Overview and Challenges of Large-Scale Cultivation of Photosynthetic Microalgae and Cyanobacteria
Abstract
:1. Why Cultivate Microalgae and Cyanobacteria?
1.1. Age of Algae and Novel Compounds
1.2. Microalgae for Production of Aquaculture as Live Feed and Feed Ingredient
1.3. Bioremediation
2. Species Selection
2.1. Genetic Modification
2.1.1. Genetic Adaption of Cells for Mass Production
2.1.2. Engineering to Increase Chemical Composition and Yield
2.2. Genetic Engineering to Increase Growth under Limiting Conditions
3. Three Most Common Ways of Large-Scale Cultivation
3.1. Ponds
3.2. Photobioreactors for Photosynthetic Algae and Cyanobacteria
3.2.1. Tubular Photobioreactors
3.2.2. Column Photobioreactors
3.2.3. Indoor Production in Open Containers
3.3. Biofilms
4. Water and Nutrient Sources
4.1. Seawater as Growth Medium
4.2. Use of Agricultural Fertilizers as Nutrient Source in Microalgal Production
4.3. Use of Wastewater as a Nutrient Source
5. Temperature Regulations
5.1. Outdoor Temperature and Climate
5.2. Indoor Temperature and Conditions
6. Light Availability and Mixing
7. Monitoring
8. Production Modes
9. Contamination
9.1. Likelihood of Contamination
9.2. Sterilization of Medium
9.3. Cultivation of Polyculture and Consortia
10. Harvesting and Dewatering
10.1. Summary of Harvesting Methods
10.2. Milking Microalgae
10.3. Harvesting Biofilms
10.4. Utilization of Biomass without Harvesting
11. Environmental Risks of Large-Scale Cultivation
12. Challenges of Large-Scale Cultivation
13. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guiry, M.D. How Many Species of Algae Are There? J. Phycol. 2012, 48, 1057–1063. [Google Scholar] [CrossRef] [PubMed]
- Ambati, R.R.; Gogisetty, D.; Aswathanarayana, R.G.; Ravi, S.; Bikkina, P.N.; Bo, L.; Yuepeng, S. Industrial Potential of Carotenoid Pigments from Microalgae: Current Trends and Future Prospects. Crit. Rev. Food Sci. Nutr. 2019, 59, 1880–1902. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.K.; Das, A.; Kumari, R.; Kajla, S. Recent Progress and Challenges in CRISPR-Cas9 Engineered Algae and Cyanobacteria. Algal Res. 2023, 71, 103068. [Google Scholar] [CrossRef]
- Vernès, L.; Li, Y.; Chemat, F.; Abert-Vian, M. Biorefinery Concept as a Key for Sustainable Future to Green Chemistry—The Case of Microalgae. In Plant Based “GreenChemistry 2.0”. Green Chemistry and Sustainable Technology; Li, Y., Chemat, F., Eds.; Springer: Singapore, 2019; pp. 15–50. [Google Scholar]
- Siddik, M.A.B.; Sørensen, M.; Islam, S.M.M.; Saha, N.; Rahman, M.A.; Francis, D.S. Expanded Utilisation of Microalgae in Global Aquafeeds. Rev. Aquac. 2023. [Google Scholar] [CrossRef]
- Iwamoto, K.; Shiraiwa, Y. Characterization of Intracellular Iodine Accumulation by Iodine-Tolerant Microalgae. Procedia Environ. Sci. 2012, 15, 34–42. [Google Scholar] [CrossRef] [Green Version]
- EC Blue Bioeconomy—Towards a Strong and Sustainable EU Algae Sector. Available online: https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12780-Blue-bioeconomy-towards-a-strong-and-sustainable-EU-algae-sector_en (accessed on 30 June 2023).
