proteins. A review. Biotechnol. Agron. Soc. Environ. 2016, 20, 427–436. [Google Scholar] [CrossRef]
- Vanthoor-Koopmans, M.; Wijffels, R.H.; Barbosa, M.J.; Eppink, M.H.M. Biorefinery of microalgae for food and fuel. Bioresour. Technol. 2013, 135, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, C.; Jakob, T. From photons to biomass and biofuels: Evaluation of different strategies for the improvement of algal biotechnology based on comparative energy balances. Appl. Microbiol. Biotechnol. 2011, 92, 909–919. [Google Scholar] [CrossRef]
- Simm, S.; Schleiff, E.; Pernil, R. The Cyanobacterial Core-genome: Global and Specific Features with a Focus on Secondary Metabolites. In Cyanobacteria: Omics and Manipulation; Los, D.A., Ed.; Caister Academic Press: Poole, UK, 2017; pp. 1–34. [Google Scholar] [CrossRef]
- Wang, F.; Yu, X.; Cui, Y.; Xu, L.; Huo, S.; Ding, Z.; Hu, Q.; Xie, W.; Xiao, H.; Zhang, D. Efficient extraction of phycobiliproteins from dry biomass of Spirulina platensis using sodium chloride as extraction enhancer. Food Chem. 2023, 406, 135005. [Google Scholar] [CrossRef]
- Martínez-Vega, J.E.; Villafaña-Estarrón, E.; Escalante, F.M.E. Comparative Study of the Efficiency of Additives in the Extraction of Phycocyanin-C from Arthrospira maxima Using Ultrasonication. Molecules 2023, 28, 334. [Google Scholar] [CrossRef]
- Wang, M.; Morón-Ortiz, Á.; Zhou, J.; Benítez-González, A.; Mapelli-Brahm, P.; Meléndez-Martínez, A.J.; Barba, F.J. Effects of pressurized liquid extraction with dimethyl sulfoxide on the recovery of carotenoids and other dietary valuable compounds from the microalgae Spirulina, Chlorella and Phaeodactylum tricornutum. Food Chem. 2023, 405, 134885. [Google Scholar] [CrossRef]
- Villaró, S.; Jiménez-Márquez, S.; Musari, E.; Bermejo, R.; Lafarga, T. Production of enzymatic hydrolysates with in vitro antioxidant, antihypertensive, and antidiabetic properties from proteins derived from Arthrospira platensis. Food Res. Int. 2023, 163, 112270. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Z.; Smith, C. Arabinoxylans: Bioactivities in Relation to Their Molecular Structure. In Frontiers in Bioactive Compunds (At the Crossroads between Nutrition and Pharmacology); Aguilar, M.V., Otero, C., Eds.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2017; Volume 2, pp. 146–164. [Google Scholar] [CrossRef]
- Urajeh, S.; Pourashouri, P.; Shabanpour, B.; Hoseini, S.V. The Effect of Continuous and Separate Extraction Methods on the Yield and Quality of Extracted Protein and Chlorophyll from Spirulina platensis. J. Res. Innov. Food Sci. Technol. 2022, 11, 209–222. [Google Scholar] [CrossRef]
- Giannoglou, M.; Andreou, M.; Thanou, V.; Markou, I.; Katsaros, G. High pressure assisted extraction of proteins from wet biomass of Arthrospira platensis (Spirulina)–A kinetic approach. Innov. Food Sci. Emerg. Technol. 2022, 81, 103138. [Google Scholar] [CrossRef]
