Peptidomics Analysis Reveals the Buccal Gland of Jawless Vertebrate Lamprey as a Source of Multiple Bioactive Peptides
Abstract
:1. Introduction
2. Results
2.1. Identification of Endogenous Peptides from the Buccal Gland of Lamprey Using Peptidomics Analysis and Bioinformatics Analysis
2.2. In Silico Identification and Synthesis of Candidate Bioactive Functional Peptides
2.3. Validation of the Bioactivity of Potential Anti-Inflammatory Peptides
2.4. Validation of the Bioactivity of the Potential Antimicrobial Peptide
2.5. Validation of the Bioactivity of the Potential ACE Inhibitory Peptide
3. Discussion
4. Materials and Methods
4.1. Experimental Animals and Sample Collection
4.2. Peptide Extraction
4.3. NanoLC-MS/MS Analysis and Database Search
4.4. Bioinformatics Analysis
4.5. Bioactive Peptide Prediction
4.6. Peptides Synthesis
4.7. Cell Culture and Treatment
4.8. Real-Time Quantitative PCR
4.9. Western Blotting
4.10. Minimal Inhibitory Concentrations (MIC)
4.11. Confocal Laser-Scanning Microscopy
4.12. ACE Inhibitory Activity
4.13. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Junren, C.; Xiaofang, X.; Huiqiong, Z.; Gangmin, L.; Yanpeng, Y.; Xiaoyu, C.; Yuqing, G.; Yanan, L.; Yue, Z.; Fu, P.; et al. Pharmacological Activities and Mechanisms of Hirudin and Its Derivatives—A Review. Front. Pharmacol. 2021, 12, 660757. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, H.; Liu, X.; Wu, X. Purification and Cloning of a Novel Antimicrobial Peptide from Salivary Glands of the Hard Tick, Ixodes sinensis. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2008, 149, 557–561. [Google Scholar] [CrossRef]
- Yu, D.; Sheng, Z.; Xu, X.; Li, J.; Yang, H.; Liu, Z.; Rees, H.H.; Lai, R. A Novel Antimicrobial Peptide from Salivary Glands of the Hard Tick, Ixodes sinensis. Peptides 2006, 27, 31–35. [Google Scholar] [CrossRef]
- Pichu, S.; Ribeiro, J.M.C.; Mather, T.N. Purification and Characterization of a Novel Salivary Antimicrobial Peptide from the Tick, Ixodes scapularis. Biochem. Biophys. Res. Commun. 2009, 390, 511–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Zhang, W.; Wang, X.; Zhou, Y.; Wang, N.; Zhou, J. Identification of a Cysteine-Rich Antimicrobial Peptide from Salivary Glands of the Tick Rhipicephalus haemaphysaloides. Peptides 2011, 32, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Che, Q.; Lv, Y.; Wang, M.; Lu, Z.; Feng, F.; Liu, J.; Yu, H. A Novel Defensin-like Peptide from Salivary Glands of the Hard Tick, Haemaphysalis longicornis. Protein Sci. 2010, 19, 392–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Y.; Chen, W.; Mo, G.; Chen, R.; Fang, M.; Yedid, G.; Yan, X. An Immunosuppressant Peptide from the Hard Tick Ablyomma variegatum. Toxins 2016, 8, 133. [Google Scholar] [CrossRef] [Green Version]
- Takác, P.; Nunn, M.A.; Mészáros, J.; Pechánová, O.; Vrbjar, N.; Vlasáková, P.; Kozánek, M.; Kazimírová, M.; Hart, G.; Nuttall, P.A.; et al. Vasotab, a Vasoactive Peptide from Horse Fly Hybomitra bimaculata (Diptera, Tabanidae) Salivary Glands. J. Exp. Biol. 2006, 209, 343–352. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Gao, L.; Shen, C.; Rong, M.; Yan, X.; Lai, R. A Potent Anti-Thrombosis Peptide (Vasotab TY) from Horsefly Salivary Glands. Int. J. Biochem. Cell. Biol. 2014, 54, 83–88. [Google Scholar] [CrossRef]