- Fredriksson, S.; Elwinger, K.; Pickova, J. Fatty Acid and Carotenoid Composition of Egg Yolk as an Effect of Microalgae Addition to Feed Formula for Laying Hens. Food Chem. 2006, 99, 530–537. [Google Scholar] [CrossRef]
- Glencross, B.D.; Huyben, D.; Schrama, J.W. The Application of Single-Cell Ingredients in Aquaculture Feeds—A Review. Fishes 2020, 5, 22. [Google Scholar] [CrossRef]
- Muller-Feuga, A. Microalgae for Aquaculture: The Current Global Situation and Future Trends. In Handbook of Microalgal Culture: Applied Phycology and Biotechnology; Wiley: Hoboken, NJ, USA, 2013; pp. 615–627. ISBN 9781118567166. [Google Scholar]
- Nielsen, R.; Nielsen, M.; Abate, T.G.; Hansen, B.W.; Jepsen, P.M.; Nielsen, S.L.; Støttrup, J.G.; Buchmann, K. The Importance of Live-Feed Traps—Farming Marine Fish Species. Aquac. Res. 2017, 48, 2623–2641. [Google Scholar] [CrossRef]
- Van der Meeren, T.; Olsen, R.; Hamre, K.; Fyhn, H.J. Biochemical Composition of Copepods for Evaluation of Feed Quality in Production of Juvenile Marine Fish. Aquaculture 2008, 274, 375–397. [Google Scholar] [CrossRef] [Green Version]
- Vu, M.T.T.; Douëtte, C.; Rayner, T.A.; Thoisen, C.; Nielsen, S.L.; Hansen, B.W. Optimization of Photosynthesis, Growth, and Biochemical Composition of the Microalga Rhodomonas Salina—An Established Diet for Live Feed Copepods in Aquaculture. J. Appl. Phycol. 2016, 28, 1485–1500. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.R. Nutritional Value and Use of Microalgae in Aquaculture. In Proceedings of the Avances en Nutrición Acuícola VI, Memorias del VI Simposium Internacional de Nutrición Acuícola, Cancún, Mexico, 3–6 September 2002. [Google Scholar]
- Oren, A. A Hundred Years of Dunaliella Research: 1905–2005. Saline Syst. 2005, 1, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pisal, D.S.; Lele, S.S. Carotenoid Production from Microalga, Dunaliella Salina. Indian J. Biotechnol. 2005, 4, 476–483. [Google Scholar]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial Applications of Microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guedes, A.C.; Amaro, H.M.; Malcata, F.X. Microalgae as Sources of High Added-Value Compounds—A Brief Review of Recent Work. Biotechnol. Prog. 2011, 27, 597–613. [Google Scholar] [CrossRef] [PubMed]
- Adissin, T.O.O.; Manabu, I.; Shunsuke, K.; Saichiro, Y.; Moss, A.S.; Dossou, S. Effects of Dietary Nannochloropsis Sp. Powder and Lipids on the Growth Performance and Fatty Acid Composition of Larval and Postlarval Kuruma Shrimp, Marsupenaeus Japonicus. Aquac. Nutr. 2020, 26, 186–200. [Google Scholar] [CrossRef]
- Gbadamosi, O.; Lupatsch, I. Effects of Dietary Nannochloropsis Salina on the Nutritional Performance and Fatty Acid Profile of Nile Tilapia, Oreochromis Niloticus. Algal Res. 2018, 33, 48–54. [Google Scholar] [CrossRef]
- Li, K.; Liu, Q.; Fang, F.; Luo, R.; Lu, Q.; Zhou, W.; Huo, S.; Cheng, P.; Liu, J.; Addy, M.; et al. Microalgae-Based Wastewater Treatment for Nutrients Recovery: A Review. Bioresour. Technol. 2019, 291, 121934. [Google Scholar]
- Butler, E.; Hung, Y.T.; Suleiman Al Ahmad, M.; Yeh, R.Y.L.; Liu, R.L.H.; Fu, Y.P. Oxidation Pond for Municipal Wastewater Treatment. Appl. Water Sci. 2017, 7, 31–51. [Google Scholar] [CrossRef] [Green Version]
- Novoveská, L.; Zapata, A.; Zabolotney, J.; Atwood, M.; Sundstrom, E. Optimizing Microalgae Cultivation and Wastewater Treatment in Large-Scale Offshore Photobioreactors. Algal Res. 2016, 18, 86–94. [Google Scholar] [CrossRef]
- Slocombe, S.P.; Zhang, Q.; Ross, M.; Anderson, A.; Thomas, N.J.; Lapresa, Á.; Rad-Menéndez, C.; Campbell, C.N.; Black, K.D.; Stanley, M.S.; et al. Unlocking Nature’s Treasure-Chest: Screening for Oleaginous Algae. Sci. Rep. 2015, 5, 9844. [Google Scholar] [CrossRef]
- Enzing, C.; Ploeg, M.; Barbosa, M.; Sijtsma, L. Microalgae-Based Products for Food and Feed Sector: An Outlook for Europe; Joint Research Centre: Luxembourg, 2014; ISBN 9789279340376. [Google Scholar]
- Teng, S.Y.; Yew, G.Y.; Sukačová, K.; Show, P.L.; Máša, V.; Chang, J.S. Microalgae with Artificial Intelligence: A Digitalized Perspective on Genetics, Systems and Products. Biotechnol. Adv. 2020, 44, 107631. [Google Scholar] [CrossRef] [PubMed]