- Verdasco-Martín, C.M.; Echevarrieta, L.; Otero, C. Advantageous Preparation of Digested Proteic Extracts from Spirulina platensis Biomass. Catalysts 2019, 9, 145. [Google Scholar] [CrossRef]
- Hayes, M.; Mora, L.; Lucakova, S. Identification of Bioactive Peptides from Nannochloropsis oculata Using a Combination of Enzymatic Treatment, in Silico Analysis and Chemical Synthesis. Biomolecules 2022, 12, 1806. [Google Scholar] [CrossRef] [PubMed]
- Majewski, M.; Klett-Mingo, M.; Verdasco-Martín, C.M.; Otero, C.; Ferrer, M. Spirulina extract improves age-induced vascular dysfunction. Pharm. Biol. 2022, 60, 627–637. [Google Scholar] [CrossRef]
- Soto-Sierra, L.; Stoykova, P.; Nikolov, Z. Extraction and fractionation of microalgae-based protein products. Algal Res. 2018, 36, 175–192. [Google Scholar] [CrossRef]
- Ovando, C.A.; de Carvalho, J.C.; de Melo-Pereira, G.V.; Jacques, P.; Soccol, V.T.; Soccol, C.R. Functional properties and health benefits of bioactive peptides derived from Spirulina: A review. Food Rev. Int. 2018, 34, 34–51. [Google Scholar] [CrossRef]
- Cheong, S.H.; Kim, M.Y.; Sok, D.E.; Hwang, S.Y.; Kim, J.H.; Kim, H.R.; Lee, J.H.; Kim, Y.B.; Kim, M.R. Spirulina prevents atherosclerosis by reducing hypercholesterolemia in rabbits fed a high-cholesterol diet. J. Nutr. Sci. Vitaminol. 2010, 56, 34–40. [Google Scholar] [CrossRef]
- Nagaoka, S.; Shimizu, K.; Kaneko, H.; Shibayama, F.; Morikawa, K.; Kanamaru, Y.; Otsuka, A.; Hirahashi, T.; Kato, T. A novel protein C-phycocyanin plays a crucial role in the hypocholesterolemic action of Spirulina platensis concentrate in rats. J. Nutr. 2005, 135, 2425–2430. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, X. Separation and nanoencapsulation of antitumor polypeptide from Spirulina platensis. Biotechnol. Prog. 2013, 29, 1230–1238. [Google Scholar] [CrossRef]
- Lu, J.; Ren, D.F.; Xue, Y.L.; Sawano, Y.; Miyakawa, T.; Tanokura, M. Isolation of an antihypertensive peptide from alcalase digest of Spirulina platensis. J. Agric. Food Chem. 2010, 58, 7166–7171. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Hu, Y.; Xue, M.; Dun, Y.; Li, S.; Peng, N.; Liang, Y.; Zhao, S. Purification and identification of antioxidant peptides from enzymatic hydrolysate of Spirulina platensis. J. Microbiol. Biotechnol. 2016, 26, 1216–1223. [Google Scholar] [CrossRef] [PubMed]
- Villalpando, D.M.; Verdasco-Martín, C.M.; Plaza, I.; Gómez-Rivas, J.; de Bethencourt, F.R.; Villarroel, M.; García, J.; Otero, C.; Ferrer, M. Beneficial Effects of Spirulina Aqueous Extract on Vasodilator Function of Arteries from Hypertensive Rats. Int. J. Vasc. Med. 2020, 6657077, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Anekthanakul, K.; Senachak, J.; Hongsthong, A.; Charoonratanad, T.; Ruengjitchatchawalya, M. Natural ACE inhibitory peptides discovery from Spirulina (Arthrospira platensis) strain C1. Peptides 2019, 118, 170107. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Zhang, Y.; Qiu, Y.; Yang, F.; Liu, G.; Dong, X.; Chen, G.; Cao, C.; Zhang, Q.; Zhang, S.; et al. Three novel antioxidant peptides isolated from C-phycocyanin against H2O2-induced oxidative stress in zebrafish via Nrf2 signaling pathway. Front. Mar. Sci. 2022, 9, 1098091. [Google Scholar] [CrossRef]