- Xu, X.; Yang, H.; Ma, D.; Wu, J.; Wang, Y.; Song, Y.; Wang, X.; Lu, Y.; Yang, J.; Lai, R. Toward an Understanding of the Molecular Mechanism for Successful Blood Feeding by Coupling Proteomics Analysis with Pharmacological Testing of Horsefly Salivary Glands. Mol. Cell. Proteom. 2008, 7, 582–590. [Google Scholar] [CrossRef] [Green Version]
- Lara, P.G.; Esteves, E.; Sales-Campos, H.; Assis, J.B.; Henrique, M.O.; Barros, M.S.; Neto, L.S.; Silva, P.I.; Martins, J.O.; Cardoso, C.R.B.; et al. AeMOPE-1, a Novel Salivary Peptide From Aedes Aegypti, Selectively Modulates Activation of Murine Macrophages and Ameliorates Experimental Colitis. Front. Immunol. 2021, 12, 681671. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.-H.; Chen, Y.; Bai, X.-W.; Yao, H.-M.; Zhang, X.-G.; Yan, X.-W.; Lai, R. Identification and Characterization of a Novel Neuropeptide (Neuropeptide Y-HS) from Leech Salivary Gland of Haemadipsa sylvestris. Chin. J. Nat. Med. 2016, 14, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Birceanu, O.; Ferreira, P.; Neal, J.; Sunga, J.; Anthony, S.; Davidson, S.M.; Edwards, S.L.; Wilson, J.M.; Youson, J.H.; Vijayan, M.M.; et al. Divergent Pathways of Ammonia and Urea Production and Excretion during the Life Cycle of the Sea Lamprey. Physiol. Biochem. Zool. 2022, 95, 551–567. [Google Scholar] [CrossRef]
- Xiao, R.; Pang, Y.; Li, Q.W. The Buccal Gland of Lampetra japonica Is a Source of Diverse Bioactive Proteins. Biochimie 2012, 94, 1075–1079. [Google Scholar] [CrossRef]
- Wang, J.; Han, X.; Yang, H.; Lu, L.; Wu, Y.; Liu, X.; Guo, R.; Zhang, Y.; Zhang, Y.; Li, Q. A Novel RGD-Toxin Protein, Lj-RGD3, from the Buccal Gland Secretion of Lampetra japonica Impacts Diverse Biological Activities. Biochimie 2010, 92, 1387–1396. [Google Scholar] [CrossRef]
- Xue, Z.; Bai, J.; Sun, J.; Wu, Y.; Yu, S.Y.; Guo, R.Y.; Liu, X.; Li, Q.W. Novel Neutrophil Inhibitory Factor Homologue in the Buccal Gland Secretion of Lampetra japonica. Biol. Chem. 2011, 392, 609–616. [Google Scholar] [CrossRef]
- Jiang, Q.; Liu, Y.; Duan, D.; Gou, M.; Wang, H.; Wang, J.; Li, Q.; Xiao, R. Anti-Angiogenic Activities of CRBGP from Buccal Glands of Lampreys (Lampetra japonica). Biochimie 2016, 123, 7–19. [Google Scholar] [CrossRef]
- Sun, J.; Liu, X.; Li, Q. Molecular Cloning, Expression and Antioxidant Activity of a Peroxiredoxin 2 Homologue from Lampera japonica. Fish Shellfish Immunol. 2010, 28, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wu, Y.; Wang, J.; Ma, F.; Liu, X.; Li, Q. Novel Translationally Controlled Tumor Protein Homologue in the Buccal Gland Secretion of Lampetra japonica. Biochimie 2008, 90, 1760–1768. [Google Scholar] [CrossRef]
- Baggerman, G.; Verleyen, P.; Clynen, E.; Huybrechts, J.; De Loof, A.; Schoofs, L. Peptidomics. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2004, 803, 3–16. [Google Scholar] [CrossRef]
- Schrader, M. Origins, Technological Development, and Applications of Peptidomics. Methods Mol. Biol. 2018, 1719, 3–39. [Google Scholar] [CrossRef] [PubMed]
- Agyei, D.; Tsopmo, A.; Udenigwe, C.C. Bioinformatics and Peptidomics Approaches to the Discovery and Analysis of Food-Derived Bioactive Peptides. Anal. Bioanal. Chem. 2018, 410, 3463–3472. [Google Scholar] [CrossRef] [PubMed]