- Gudmundsson, S.; Nogales, J. Cyanobacteria as Photosynthetic Biocatalysts: A Systems Biology Perspective. Mol. Biosyst. 2014, 11, 60–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radakovits, R.; Jinkerson, R.E.; Darzins, A.; Posewitz, M.C. Genetic Engineering of Algae for Enhanced Biofuel Production. Eukaryot. Cell 2010, 9, 486–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Han, D.; Wang, D.; Ning, K.; Jia, J.; Wei, L.; Jing, X.; Huang, S.; Chen, J.; Li, Y.; et al. Choreography of Transcriptomes and Lipidomes of Nannochloropsis Reveals the Mechanisms of Oil Synthesis in Microalgae. Plant Cell 2014, 26, 1645–1665. [Google Scholar] [CrossRef] [Green Version]
- Ort, D.R.; Zhu, X.; Melis, A. Optimizing Antenna Size to Maximize Photosynthetic Efficiency. Plant Physiol. 2011, 155, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Hu, G.R.; Fan, Y.; Zheng, Y.L.; Xu, F.; Zhang, L.; Li, F.L. Photoprotection Capacity of Microalgae Improved by Regulating the Antenna Size of Light-Harvesting Complexes. J. Appl. Phycol. 2020, 32, 1027–1039. [Google Scholar] [CrossRef]
- Blankenship, R.E.; Tiede, D.M.; Barber, J.; Brudvig, G.W.; Fleming, G.; Ghirardi, M.; Gunner, M.R.; Junge, W.; Kramer, D.M.; Melis, A.; et al. Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement. Science 2011, 332, 805–809. [Google Scholar] [CrossRef] [Green Version]
- Saharan, B.S.; Grewal, A.; Kumar, P. Biotechnological Production of Polyhydroxyalkanoates: A Review on Trends and Latest Developments. Chin. J. Biol. 2014, 2014, 802984. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.G.; Long, S.P.; Ort, D.R. Improving Photosynthetic Efficiency for Greater Yield. Annu. Rev. Plant Biol. 2010, 61, 235–261. [Google Scholar] [CrossRef] [Green Version]
- Shanmugam, S.; Hari, A.; Kumar, D.; Rajendran, K.; Mathimani, T.; Atabani, A.E.; Brindhadevi, K.; Pugazhendhi, A. Recent Developments and Strategies in Genome Engineering and Integrated Fermentation Approaches for Biobutanol Production from Microalgae. Fuel 2021, 285, 119052. [Google Scholar] [CrossRef]
- Chang, W.C.; Zheng, H.Q.; Chen, C.N.N. Comparative Transcriptome Analysis Reveals a Potential Photosynthate Partitioning Mechanism between Lipid and Starch Biosynthetic Pathways in Green Microalgae. Algal Res. 2016, 16, 54–62. [Google Scholar] [CrossRef]
- Davis, R.; Aden, A.; Pienkos, P.T. Techno-Economic Analysis of Autotrophic Microalgae for Fuel Production. Appl. Energy 2011, 88, 3524–3531. [Google Scholar] [CrossRef]
- Roostaei, J.; Zhang, Y.; Gopalakrishnan, K.; Ochocki, A.J. Mixotrophic Microalgae Biofilm: A Novel Algae Cultivation Strategy for Improved Productivity and Cost-Efficiency of Biofuel Feedstock Production. Sci. Rep. 2018, 8, 12528. [Google Scholar] [CrossRef] [Green Version]
- Schädler, T.; Neumann-Cip, A.C.; Wieland, K.; Glöckler, D.; Haisch, C.; Brück, T.; Weuster-Botz, D. High-Density Microalgae Cultivation in Open Thin-Layer Cascade Photobioreactors with Water Recycling. Appl. Sci. 2020, 10, 3883. [Google Scholar] [CrossRef]
- Salvi, K.P.; da Silva Oliveira, W.; Horta, P.A.; Rörig, L.R.; de Oliveira Bastos, E. A New Model of Algal Turf Scrubber for Bioremediation and Biomass Production Using Seaweed Aquaculture Principles. J. Appl. Phycol. 2021, 33, 2577–2586. [Google Scholar] [CrossRef]
- Morita, M.; Watanabe, Y.; Saiki, H. Evaluation of Photobioreactor Heat Balance for Predicting Changes in Culture Medium Temperature Due to Light Irradiation. Biotechnol. Bioeng. 2001, 74, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Aitken, D.; Antizar-Ladislao, B. Achieving a Green Solution: Limitations and Focus Points for Sustainable Algal Fuels. Energies 2012, 5, 1613–1647. [Google Scholar] [CrossRef] [Green Version]
- López-Hernández, J.F.; Kean-Meng, T.; Asencio-Alcudia, G.G.; Asyraf-Kassim, M.; Alvarez-González, C.A.; Márquez-Rocha, F.J. Sustainable Microalgae and Cyanobacteria Biotechnology. Appl. Sci. 2022, 12, 6887. [Google Scholar] [CrossRef]
- Benemann, J.R. Microalgae Aquaculture Feeds. J. Appl. Phycol. 1992, 4, 233–245. [Google Scholar] [CrossRef]
- Maroneze, M.M.; Queiroz, M.I. Microalgal Production Systems with Highlights of Bioenergy Production. In Energy from Microalgae; Green Energy and Technology Series; Springer: Cham, Switzerland, 2018; pp. 5–34. [Google Scholar]
- Chisti, Y. Biodiesel from Microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef]
- Richmond, A. Biological Principles of Mass Cultivation. In Handbook of Microalgal Culture: Biotechnology and Applied Phycology; Richmond, A., Ed.; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2004; pp. 125–177. [Google Scholar]