- Ghallab, D.S.; Shawky, E.; Ibrahim, R.S.; Mohyeldin, M.M. Comprehensive metabolomics unveil the discriminatory metabolites of some Mediterranean Sea marine algae in relation to their cytotoxic activities. Sci. Rep. 2022, 12, 8094. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.R.; Silva, P.M.P.; Vicente, A.A.; Souza-Soares, L.A.; Pinheiro, A.C.; Cerqueira, M.A. Alginate Particles for Encapsulation of Phenolic Extract from Spirulina sp. LEB-18: Physicochemical Characterization and Assessment of In Vitro Gastrointestinal Behavior. Polymers 2022, 14, 4759. [Google Scholar] [CrossRef]
- Mohammadi, M.; Hamishehkar, H.; McClements, D.J.; Shahvalizadeh, R.; Barri, A. Encapsulation of Spirulina protein hydrolysates in liposomes: Impact on antioxidant activity and gastrointestinal behavior. Food Chem. 2023, 400, 133973. [Google Scholar] [CrossRef]
- Jung, F.; Braune, S.; Jung, C.H.G.; Krüger-Genge, A.; Waldeck, P.; Petrick, I.; Küpper, J.-H. Lipophilic and Hydrophilic Compounds from Arthrospira platensis and Its Effects on Tissue and Blood Cells—An Overview. Life 2022, 12, 1497. [Google Scholar] [CrossRef]
- Merz, M.; Eisele, T.; Berends, P.; Appel, D.; Rabe, S.; Blank, I.; Stressler, T.; Fischer, L. Flavourzyme, an Enzyme Preparation with Industrial Relevance: Automated Nine-Step Purification and Partial Characterization of Eight Enzymes. J. Agric. Food Chem. 2015, 63, 5682–5693. [Google Scholar] [CrossRef] [PubMed]
- Smith, J. Mixed β-glucanase, xylanase from Humicola insolens. In Chemical and Technical Assessment (CTA); FAO: Roma, Italy, 2004; pp. 1–5. Available online: https://www.fao.org/documents/card/es/c/2e06c7af-e051-41de-be10-56460d223e82/ (accessed on 15 March 2023).
- Pronk, I.M.E.J.; Leclercq, C. Mixed xylanse, β-glucanase enzyme preparation produced by a strain of humicola insolens. In WHO Food Additives Series; Joint FAO/WHO Expert Committee on Food Additives (JECFA), World Health Organization: Geneva, Switzerland, 2004; Volume 52, pp. 1–6. Available online: https://www.fao.org/fileadmin/templates/agns/pdf/jecfa/cta/61/mixedgluconase.pdf (accessed on 15 March 2023).
- Springer Handbook of Enzymes, 2nd ed.; Schomburg, D.; Schomburg, I. (Eds.) Springer: Berlin/Heidelberg, Germany, 2009; Volume S5. [Google Scholar] [CrossRef]
- Directive 2009/32/EC of the European Parliament and of the Council of 23 April 2009 No 1 and Annex 1. On the Approximation of the Laws of the Member States on Extraction Solvents Used in the Production of Foodstuffs and Food Ingredients. Available online: https://faolex.fao.org/docs/pdf/eur88007.pdf (accessed on 15 March 2023).
- Spackman, D.H.; Stein, W.H.; Moore, S. Automatic Recording Apparatus for Use in the Chromatography of Amino Acids. Anal. Chem. 1958, 30, 1190–1206. [Google Scholar] [CrossRef]
