Enzyme-Assisted Coextraction of Phenolics and Polysaccharides from Padina gymnospora
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Different Enzymes
2.2. Optimization of Extraction Conditions
2.3. Combined Effect of Extraction Factors
2.4. Determination of Optimal Conditions for the Simultaneous Extraction of Polysaccharides and Phenolics
2.5. Fractionation and Characterization
2.6. Anti-Radical Activity
3. Materials and Methods
3.1. Materials
3.2. Enzyme Screening
3.3. Optimization of Conditions for Simultaneous Extraction
3.4. Fractionation of Extract
3.5. Analysis
3.5.1. Determination of Phenolic Content
3.5.2. Monosaccharide Analysis
3.5.3. Determination of Sulphate Content
3.5.4. Determination of DPPH Radical Scavenging Activity
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Uysal, S.; Gevrenova, R.; Sinan, K.I.; Bayarslan, A.U.; Altunoglu, Y.C.; Zheleva-Dimitrova, D.; Ak, G.; Baloglu, M.C.; Etienne, O.K.; Lobine, D. New perspectives into the chemical characterization of Sida acuta Burm. f. extracts with respect to its anti-cancer, antioxidant and enzyme inhibitory effects. Process Biochem. 2021, 105, 91–101. [Google Scholar] [CrossRef]
- Nguyen, T.C.V.; Trinh, L.T.T.; Nguyen, K.L.; Nguyen, H.C.; Tran, T.D. Optimization of phenolics extraction from Strobilanthes cusia leaves and their antioxidant activity. Pharm. Chem. J. 2022, 56, 374–380. [Google Scholar] [CrossRef]
- Fernandes, P.A.; Coimbra, M.A. The antioxidant activity of polysaccharides: A structure-function relationship overview. Carbohydr. Polym. 2023, 314, 120965. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Yang, M.; Ma, L.; Liu, X.; Ding, Q.; Chai, G.; Lu, Y.; Wei, H.; Zhang, S.; Ding, C. Structural modification and biological activity of polysaccharides. Molecules 2023, 28, 5416. [Google Scholar] [CrossRef]
- Rodríguez, P.F.; Murillo-González, L.; Rodríguez, E.; Pérez, A.M. Marine phenolic compounds: Sources, commercial value, and biological activities. In Marine Phenolic Compounds: Science and Engineering; Pérez-Correa, J.R., Mateos, R., Domínguez, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 47–86. [Google Scholar]
- Ilyas, Z.; Ali Redha, A.; Wu, Y.S.; Ozeer, F.Z.; Aluko, R.E. Nutritional and health benefits of the brown seaweed Himanthalia elongata. Plant Foods Hum. Nutr. 2023, 78, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Birgersson, P.S.; Oftebro, M.; Strand, W.I.; Aarstad, O.A.; Sætrom, G.I.; Sletta, H.; Arlov, Ø.; Aachmann, F.L. Sequential extraction and fractionation of four polysaccharides from cultivated brown algae Saccharina latissima and Alaria esculenta. Algal Res. 2023, 69, 102928. [Google Scholar] [CrossRef]
- Subbiah, V.; Duan, X.; Agar, O.T.; Dunshea, F.R.; Barrow, C.J.; Suleria, H.A. Comparative study on the effect of different drying techniques on phenolic compounds in Australian beach-cast brown seaweeds. Algal Res. 2023, 72, 103140. [Google Scholar] [CrossRef]
- Subbiah, V.; Xie, C.; Dunshea, F.R.; Barrow, C.J.; Suleria, H.A. The quest for phenolic compounds from seaweed: Nutrition, biological activities and applications. Food Rev. Int. 2022, 39, 5786–5813. [Google Scholar] [CrossRef]
- Tanna, B.; Mishra, A. Nutraceutical potential of seaweed polysaccharides: Structure, bioactivity, safety, and toxicity. Compr. Rev. Food Sci. Food Saf. 2019, 18, 817–831. [Google Scholar] [CrossRef]
- Lafarga, T.; Acién-Fernández, F.G.; Garcia-Vaquero, M. Bioactive peptides and carbohydrates from seaweed for food applications: Natural occurrence, isolation, purification, and identification. Algal Res. 2020, 48, 101909. [Google Scholar] [CrossRef]
- Cotas, J.; Leandro, A.; Monteiro, P.; Pacheco, D.; Figueirinha, A.; Gonçalves, A.M.; da Silva, G.J.; Pereira, L. Seaweed phenolics: From extraction to applications. Mar. Drugs 2020, 18, 384. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.; Rivers, A.; Stuckey, D.C.; Ward, K. Alginate extraction from Sargassum seaweed in the Caribbean region: Optimization using response surface methodology. Carbohydr. Polym. 2020, 245, 116419. [Google Scholar] [CrossRef] [PubMed]
- García-Vaquero, M.; Rajauria, G.; O’Doherty, J.V.; Sweeney, T. Polysaccharides from macroalgae: Recent advances, innovative technologies and challenges in extraction and purification. Food Res. Int. 2017, 99, 1011–1020. [Google Scholar] [CrossRef]