- Gojkovic, Z.; Guidi, F.; Bustamante, B.; Venuleo, M.; Clemente, A.; De Assunçao, J.; Portillo, E.; Bustamante, B.; Venuleo, M.; Assunçao, P.A.C.J.D.; et al. Scaling-Up and Semi-Continuous Cultivation of Locally Isolated Marine Microalgae Tetraselmis Striata in the Subtropical Island of Gran Canaria (Canary Islands, Spain). Processes 2021, 9, 1326. [Google Scholar] [CrossRef]
- Yin, Z.; Zhu, L.; Li, S.; Hu, T.; Chu, R.; Mo, F.; Hu, D.; Liu, C.; Li, B. A Comprehensive Review on Cultivation and Harvesting of Microalgae for Biodiesel Production: Environmental Pollution Control and Future Directions. Bioresour. Technol. 2020, 301, 122804. [Google Scholar] [CrossRef] [PubMed]
- Brennan, L.; Owende, P. Biofuels from Microalgae—A Review of Technologies for Production, Processing, and Extractions of Biofuels and Co-Products. Renew. Sustain. Energy Rev. 2010, 14, 557–577. [Google Scholar] [CrossRef]
- Chen, C.Y.; Yeh, K.L.; Aisyah, R.; Lee, D.J.; Chang, J.S. Cultivation, Photobioreactor Design and Harvesting of Microalgae for Biodiesel Production: A Critical Review. Bioresour. Technol. 2011, 102, 71–81. [Google Scholar] [CrossRef]
- De Vree, J.H.; Bosma, R.; Janssen, M.; Barbosa, M.J.; Wijffels, R.H. Comparison of Four Outdoor Pilot-Scale Photobioreactors. Biotechnol. Biofuels 2015, 8, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sompech, K.; Chisti, Y.; Srinophakun, T. Design of Raceway Ponds for Producing Microalgae. Biofuels 2014, 3, 387–397. [Google Scholar] [CrossRef]
- Zmora, O.; Richmond, A. Microalgae Production for Aquaculture. In Handbook of Microalgal Culture: Biotechnology and Applied Phycology; Richmond, A., Ed.; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2004; pp. 365–379. [Google Scholar]
- Doan, Q.C.; Moheimani, N.R.; Mastrangelo, A.J.; Lewis, D.M. Microalgal Biomass for Bioethanol Fermentation: Implications for Hypersaline Systems with an Industrial Focus. Biomass Bioenergy 2012, 46, 79–88. [Google Scholar] [CrossRef]
- Troschl, C.; Meixner, K.; Fritz, I.; Leitner, K.; Romero, A.P.; Kovalcik, A.; Sedlacek, P.; Drosg, B. Pilot-Scale Production of Poly-β-Hydroxybutyrate with the Cyanobacterium synechocytis Sp. CCALA192 in a Non-Sterile Tubular Photobioreactor. Algal Res. 2018, 34, 116–125. [Google Scholar] [CrossRef]
- Pereira, H.; Páramo, J.; Silva, J.; Marques, A.; Barros, A.; Maurício, D.; Santos, T.; Schulze, P.; Barros, R.; Gouveia, L.; et al. Scale-up and Large-Scale Production of Tetraselmis Sp. CTP4 (Chlorophyta) for CO2 Mitigation: From an Agar Plate to 100-M3 Industrial Photobioreactors. Sci. Rep. 2018, 8, 5112. [Google Scholar] [CrossRef]
- García-Galán, M.J.; Gutiérrez, R.; Uggetti, E.; Matamoros, V.; García, J.; Ferrer, I. Use of Full-Scale Hybrid Horizontal Tubular Photobioreactors to Process Agricultural Runoff. Biosyst. Eng. 2018, 166, 138–149. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Jiang, F.; Wang, L.; Yang, C. Design of Photobioreactors for Mass Cultivation of Photosynthetic Organisms. Engineering 2017, 3, 318–329. [Google Scholar] [CrossRef]
- López-Rosales, L.; Sánchez-Mirón, A.; Contreras-Gómez, A.; García-Camacho, F.; Battaglia, F.; Zhao, L.; Molina-Grima, E. Characterization of Bubble Column Photobioreactors for Shear-Sensitive Microalgae Culture. Bioresour. Technol. 2019, 275, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ugwu, C.U.; Aoyagi, H.; Uchiyama, H. Photobioreactors for Mass Cultivation of Algae. Bioresour. Technol. 2008, 99, 4021–4028. [Google Scholar] [CrossRef]
- Singh, R.N.; Sharma, S. Development of Suitable Photobioreactor for Algae Production—A Review. Renewable Sustain. Energy Rev. 2012, 16, 2347–2353. [Google Scholar] [CrossRef]
- Pawar, S. Effectiveness Mapping of Open Raceway Pond and Tubular Photobioreactors for Sustainable Production of Microalgae Biofuel. Renew. Sustain. Energy Rev. 2016, 62, 640–653. [Google Scholar] [CrossRef]
- Eilertsen, H.C.; Eriksen, G.K.; Bergum, J.S.; Strømholt, J.; Elvevoll, E.; Eilertsen, K.E.; Heimstad, E.S.; Giæver, I.H.; Israelsen, L.; Svenning, J.B.; et al. Mass Cultivation of Microalgae: I. Experiences with Vertical Column Airlift Photobioreactors, Diatoms and CO2 Sequestration. Appl. Sci. 2022, 12, 3082. [Google Scholar] [CrossRef]