- Perkins, D.N.; Pappin, D.J.C.; Creasy, D.M.; Cottrell, J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999, 20, 3551–3567. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Zuluaga, J.; Rodríguez, N.; Rivas-Ramirez, I.; De La Fuente, V.; Rufo, L.; Amils, R. An improved semiquantitative method for elemental analysis of plants using inductive coupled plasma mass spectrometry. Biol. Trace Elem. Res. 2011, 144, 1302–1317. [Google Scholar] [CrossRef]
- Sentandreu, M.Á.; Toldrá, F. A fluorescence-based protocol for quantifying angiotensin-converting enzyme activity. Nat. Protoc. 2006, 1, 2423–2427. [Google Scholar] [CrossRef]
- Lee, Y.P.; Chung, G.H.; Rhee, J.S. Purification and characterization of Pseudomonas fluorescens SIK W1 lipase expressed in Escherichia coli. Biochim. Et Biophys. Acta (BBA)/Lipids Lipid Metab. 1993, 1169, 156–164. [Google Scholar] [CrossRef]
- Pietsch, M.; Gütschow, M. Synthesis of tricyclic 1, 3-oxazin-4-ones and kinetic analysis of cholesterol esterase and acetylcholinesterase inhibition. J. Med. Chem. 2005, 48, 8270–8288. [Google Scholar] [CrossRef]
- Huang, D.; Boxin, O.U.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Dávalos, A.; Gómez-Cordovés, C.; Bartolomé, B. Extending Applicability of the Oxygen Radical Absorbance Capacity (ORAC-Fluorescein) Assay. J. Agric. Food Chem. 2004, 52, 48–54. [Google Scholar] [CrossRef] [PubMed]
Extract | RT (min) | Peptide Sequence (Seq. ID:) | Mr (Da, Calc.) | Mexp (Da) | MARK | Database |
---|---|---|---|---|---|---|
Alcalase® | 42.83 | MKKIEAIIRPF (SEQ ID NO: 1) | 1344.8 | 1344.7 | 46 | gi|291569590, nitrogen regulatory protein P-II [Arthrospira platensis NIES-39] |
51.60 | LPPL (SEQ ID NO: 2) | 438.29 | 438.26 | N.P. | Not assignable to a concrete protein | |
52.48 | ALAVGIGSIGPGLGQGQ (SEQ ID NO: 3) | 1493.82 | 1493.67 | 90 | gi|146186464, AtpH [Arthrospira platensis HN01]; gi|355333248, Chain B Microscopic Rotary Mechanism Of Ion Translocation In The F0 Complex Of Atp Synthases; gi|310689674, Chain E Microscopic Rotary Mechanism Of Ion Translocation In The F0 Complex Of Atp Synthases; gi|375325268, ATP synthase subunit C membrane-bound F0 sector; DCCD-binding [Arthrospira sp. PCC 8005] | |
53.79 | TTAASVIAAAL (SEQ ID NO: 4) | 987.56 | 987.44 | 40 | gi|291566395, ATP synthase c chain [Arthrospira platensis NIES-39] | |
54.56 | DFPGDDIPIVS (SEQ ID NO: 5) | 1173.56 | 1173.52 | 40 | gi|119213EFTU_ARTPT, RecName: Full = Elongation factor Tu; Short = EF-Tu | |
54.90 | LELL (SEQ ID NO: 6) | 486.31 | 486.29 | N.P. | Not assignable to a concrete protein | |
48.10 | WKLLP (SEQ ID NO: 7) | 655.40 | Dnovo * | |||
48.97 | CHLLLSM (+15.99) (SEQ ID NO: 8) | 831.40 | Dnovo * | |||
Flavourzyme® | 38.91 | RYLSPGELDRIK (SEQ ID NO: 9) | 1445.8 | 1445.6 | 40 | gi|3914334PHAA_ARTPT, RecName: Full = Allophycocyanin alpha chain |
41.54 | STEIQVAFGR (SEQ ID NO 10) | 1106.57 | 1106.41 | 54 | gi|14549167PHCA_ARTP, RecName: Full = C-phycocyanin alpha chain | |