- Conlon, J.M.; Mechkarska, M.; Leprince, J. Peptidomic Analysis in the Discovery of Therapeutically Valuable Peptides in Amphibian Skin Secretions. Expert Rev. Proteom. 2019, 16, 897–908. [Google Scholar] [CrossRef] [PubMed]
- Trindade, F.; Barros, A.S.; Silva, J.; Vlahou, A.; Falcão-Pires, I.; Guedes, S.; Vitorino, C.; Ferreira, R.; Leite-Moreira, A.; Amado, F.; et al. Mining the Biomarker Potential of the Urine Peptidome: From Amino Acids Properties to Proteases. Int. J. Mol. Sci. 2021, 22, 5940. [Google Scholar] [CrossRef]
- Montinari, M.R.; Minelli, S. From Ancient Leech to Direct Thrombin Inhibitors and beyond: New from Old. Biomed. Pharmacother. 2022, 149, 112878. [Google Scholar] [CrossRef]
- Denisov, S.S.; Dijkgraaf, I. Immunomodulatory Proteins in Tick Saliva from a Structural Perspective. Front. Cell. Infect. Microbiol. 2021, 11, 769574. [Google Scholar] [CrossRef]
- Li, B.; Gou, M.; Han, J.; Yuan, X.; Li, Y.; Li, T.; Jiang, Q.; Xiao, R.; Li, Q. Proteomic Analysis of Buccal Gland Secretion from Fasting and Feeding Lampreys (Lampetra morii). Proteome Sci. 2018, 16, 9. [Google Scholar] [CrossRef] [Green Version]
- Gou, M.; Duan, X.; Li, J.; Wang, Y.; Li, Q.; Pang, Y.; Dong, Y. How Do Vampires Suck Blood? bioRxiv 2022. [Google Scholar] [CrossRef]
- Chen, J.; Cao, D.; Jiang, S.; Liu, X.; Pan, W.; Cui, H.; Yang, W.; Liu, Z.; Jin, J.; Zhao, Z. Triterpenoid Saponins from Ilex Pubescens Promote Blood Circulation in Blood Stasis Syndrome by Regulating Sphingolipid Metabolism and the PI3K/AKT/ENOS Signaling Pathway. Phytomedicine 2022, 104, 154242. [Google Scholar] [CrossRef]
- Dandamudi, A.; Akbar, H.; Cancelas, J.; Zheng, Y. Rho GTPase Signaling in Platelet Regulation and Implication for Antiplatelet Therapies. Int. J. Mol. Sci. 2023, 24, 2519. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, J.; Fan, W.; Geng, Y.; Huang, X.; Ouyang, P.; Chen, D.; Guo, H.; Deng, H.; Lai, W.; et al. Integrated Bioinformatics Identifies Key Mediators in Cytokine Storm and Tissue Remodeling during Vibrio Mimicus Infection in Yellow Catfish (Pelteobagrus fulvidraco). Front. Immunol. 2023, 14, 1172849. [Google Scholar] [CrossRef] [PubMed]
- Grafskaia, E.N.; Nadezhdin, K.D.; Talyzina, I.A.; Polina, N.F.; Podgorny, O.V.; Pavlova, E.R.; Bashkirov, P.V.; Kharlampieva, D.D.; Bobrovsky, P.A.; Latsis, I.A.; et al. Medicinal Leech Antimicrobial Peptides Lacking Toxicity Represent a Promising Alternative Strategy to Combat Antibiotic-Resistant Pathogens. Eur. J. Med. Chem. 2019, 180, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Helbing, C.C.; Hammond, S.A.; Jackman, S.H.; Houston, S.; Warren, R.L.; Cameron, C.E.; Birol, I. Antimicrobial Peptides from Rana [Lithobates] catesbeiana: Gene Structure and Bioinformatic Identification of Novel Forms from Tadpoles. Sci. Rep. 2019, 9, 1529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, I.-W.; Lee, J.H.; Subramaniyam, S.; Yun, E.-Y.; Kim, I.; Park, J.; Hwang, J.S. De Novo Transcriptome Analysis and Detection of Antimicrobial Peptides of the American Cockroach Periplaneta americana (Linnaeus). PLoS ONE 2016, 11, e0155304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Z.; Shi, P.; You, H.; Liu, Y.; Chen, S. Transcriptomic Analysis of the Salivary Gland of Medicinal Leech Hirudo nipponia. PLoS ONE 2018, 13, e0205875. [Google Scholar] [CrossRef]