- Gross, M.; Jarboe, D.; Wen, Z. Biofilm-Based Algal Cultivation Systems. Appl. Microbiol. Biotechnol. 2015, 99, 5781–5789. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, C.; Li, Y.; Yu, Z.; Chen, Z.; Ye, T.; Wang, X.; Hu, Z.; Liu, S.; Xiao, B.; et al. Cultivation of Algal Biofilm Using Different Lignocellulosic Materials as Carriers. Biotechnol. Biofuels 2017, 10, 115. [Google Scholar] [CrossRef] [Green Version]
- Fitch, M.W.; England, E. Biological Fixed Film Systems. Water Environ. Res. 2002, 74, 1–87. [Google Scholar] [CrossRef]
- Gullicks, H.; Hasan, H.; Das, D.; Moretti, C.; Hung, Y.T. Biofilm Fixed Film Systems. Water 2011, 3, 843–868. [Google Scholar] [CrossRef]
- Morel, F.M.M.; Rueter, J.G.; Anderson, D.M.; Guillard, R.R.L. Aquil: A Chemically Defined Phytoplankton Culture Medium for Trace Metal Studies. J. Phycol. 1979, 15, 135–141. [Google Scholar] [CrossRef]
- Jepsen, P.M.; Thoisen, C.V.; Carron-Cabaret, T.; Pinyol-Gallemí, A.; Nielsen, S.L.; Hansen, B.W. Effects of Salinity, Commercial Salts, and Water Type on Cultivation of the Cryptophyte Microalgae Rhodomonas Salina and the Calanoid Copepod Acartia Tonsa. J. World Aquac. Soc. 2019, 50, 104–118. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, M.J.; Bingman, C. Elemental Composition of Commercial Seasalts. J. Aquaric. Aquat. Sci. 1997, 8, 39–43. [Google Scholar]
- Andersen, R.A.; Bergen, J.A.; Harrison, P.J.; Watanabe, M.M. Appendix A—Recipes for Freshwater and Seawater Media. In Algal Culturing Techniques; Andersen, R.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 429–532. [Google Scholar]
- Brito, D.; Cana, E.; Guevara, M.; Subero, J.; Colivet, J. Effect of Three Sources of Nutrients on Biomass and Pigment Production of Freshwater Microalgae Hyaloraphidium Contortum. Rev. Bio Cienc. 2016, 4, 15–26. [Google Scholar] [CrossRef]
- Karuppan, R.; Javee, A.; Gopidas, S.K.; Subramani, N. Influence of Agriculture Fertilizer for the Enhanced Growth and Astaxanthin Production from Haematococcus Lacustris RRGK Isolated from Himachal Pradesh, India. SN Appl. Sci. 2019, 1, 532. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Córdova, L.R.; Campaña-Torres, A.; Martínez-Porchas, M.; López-Elías, J.A.; García-Sifuentes, C.O. Effect of Alternative Mediums on Production and Proximate Composition of the Microalgae Chaetoceros Muelleri as Food in Culture of the Copepod Acartia Sp. Lat. Am. J. Aquat. Res. 2012, 40, 169–176. [Google Scholar] [CrossRef]
- Liu, J.; Bangert, K. Effect of Nitrogen Source in Low-Cost Media on Biomass and Lipid Productivity of Nannochloropsis Salina for Large-Scale Biodiesel Production. Environ. Prog. Sustain. Energy 2015, 34, 297–303. [Google Scholar] [CrossRef]
- Camacho-Rodríguez, J.; Cerón-García, M.C.; González-López, C.V.; López-Rosales, L.; Contreras-Gómez, A.; Molina-Grima, E. Use of Continuous Culture to Develop an Economical Medium for the Mass Production of Isochrysis Galbana for Aquaculture. J. Appl. Phycol. 2020, 32, 851–863. [Google Scholar] [CrossRef]
- Soares, J.; Kriiger Loterio, R.; Rosa, R.M.; Santos, M.O.; Nascimento, A.G.; Santos, N.T.; Williams, T.C.R.; Nunes-Nesi, A.; Arêdes Martins, M. Scenedesmus sp. Cultivation Using Commercial-Grade Ammonium Sources. Ann. Microbiol. 2018, 68, 35–45. [Google Scholar] [CrossRef]
- Acién, F.G.; Molina, E.; Reis, A.; Torzillo, G.; Zittelli, G.C.; Sepúlveda, C.; Masojídek, J. Photobioreactors for the Production of Microalgae. In Microalgae-Based Biofuels and Bioproducts: From Feedstock Cultivation to End-Products; Woodhead Publishing: Sawston, UK, 2017; pp. 1–44. ISBN 9780081010273. [Google Scholar]
- Pittman, J.K.; Dean, A.P.; Osundeko, O. The Potential of Sustainable Algal Biofuel Production Using Wastewater Resources. Bioresour. Technol. 2011, 102, 17–25. [Google Scholar] [CrossRef]
- Dalrymple, O.K.; Halfhide, T.; Udom, I.; Gilles, B.; Wolan, J.; Zhang, Q.; Ergas, S. Wastewater Use in Algae Production for Generation of Renewable Resources: A Review and Preliminary Results. Aquat. Biosyst. 2013, 9, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morillas-España, A.; Lafarga, T.; Sánchez-Zurano, A.; Acién-Fernández, F.G.; Rodríguez-Miranda, E.; Gómez-Serrano, C.; González-López, C.V. Year-Long Evaluation of Microalgae Production in Wastewater Using Pilot-Scale Raceway Photobioreactors: Assessment of Biomass Productivity and Nutrient Recovery Capacity. Algal Res. 2021, 60, 102500. [Google Scholar] [CrossRef]
- Masseret, E.; Amblard, C.; Bourdier, G.; Sargos, D. Effects of a Waste Stabilization Lagoon Discharge on Bacterial and Phytoplanktonic Communities of a Stream. Water Environ. Res. 2000, 72, 285–294. [Google Scholar] [CrossRef]