42.75 | IIKEAGNQLF (SEQ ID NO: 11) | 1131.63 | 1131.40 | 52 | gi|3914334PHAA_ARTPT, RecName: Full = Allophycocyanin alpha chain | |
43.76 | QDAITSVIN (SEQ ID NO: 12) | 959.49 | 959.34 | 36 | gi|3914335APCB_ARTPT, RecName: Full = Allophycocyanin beta chain | |
44.41 | KTPLTEAVSIA (SEQ ID NO: 13) | 1128.64 | 1128.47 | 35 | gi|60390269PHCA_ARTF, RecName: Full = C-phycocyanin alpha chain | |
44.41 | VAPEAATDAAGNLL (SEQ ID NO: 14) | 1311.67 | 1311.44 | 65 | gi|375329456, Rec Name: Hemolysin-type calcium-binding region (fragment) [Arthrospira sp. PCC 8005] | |
46.47 | APEAATDAAGNLL (SEQ ID NO: 15) | 1212.6 | 1212.5 | 78 | gi|375329456, Rec Name: Hemolysin-type calcium-binding region (fragment) [Arthrospira sp. PCC 8005] | |
48.09 | MKTPLTEAVSIA (SEQ ID NO: 16) | 1259.68 | 1259.55 | 40 | gi|60390269PHCA_ARTF, RecName: Full = C-phycocyanin alpha chain | |
59.20 | GAGATFPAPIF (SEQ ID NO: 17) | 1047.49 | 1047.54 | 42 | gi|291565831, putative phosphate ABC transport substrate-binding protein [Arthrospira platensis NIES-39] | |
Ultraflo® | 42.90 | IEEIGVVGVR (SEQ ID NO: 18) | 1069.61 | 1069.54 | 55 | gi|3914334PHAA_ARTPT, RecName: Full = Allophycocyanin alpha chain |
46.90 | EIIAGEILDSR (SEQ ID NO: 19) | 1214.65 | 1214.59 | 41 | gi|291567878, enolase [Arthrospira platensis NIES-39] | |
47.70 | GIVDVPLVGGK (SEQ ID NO: 20) | 1052.62 | 1052.53 | 42 | gi|585303353, phosphoenolpyruvate synthase [Arthrospira sp. PCC 8005] | |
47.70 | VVDIKFPDGKLP (SEQ ID NO:21) | 1326.75 | 1326.78 | 45 | gi|291568724, ATP synthase beta chain [Arthrospira platensis NIES-39] | |
48.08 | DVNETVLDNLPK (SEQ ID NO: 22) | 1355.69 | 1355.57 | 74 | gi|406714893, phosphoenolpyruvate synthase [Arthrospira platensis C1] | |
49.93 | GPPLDIKL (SEQ ID NO: 23) | 851.51 | 851.56 | 30 | gi|495331734, chlorophyll a/b binding light-harvesting protein [Arthrospira sp. PCC 8005] | |
50.90 | IDMPGTWQHL (SEQ ID NO: 24) | 1196.56 | 1196.52 | 44 | gi|291568830, glutamate ammonia ligase, glutamine synthetase type I [Arthrospira platensis NIES-39] | |
58.35 | VEVNVSPDIP (SEQ ID NO: 25) | 1068.53 | 1068.50 | 57 | gi|406711236, hypothetical protein SPLC1_S530280 [Arthrospira platensis C1] | |
66.58 | DSVLFDGNLLP (SEQ ID NO: 26) | 1188.60 | 1188.56 | 42 | gi|809067762, hypothetical protein [Arthrospira sp. TJSD091] | |
Vinoflow® | 37.20 | SNASTIVSNAAR (SEQ ID NO: 27) | 1189.61 | 1189.53 | 95 | gi|37935791, phycocyanin beta subunit, partial [Arthrospira platensis FACHB-439] |
38.60 | IGVVGVR (SEQ ID NO: 28) | 698.44 | 698.48 | 49 | gi|3914334PHAA_ARTPT, RecName: Full = Allophycocyanin alpha chain | |
45.40 | IEEIGVVGVR (SEQ ID NO: 29) | 1069.61 | 1069.71 | 50 | gi|3914334PHAA_ARTPT, RecName: Full = Allophycocyanin alpha chain | |
56.60 | MVAGADDINI (SEQ ID NO: 30) | 1017.48 | 1017.58 | 45 | gi|1119702219, alpha/beta hydrolase [Arthrospira platensis major] | |
56.60 | DGAVLPILHLN (SEQ ID NO: 31) | 1160.66 | 1160.59 | 41 | gi|291570193, probable phosphoketolase [Arthrospira platensis NIES-39] | |