- Han, J.; Pang, X.; Zhang, Y.; Peng, Z.; Shi, X.; Xing, Y. Hirudin Protects Against Kidney Damage in Streptozotocin-Induced Diabetic Nephropathy Rats by Inhibiting Inflammation via P38 MAPK/NF-ΚB Pathway. Drug. Des. Devel. Ther. 2020, 14, 3223–3234. [Google Scholar] [CrossRef]
- Chlastáková, A.; Kaščáková, B.; Kotál, J.; Langhansová, H.; Kotsyfakis, M.; Kutá Smatanová, I.; Tirloni, L.; Chmelař, J. Iripin-1, a New Anti-Inflammatory Tick Serpin, Inhibits Leukocyte Recruitment in Vivo While Altering the Levels of Chemokines and Adhesion Molecules. Front. Immunol. 2023, 14, 1116324. [Google Scholar] [CrossRef]
- Wang, D.; Gou, M.; Hou, J.; Pang, Y.; Li, Q. The Role of Serpin Protein on the Natural Immune Defense against Pathogen Infection in Lampetra japonica. Fish Shellfish Immunol. 2019, 92, 196–208. [Google Scholar] [CrossRef]
- Vorstenbosch, J.; Gallant-Behm, C.; Trzeciak, A.; Roy, S.; Mustoe, T.; Philip, A. Transgenic Mice Overexpressing CD109 in the Epidermis Display Decreased Inflammation and Granulation Tissue and Improved Collagen Architecture during Wound Healing. Wound Repair. Regen. 2013, 21, 235–246. [Google Scholar] [CrossRef]
- Winocour, S.; Vorstenbosch, J.; Trzeciak, A.; Lessard, L.; Philip, A. CD109, a Novel TGF-β Antagonist, Decreases Fibrotic Responses in a Hypoxic Wound Model. Exp. Dermatol. 2014, 23, 475–479. [Google Scholar] [CrossRef]
- Vorstenbosch, J.; Nguyen, C.M.; Zhou, S.; Seo, Y.J.; Siblini, A.; Finnson, K.W.; Bizet, A.A.; Tran, S.D.; Philip, A. Overexpression of CD109 in the Epidermis Differentially Regulates ALK1 Versus ALK5 Signaling and Modulates Extracellular Matrix Synthesis in the Skin. J. Investig. Dermatol. 2017, 137, 641–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurdyumov, A.S.; Manuvera, V.A.; Baskova, I.P.; Lazarev, V.N. A Comparison of the Enzymatic Properties of Three Recombinant Isoforms of Thrombolytic and Antibacterial Protein--Destabilase-Lysozyme from Medicinal Leech. BMC Biochem. 2015, 16, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.; Sharma, A.K.; Shastri, V.; Madhu, M.K.; Sharma, V.K. Prediction of Anti-Inflammatory Proteins/Peptides: An Insilico Approach. J. Transl. Med. 2017, 15, 7. [Google Scholar] [CrossRef] [Green Version]
- Manavalan, B.; Shin, T.H.; Kim, M.O.; Lee, G. AIPpred: Sequence-Based Prediction of Anti-Inflammatory Peptides Using Random Forest. Front. Pharmacol. 2018, 9, 276. [Google Scholar] [CrossRef] [Green Version]
- Khatun, M.S.; Hasan, M.M.; Kurata, H. PreAIP: Computational Prediction of Anti-Inflammatory Peptides by Integrating Multiple Complementary Features. Front. Genet. 2019, 10, 129. [Google Scholar] [CrossRef] [Green Version]
- Gawde, U.; Chakraborty, S.; Waghu, F.H.; Barai, R.S.; Khanderkar, A.; Indraguru, R.; Shirsat, T.; Idicula-Thomas, S. CAMPR4: A Database of Natural and Synthetic Antimicrobial Peptides. Nucleic Acids Res. 2023, 51, D377–D383. [Google Scholar] [CrossRef]
- Veltri, D.; Kamath, U.; Shehu, A. Deep Learning Improves Antimicrobial Peptide Recognition. Bioinformatics 2018, 34, 2740–2747. [Google Scholar] [CrossRef] [Green Version]
- Burdukiewicz, M.; Sidorczuk, K.; Rafacz, D.; Pietluch, F.; Chilimoniuk, J.; Rödiger, S.; Gagat, P. Proteomic Screening for Prediction and Design of Antimicrobial Peptides with AmpGram. Int. J. Mol. Sci. 2020, 21, 4310. [Google Scholar] [CrossRef] [PubMed]