- De-Bashan, L.E.; Bashan, Y. Immobilized Microalgae for Removing Pollutants: Review of Practical Aspects. Bioresour. Technol. 2010, 101, 1611–1627. [Google Scholar] [CrossRef] [PubMed]
- Mallick, N. Biotechnological Potential of Immobilized Algae for Wastewater N, P and Metal Removal: A Review. BioMetals 2002, 15, 377–390. [Google Scholar] [CrossRef]
- Catone, C.M.; Ripa, M.; Geremia, E.; Ulgiati, S. Bio-Products from Algae-Based Biorefinery on Wastewater: A Review. J. Environ. Manag. 2021, 293, 112792. [Google Scholar] [CrossRef]
- Rocca, S.; Agostini, A.; Giuntoli, J.; Marelli, L. Biofuels from Algae: Technology Options, Energy Balance and GHG Emissions; European Union: Luxembourg, 2015. [Google Scholar]
- Uyar, B.; Kapucu, N. Passive Temperature Control of an Outdoor Photobioreactor by Phase Change Materials. J. Chem. Technol. Biotechnol. 2015, 90, 915–920. [Google Scholar] [CrossRef]
- Vu, M.T.T.; Jepsen, P.M.; Jørgensen, N.O.G.; Hansen, B.W.; Nielsen, S.L. Testing the Yield of a Pilot-Scale Bubble Column Photobioreactor for Cultivation of the Microalga Rhodomonas Salina as Feed for Intensive Calanoid Copepod Cultures. Aquac. Res. 2019, 50, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Nobel, P.S. Physicochemical and Environmental Plant Physiology, 4th ed.; Academic Press: Amsterdam, The Netherlands, 2009; Volume 46. [Google Scholar]
- Lehmuskero, A.; Skogen Chauton, M.; Boström, T. Light and Photosynthetic Microalgae: A Review of Cellular- and Molecular-Scale Optical Processes. Prog. Oceanogr. 2018, 168, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Liu, J.; Liu, T. The Difference in Effective Light Penetration May Explain the Superiority in Photosynthetic Efficiency of Attached Cultivation over the Conventional Open Pond for Microalgae. Biotechnol. Biofuels 2015, 8, 49. [Google Scholar] [CrossRef] [Green Version]
- Masojídek, J.; Sergejevová, M.; Malapascua, J.R.; Kopecký, J. Thin-Layer Systems for Mass Cultivation of Microalgae: Flat Panels and Sloping Cascades. In Algal Biorefineries; Prokop, A., Bajpai, R., Zappi, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 237–261. ISBN 9783319202006. [Google Scholar]
- Cunha, P.; Pereira, H.; Costa, M.; Pereira, J.; Silva, J.T.; Fernandes, N.; Varela, J.; Silva, J.; Simões, M. Nannochloropsis Oceanica Cultivation in Pilot-Scale Raceway Ponds—From Design to Cultivation. Appl. Sci. 2020, 10, 1725. [Google Scholar] [CrossRef] [Green Version]
- McGinn, P.J.; Dickinson, K.E.; Park, K.C.; Whitney, C.G.; MacQuarrie, S.P.; Black, F.J.; Frigon, J.C.; Guiot, S.R.; O’Leary, S.J.B. Assessment of the Bioenergy and Bioremediation Potentials of the Microalga scenedesmus Sp. AMDD Cultivated in Municipal Wastewater Effluent in Batch and Continuous Mode. Algal Res. 2012, 1, 155–165. [Google Scholar] [CrossRef]
- Isdepsky, A.; Borowitzka, M.A. In-Pond Strain Selection of Euryhaline Tetraselmis Sp. Strains for Reliable Long-Term Outdoor Culture as Potential Sources of Biofuel and Other Products. J. Appl. Phycol. 2019, 31, 3359–3370. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, W.; Chen, L.; Wang, J.; Liu, T. The Contamination and Control of Biological Pollutants in Mass Cultivation of Microalgae. Bioresour. Technol. 2013, 128, 745–750. [Google Scholar] [CrossRef]
- MacArthur, R.H.; Wilson, E.O. The Theory of Island Biogeography; Princeton University Press: Princeton, NJ, USA, 1967. [Google Scholar]
- Parmar, A.; Singh, N.K.; Pandey, A.; Gnansounou, E.; Madamwar, D. Cyanobacteria and Microalgae: A Positive Prospect for Biofuels. Bioresour. Technol. 2011, 102, 10163–10172. [Google Scholar] [CrossRef]
- Arndt, C.; Sommer, U. Effect of Algal Species and Concentration on Development and Fatty Acid Composition of Two Harpacticoid Copepods, Tisbe Sp. and Tachidius Discipes, and a Discussion about Their Suitability for Marine Fish Larvae. Aquac. Nutr. 2014, 20, 44–59. [Google Scholar] [CrossRef]
- Summerfelt, S.T. Ozonation and UV Irradiation—An Introduction and Examples of Current Applications. Aquac. Eng. 2003, 28, 21–36. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, M.A.; Sedlacek, C.; Marcus, N.H. Large-Scale Batch Algae Cultivation: Comparison of Two Seawater Sterilization Techniques. Aquac. Res. 2008, 39, 1128–1130. [Google Scholar] [CrossRef]