Control | 42.46 | NGDPFVGHL (SEQ ID NO: 83) | 954.46 | 954.46 | 43 | gi|291569436, photosystem I reaction center subunit XI [Arthrospira platensis NIES-39] |
49.82 | VFETGIKVVDL (SEQ ID NO: 84) | 1218.69 | 1218.64 | 53 | gi|291568724, ATP synthase beta chain [Arthrospira platensis NIES-39] | |
49.83 | DFFVDKL (SEQ ID NO: 85) | 882.45 | 882.43 | 42 | gi|291571801, phosphoenolpyruvate synthase [Arthrospira platensis NIES-39] | |
50.10 | GPPLDIKL (SEQ ID NO: 86) | 851.51 | 851.48 | 37 | gi|291565679, iron-stress induced chlorophyll-binding protein [Arthrospira platensis NIES-39] | |
50.50 | DVNETVLDNLPKTRTQI (SEQ ID NO: 87) | 1955.03 | 1954.97 | 41 | gi|209495148, phosphoenolpyruvate synthase [Arthrospira maxima CS-328] | |
53.41 | DVNETVLDNLP (SEQ ID NO: 88) | 1227.6 | 1227.5 | 73 | gi|209495148, phosphoenolpyruvate synthase [Arthrospira maxima CS-328] | |
56.10 | DSLISGAAQAVY (SEQ ID NO: 89) | 1193.59 | 1193.59 | 37 | gi|10302997, phycocyanin alpha subunit, partial [Arthrospira sp. Paracas P2] | |
57.09 | GIGNDPLEIQF (SEQ ID NO: 90) | 1201.6 | 1201.6 | 57 | gi|291565650, phycobilisome core-membrane linker polypeptide [Arthrospira platensis NIES-39] | |
57.76 | GLILLPHLATL (SEQ ID NO: 91) | 1159.73 | 1159.62 | 46 | gi|495331734, chlorophyll a/b binding light-harvesting protein [Arthrospira sp. PCC 8005] | |
58.80 | GLILLPHLA (SEQ ID NO: 92) | 945.6 | 945.6 | 39 | gi|291565679, iron-stress induced chlorophyll-binding protein [Arthrospira platensis NIES-39] | |
58.90 | AVLGAGALFHTF (SEQ ID NO: 93) | 1202.64 | 1202.68 | 45 | gi|291565679, iron-stress induced chlorophyll-binding protein [Arthrospira platensis NIES-39] | |
60.60 | DVNETVLDNLP (SEQ ID NO: 94) | 1227.6 | 1227.6 | 59 | gi|209495148, phosphoenolpyruvate synthase [Arthrospira maxima CS-328] |
Extract | |||||
---|---|---|---|---|---|
Control | Alcalase® | Flavourzyme® | Ultraflo® | Vinoflow® | |
Toxic Elements | (ppm) | ||||
Hg | - | - | - | - | 0.1 |
Cd | 0.1 | 0.1 | 0.1 | 0.4 | 0.2 |
As | 3.0 | 0.7 | 0.4 | 2.1 | 1.1 |
Ni | 2.9 | 0.7 | - | - | - |
Trace Elements | (ppm) | ||||
K | 33,037 | 12,737 | 14,241 | 19,150 | 11,916 |
Mg | 3177 | 1581 | 1362 | 2258 | 1625 |
Mn | 11.7 | 5.91 | 4.6 | 7.1 | 8.3 |
Ca | 1576 | 515 | 312 | 442 | 250 |
Cu | 2.7 | 0.9 | 0.6 | - | 0.4 |
Fe | 4.2 | 8.0 | 13 | 5.0 | 9.1 |
Se | - | - | - | 3.0 | - |
Zn | - | 11 | 25 | - | 7.6 |
IC50 (mg/mL) | A Extracted * (mL) | A/A Control ** | |
---|---|---|---|
Alcalase® (protease) | 0.050 ± 0.006 | 7.3 ± 0.9 | 7.3 |
Flavourzyme® (protease) | 0.236 ± 0.012 | 1.3 ± 0.1 | 1.3 |
Ultraflo® (endoglucanase) | 0.178 ± 0.029 | 1.1 ± 0.2 | 1.1 |
Vinoflow® (exoglucanase) | 0.404 ± 0.029 | 0.7 ± 0.0 | 0.7 |
Control (without enzyme) | 0.189 ± 0.028 | 1.0 ± 0.2 | 1.0 |
In Vitro Inhibitory Activity of Pig Pancreatic Lipase | |||||
---|---|---|---|---|---|
Enzyme | A (Δabs/s) a | Inhibition (%) | Aextract (Δabs x L/s. g Extract) | Aextracted (Δabs x L/s. g Biomass) b | A/A Control c |
Without Inhibitor | 0.368 ± 0.008 | - | - | - | - |