- Coscueta, E.R.; Batista, P.; Gomes, J.E.G.; da Silva, R.; Pintado, M.M. Screening of Novel Bioactive Peptides from Goat Casein: In Silico to In Vitro Validation. Int. J. Mol. Sci. 2022, 23, 2439. [Google Scholar] [CrossRef]
- Minkiewicz, P.; Iwaniak, A.; Darewicz, M. BIOPEP-UWM Database of Bioactive Peptides: Current Opportunities. Int. J. Mol. Sci. 2019, 20, 5978. [Google Scholar] [CrossRef] [Green Version]
- Manavalan, B.; Basith, S.; Shin, T.H.; Wei, L.; Lee, G. MAHTPred: A Sequence-Based Meta-Predictor for Improving the Prediction of Anti-Hypertensive Peptides Using Effective Feature Representation. Bioinformatics 2019, 35, 2757–2765. [Google Scholar] [CrossRef] [PubMed]
Peptides | Precursor Protein | <10 aa | 10–15 aa | >15 aa |
---|---|---|---|---|
4528 | 1224 | 4306 | 179 | 43 |
Bioactivity Prediction | Website | Accesse Date | Selection Standard |
---|---|---|---|
Anti-inflammatory peptide prediction: | |||
AntiInflam | http://metagenomics.iiserb.ac.in/antiinflam/ | 26 October 2022 | >0.5 |
AIPpred | http://www.thegleelab.org/AIPpred/ | 27 October 2022 | >0.36 |
PreAIP | http://kurata14.bio.kyutech.ac.jp/PreAIP/ | 27 October 2022 | Score ≥ 0.468 High Confidence 0.468 > Score ≥ 0.388 Medium Confidence 0.388 > Score ≤ 0.342 Low Confidence |
Antimicrobial peptide prediction: | |||
CAMPR4 | http://camp.bicnirrh.res.in/ | 23 October 2022 | ≥0.5 |
Antimicrobial Peptide Scanner vr.2 | https://dveltri.com/ascan/v2/ascan.html | 22 October 2022 | >0.5 |
AmpGram | http://biongram.biotech.uni.wroc.pl/AmpGram/ | 24 October 2022 | >0.5 |
ACE inhibitory peptide prediction: | |||
BIOPEP-UWM | https://biochemia.uwm.edu.pl/biopep-uwm/ | 6 November 2022 | ACE inhibition positive |
AHTpin | https://webs.iiitd.edu.in/raghava/ahtpin/ | 7 November 2022 | >0.0 |
mAHTPred | http://thegleelab.org/mAHTPred | 7 November 2022 | >0.44 |
Gene Name | Forward Primers (5′-3′) | Reverse Primers (5′-3′) |
---|---|---|
TNF-α | AAGGACACCATGAGCACTGAAAGC | AGGAAGGAGAAGAGGCTGAGGAAC |
IL-1β | GGACAGGATATGGAGCAACAAGTGG | TCATCTTTCAACACGCAGGACAGG |
TGF-β | TATTGAGCACCTTGGGCACTGTTG | CCTTAACCTCTCTGGGCTTGTTTCC |
IL-10 | GCCGTGGAGCAGGTGAAGAATG | ATAGAGTCGCCACCCTGATGTCTC |
MCP-1 | GGCTGAGACTAACCCAGAAACATCC | GGGAATGAAGGTGGCTGCTATGAG |
β-actin | CAGATGTGGATCAGCAAGCAGGAG | CGCAACTAAGTCATAGTCCGCCTAG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Sun, F.; Wang, Z.; Duan, X.; Li, Q.; Pang, Y.; Gou, M. Peptidomics Analysis Reveals the Buccal Gland of Jawless Vertebrate Lamprey as a Source of Multiple Bioactive Peptides. Mar. Drugs 2023, 21, 389. https://doi.org/10.3390/md21070389
Wang Y, Sun F, Wang Z, Duan X, Li Q, Pang Y, Gou M. Peptidomics Analysis Reveals the Buccal Gland of Jawless Vertebrate Lamprey as a Source of Multiple Bioactive Peptides. Marine Drugs. 2023; 21(7):389. https://doi.org/10.3390/md21070389
Chicago/Turabian StyleWang, Yaocen, Feng Sun, Zhuoying Wang, Xuyuan Duan, Qingwei Li, Yue Pang, and Meng Gou. 2023. "Peptidomics Analysis Reveals the Buccal Gland of Jawless Vertebrate Lamprey as a Source of Multiple Bioactive Peptides" Marine Drugs 21, no. 7: 389. https://doi.org/10.3390/md21070389
APA StyleWang, Y., Sun, F., Wang, Z., Duan, X., Li, Q., Pang, Y., & Gou, M. (2023). Peptidomics Analysis Reveals the Buccal Gland of Jawless Vertebrate Lamprey as a Source of Multiple Bioactive Peptides. Marine Drugs, 21(7), 389. https://doi.org/10.3390/md21070389