- Filip, D.S.; Joe Middlebrooks, E. Evaluation of Sample Preparation Techniques for Algal Bioassays. Water Res. 1975, 9, 581–585. [Google Scholar] [CrossRef]
- Thoisen, C.; Vu, M.T.T.; Carron-Cabaret, T.; Jepsen, P.M.; Nielsen, S.L.; Hansen, B.W. Small-Scale Experiments Aimed at Optimization of Large-Scale Production of the Microalga Rhodomonas Salina. J. Appl. Phycol. 2018, 30, 2193–2202. [Google Scholar] [CrossRef] [Green Version]
- Cardinale, B.J.; Bennett, D.M.; Nelson, C.E.; Gross, K. Does Productivity Drive Diversity or Vice Versa? A Test of the Multivariate Productivity–Diversity Hypothesis in Streams. Ecology 2009, 90, 1227–1241. [Google Scholar] [CrossRef]
- Gamfeldt, L.; Hillebrand, H. Effects of Total Resources, Resource Ratios, and Species Richness on Algal Productivity and Evenness at Both Metacommunity and Local Scales. PLoS ONE 2011, 6, e21972. [Google Scholar] [CrossRef] [Green Version]
- Schnurr, P.J.; Allen, D.G. Factors Affecting Algae Biofilm Growth and Lipid Production: A Review. Renew. Sustain. Energy Rev. 2015, 52, 418–429. [Google Scholar] [CrossRef]
- Fasaei, F.; Bitter, J.H.; Slegers, P.M.; van Boxtel, A.J.B. Techno-Economic Evaluation of Microalgae Harvesting and Dewatering Systems. Algal Res. 2018, 31, 347–362. [Google Scholar] [CrossRef]
- Ozdalgic, B.; Ustun, M.; Dabbagh, S.R.; Haznedaroglu, B.Z.; Kiraz, A.; Tasoglu, S. Microfluidics for Microalgal Biotechnology. Biotechnol. Bioeng. 2021, 118, 1716–1734. [Google Scholar] [CrossRef] [PubMed]
- Safarik, I.; Pospiskova, K.; Baldikova, E.; Safarikova, M. Magnetic Particles for Microalgae Separation and Biotechnology. In Food Bioactives: Extraction and Biotechnology Applications; Springer: Cham, Switzerland, 2017; pp. 153–169. [Google Scholar] [CrossRef]
- Pádrová, K.; Lukavský, J.; Nedbalová, L.; Čejková, A.; Cajthaml, T.; Sigler, K.; Vítová, M.; Řezanka, T. Trace Concentrations of Iron Nanoparticles Cause Overproduction of Biomass and Lipids during Cultivation of Cyanobacteria and Microalgae. J. Appl. Phycol. 2015, 27, 1443–1451. [Google Scholar] [CrossRef]
- Hejazi, M.A.; Holwerda, E.; Wijffels, R.H. Milking Microalga Dunaliella Salina for β-Carotene Production in Two-Phase Bioreactors. Biotechnol. Bioeng. 2004, 85, 475–481. [Google Scholar] [CrossRef]
- Samorì, C.; Pezzolesi, L.; Galletti, P.; Semeraro, M.; Tagliavini, E. Extraction and Milking of Astaxanthin from Haematococcus Pluvialis Cultures. Green Chem. 2019, 21, 3621–3628. [Google Scholar] [CrossRef]
- Kothari, R.; Pandey, A.; Ahmad, S.; Kumar, A.; Pathak, V.V.; Tyagi, V.V. Microalgal Cultivation for Value-Added Products: A Critical Enviro-Economical Assessment. 3 Biotech 2017, 7, 243. [Google Scholar] [CrossRef]
- Borowitzka, M.A.; Vonshak, A. Scaling up Microalgal Cultures to Commercial Scale. Eur. J. Phycol. 2017, 52, 407–418. [Google Scholar] [CrossRef]
- Rezaei Rashti, M.; Wang, W.; Moody, P.; Chen, C.; Ghadiri, H. Fertiliser-Induced Nitrous Oxide Emissions from Vegetable Production in the World and the Regulating Factors: A Review. Atmos. Environ. 2015, 112, 225–233. [Google Scholar] [CrossRef]
- Weinberg, J.; Kaltschmitt, M.; Wilhelm, C. Analysis of Greenhouse Gas Emissions from Microalgae-Based Biofuels. Biomass Convers. Biorefinery 2012, 2, 179–194. [Google Scholar] [CrossRef]
- Beacham, T.A.; Sweet, J.B.; Allen, M.J. Large Scale Cultivation of Genetically Modified Microalgae: A New Era for Environmental Risk Assessment. Algal Res. 2017, 25, 90–100. [Google Scholar] [CrossRef]
- Henley, W.J.; Litaker, R.W.; Novoveská, L.; Duke, C.S.; Quemada, H.D.; Sayre, R.T. Initial Risk Assessment of Genetically Modified (GM) Microalgae for Commodity-Scale Biofuel Cultivation. Algal Res. 2013, 2, 66–77. [Google Scholar] [CrossRef]
- Gressel, J.; van der Vlugt, C.J.B.; Bergmans, H.E.N. Environmental Risks of Large Scale Cultivation of Microalgae: Mitigation of Spills. Algal Res. 2013, 2, 286–298. [Google Scholar] [CrossRef]
- Bani, A.; Fernandez, F.G.A.; D’Imporzano, G.; Parati, K.; Adani, F. Influence of Photobioreactor Set-up on the Survival of Microalgae Inoculum. Bioresour. Technol. 2021, 320, 124408. [Google Scholar] [CrossRef] [PubMed]
- Sagova-Mareckova, M.; Boenigk, J.; Bouchez, A.; Cermakova, K.; Chonova, T.; Cordier, T.; Eisendle, U.; Elersek, T.; Fazi, S.; Fleituch, T.; et al. Expanding Ecological Assessment by Integrating Microorganisms into Routine Freshwater Biomonitoring. Water Res. 2021, 191, 116767. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2022.