Alcalase® (protease) | 0.256 ± 0.007 | 30.3 ± 1.9 | 0.149 ± 0.019 | 54.5 ± 6.8 | 106 |
Flavourzyme® (protease) | 0.254 ± 0.008 | 31.1 ± 2.1 | 0.152 ± 0.020 | 48.3 ± 6.4 | 94 |
Ultraflo® (endoglucanase) | 0.282 ± 0.003 | 20.7 ± 0.7 | 0.115 ± 0.013 | 22.6 ± 2.6 | 44 |
Vinoflow® (exoglucanase) | 0.304 ± 0.009 | 17.5 ± 2.2 | 0.085 ± 0.021 | 22.4 ± 5.6 | 44 |
Control (without enzyme) | 0.366 ± 0.012 | 0.5 ± 3.0 | 0.003 ± 0.011 | 0.5 ± 2.1 | 1 |
In Vitro Inhibitory Activity of Cholesterol Esterase | |||||
Without Inhibitor | 0.515 ± 0.007 | - | - | - | - |
Alcalase® (protease) | 0.432 ± 0.006 | 16.0 ± 1.2 | 1.11 ± 0.17 | 0.404 ± 0.063 | 26 |
Flavourzyme® (protease) | 0.439 ± 0.008 | 14.7 ± 1.6 | 1.01 ± 0.20 | 0.322 ± 0.064 | 21 |
Ultraflo® (endoglucanase) | 0.491 ± 0.006 | 4.5 ± 1.2 | 0.32 ± 0.17 | 0.063 ± 0.034 | 4 |
Vinoflow® (exoglucanase) | 0.452 ± 0.011 | 12.2 ± 2.1 | 0.84 ± 0.24 | 0.221 ± 0.063 | 14 |
Control (without enzyme) | 0.509 ± 0.006 | 1.0 ± 1.2 | 0.08 ± 0.17 | 0.015 ± 0.033 | 1 |
Enzyme | ABTS | ORAC a | ||||
---|---|---|---|---|---|---|
Extract | Total Extracted | R c | Extract | Total Extracted | R c | |
TEAC (µmol/g Extract) | TEAC (µmol/g Biomass) b | TEAC (µmol/g Extract) | TEAC (µmol/g Biomass) b | |||
Alcalase® (protease) | 19.7 ± 0.5 | 7.19 ± 0.18 | 1.5 | 462 ± 19 | 169 ± 7 | 4.4 |
Flavourzyme® (protease) | 15.5 ± 0.5 | 4.93 ± 0.16 | 1.0 | 325 ± 14 | 107 ± 4 | 2.8 |
Ultraflo® (endoglucanase) | 24.1 ± 0.6 | 4.75 ± 0.12 | 1.0 | 269 ± 12 | 53 ± 2 | 1.4 |
Vinoflow® (exoglucanase) | 16.4 ± 0.6 | 4.31 ± 0.16 | 0.9 | 260 ± 5 | 68 ± 1 | 1.8 |
Control (without enzyme) | 23.4 ± 0.9 | 4.78 ± 0.12 | 1.0 | 199 ± 16 | 38 ± 3 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otero, C.; Verdasco-Martín, C.M. Preparation and Characterization of a Multicomponent Arthrospira platensis Biomass Hydrolysate with Superior Anti-Hypertensive, Anti-Hyperlipidemic and Antioxidant Activities via Selective Proteolysis. Mar. Drugs 2023, 21, 255. https://doi.org/10.3390/md21040255
Otero C, Verdasco-Martín CM. Preparation and Characterization of a Multicomponent Arthrospira platensis Biomass Hydrolysate with Superior Anti-Hypertensive, Anti-Hyperlipidemic and Antioxidant Activities via Selective Proteolysis. Marine Drugs. 2023; 21(4):255. https://doi.org/10.3390/md21040255
Chicago/Turabian StyleOtero, Cristina, and Carlos M. Verdasco-Martín. 2023. "Preparation and Characterization of a Multicomponent Arthrospira platensis Biomass Hydrolysate with Superior Anti-Hypertensive, Anti-Hyperlipidemic and Antioxidant Activities via Selective Proteolysis" Marine Drugs 21, no. 4: 255. https://doi.org/10.3390/md21040255
APA StyleOtero, C., & Verdasco-Martín, C. M. (2023). Preparation and Characterization of a Multicomponent Arthrospira platensis Biomass Hydrolysate with Superior Anti-Hypertensive, Anti-Hyperlipidemic and Antioxidant Activities via Selective Proteolysis. Marine Drugs, 21(4), 255. https://doi.org/10.3390/md21040255