- Mehmeti, A.; Angelis-Dimakis, A.; Arampatzis, G.; McPhail, S.J.; Ulgiati, S. Life Cycle Assessment and Water Footprint of Hydrogen Production Methods: From Conventional to Emerging Technologies. Environments 2018, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, A.; Shabestary, K.; Brandão, M.; Hudson, E.P. Environmental Impacts and Limitations of Third-Generation Biobutanol: Life Cycle Assessment of n-Butanol Produced by Genetically Engineered Cyanobacteria. J. Ind. Ecol. 2020, 24, 205–216. [Google Scholar] [CrossRef]
- Tzachor, A.; Smidt-Jensen, A.; Ramel, A.; Geirsdóttir, M. Environmental Impacts of Large-Scale Spirulina (Arthrospira Platensis) Production in Hellisheidi Geothermal Park Iceland: Life Cycle Assessment. Mar. Biotechnol. 2022, 24, 991–1001. [Google Scholar] [CrossRef]
- Oostlander, P.C.; van Houcke, J.; Wijffels, R.H.; Barbosa, M.J. Microalgae Production Cost in Aquaculture Hatcheries. Aquaculture 2020, 525, 735310. [Google Scholar] [CrossRef]
- Medeiros, D.L.; Moreira, Í.T.A. Microalgae Biomass Production from Cultivation in Availability and Limitation of Nutrients: The Technical, Environmental and Economic Performance. J. Clean. Prod. 2022, 370, 133538. [Google Scholar] [CrossRef]
- Maroušek, J.; Gavurová, B.; Strunecký, O.; Maroušková, A.; Sekar, M.; Marek, V. Techno-Economic Identification of Production Factors Threatening the Competitiveness of Algae Biodiesel. Fuel 2023, 344, 128056. [Google Scholar] [CrossRef]
- Nezlek, J.B.; Forestell, C.A. Vegetarianism as a Social Identity. Curr. Opin. Food Sci. 2020, 33, 45–51. [Google Scholar] [CrossRef]
- Harris, J.; Viner, K.; Champagne, P.; Jessop, P.G. Advances in Microalgal Lipid Extraction for Biofuel Production: A Review. Biofuels Bioprod. Biorefin. 2018, 12, 1118–1135. [Google Scholar] [CrossRef]
Critical Factors | Open Ponds | Closed PBRs | Biofilms |
---|---|---|---|
Land area required | High | Medium | Medium |
Predator/debris exclusion | No | Yes | No |
Thermal regulation | No | Medium | No |
CO2 feed efficiency | Low | High | Low |
Evaporation | High | Low | Medium |
Mixing energy required | Medium | High | Medium |
Additional light source | None | Yes | None |
Volume throughput | High | Medium | Low |
Cell density (for harvest) | Low | Medium | High |
Contamination risk | High | Low | High |
Capital cost | Low | High | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novoveská, L.; Nielsen, S.L.; Eroldoğan, O.T.; Haznedaroglu, B.Z.; Rinkevich, B.; Fazi, S.; Robbens, J.; Vasquez, M.; Einarsson, H. Overview and Challenges of Large-Scale Cultivation of Photosynthetic Microalgae and Cyanobacteria. Mar. Drugs 2023, 21, 445. https://doi.org/10.3390/md21080445
Novoveská L, Nielsen SL, Eroldoğan OT, Haznedaroglu BZ, Rinkevich B, Fazi S, Robbens J, Vasquez M, Einarsson H. Overview and Challenges of Large-Scale Cultivation of Photosynthetic Microalgae and Cyanobacteria. Marine Drugs. 2023; 21(8):445. https://doi.org/10.3390/md21080445
Chicago/Turabian StyleNovoveská, Lucie, Søren Laurentius Nielsen, Orhan Tufan Eroldoğan, Berat Zeki Haznedaroglu, Baruch Rinkevich, Stefano Fazi, Johan Robbens, Marlen Vasquez, and Hjörleifur Einarsson. 2023. "Overview and Challenges of Large-Scale Cultivation of Photosynthetic Microalgae and Cyanobacteria" Marine Drugs 21, no. 8: 445. https://doi.org/10.3390/md21080445
APA StyleNovoveská, L., Nielsen, S. L., Eroldoğan, O. T., Haznedaroglu, B. Z., Rinkevich, B., Fazi, S., Robbens, J., Vasquez, M., & Einarsson, H. (2023). Overview and Challenges of Large-Scale Cultivation of Photosynthetic Microalgae and Cyanobacteria. Marine Drugs, 21(8), 445. https://doi.org/10.3390/md21080445