- Lorbeer, A.J.; Lahnstein, J.; Bulone, V.; Nguyen, T.; Zhang, W. Multiple-response optimization of the acidic treatment of the brown alga Ecklonia radiata for the sequential extraction of fucoidan and alginate. Bioresour. Technol. 2015, 197, 302–309. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, W.; Kong, L.; Zhou, B.; Hua, Y.; Han, Y.; Li, J.; Ji, J.; Fu, M.; Liu, W. Optimum conditions of ultrasound-assisted extraction and pharmacological activity study for phenolic compounds of the alga Chondrus ocellatus. J. Food Process. Preserv. 2022, 46, e16400. [Google Scholar] [CrossRef]
- Gao, H.; Wang, Y.; Guo, Z.; Liu, Y.; Wu, Q.; Xiao, J. Optimization of ultrasound-assisted extraction of phenolics from Asparagopsis taxiformis with deep eutectic solvent and their characterization by ultra-high-performance liquid chromatography-mass spectrometry. Front. Nutr. 2022, 9, 1036436. [Google Scholar] [CrossRef]
- Gisbert, M.; Barcala, M.; Rosell, C.M.; Sineiro, J.; Moreira, R. Aqueous extracts characteristics obtained by ultrasound-assisted extraction from Ascophyllum nodosum seaweeds: Effect of operation conditions. J. Appl. Phycol. 2021, 33, 3297–3308. [Google Scholar] [CrossRef]
- Alboofetileh, M.; Rezaei, M.; Hamzeh, A.; Tabarsa, M.; Cravotto, G. Cellular antioxidant and emulsifying activities of fucoidan extracted from Nizamuddinia zanardinii using different green extraction methods. J. Food Process. Preserv. 2022, 46, e17238. [Google Scholar] [CrossRef]
- Sasaki, C.; Tamura, S.; Suzuki, M.; Etomi, K.; Nii, N.; Hayashi, J.; Kanemaru, K. Continuous microwave-assisted step-by-step extraction of bioactive water-soluble materials and fucoidan from brown seaweed Undaria pinnatifida waste. Biomass Conv. Bioref. 2022. [Google Scholar] [CrossRef]
- Carreira-Casais, A.; Otero, P.; Garcia-Perez, P.; Garcia-Oliveira, P.; Pereira, A.G.; Carpena, M.; Soria-Lopez, A.; Simal-Gandara, J.; Prieto, M.A. Benefits and drawbacks of ultrasound-assisted extraction for the recovery of bioactive compounds from marine algae. Int. J. Environ. Res. Public Health 2021, 18, 9153. [Google Scholar] [CrossRef]
- Rudke, A.R.; da Silva, M.; de Andrade, C.J.; Vitali, L.; Ferreira, S.R.S. Green extraction of phenolic compounds and carrageenan from the red alga Kappaphycus alvarezii. Algal Res. 2022, 67, 102866. [Google Scholar] [CrossRef]
- Gan, A.; Baroutian, S. Subcritical water extraction for recovery of phenolics and fucoidan from New Zealand Wakame (Undaria pinnatifida) seaweed. J. Supercrit. Fluids 2022, 190, 105732. [Google Scholar] [CrossRef]
- Flórez-Fernández, N.; Domínguez, H.; Torres, M.D. Functional features of alginates recovered from Himanthalia elongata using subcritical water extraction. Molecules 2021, 26, 4726. [Google Scholar] [CrossRef]
- Gan, A.; Baroutian, S. Current status and trends in extraction of bioactives from brown macroalgae using supercritical CO2 and subcritical water. J. Chem. Technol. Biotechnol. 2022, 97, 1929–1940. [Google Scholar] [CrossRef]
- Steinbruch, E.; Wise, J.; Levkov, K.; Chemodanov, A.; Israel, Á.; Livney, Y.D.; Golberg, A. Enzymatic cell wall degradation combined with pulsed electric fields increases yields of water-soluble-protein extraction from the green marine macroalga Ulva sp. Innov. Food Sci. Emerg. Technol. 2023, 84, 103231. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Nguyen, H.N.T.; Huang, M.Y.; Lin, K.H.; Pham, D.C.; Tran, Y.B.; Su, C.H. Optimization of aqueous enzyme-assisted extraction of rosmarinic acid from rosemary (Rosmarinus officinalis L.) leaves and the antioxidant activity of the extract. J. Food Process. Preserv. 2021, 45, e15221. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Vuong, D.P.; Nguyen, N.T.T.; Nguyen, N.P.; Su, C.H.; Wang, F.M.; Juan, H.Y. Aqueous enzymatic extraction of polyunsaturated fatty acid–rich sacha inchi (Plukenetia volubilis L.) seed oil: An eco-friendly approach. LWT Food Sci. Technol. 2020, 133, 109992. [Google Scholar] [CrossRef]
- Yun, C.; Ji, X.; Chen, Y.; Zhao, Z.; Gao, Y.; Gu, L.; She, D.; Ri, I.; Wang, W.; Wang, H. Ultrasound-assisted enzymatic extraction of Scutellaria baicalensis root polysaccharide and its hypoglycemic and immunomodulatory activities. Int. J. Biol. Macromol. 2023, 227, 134–145. [Google Scholar] [CrossRef]
- Tang, S.; Ma, Y.; Dong, X.; Zhou, H.; He, Y.; Ren, D.; Wang, Q.; Yang, H.; Liu, S.; Wu, L. Enzyme-assisted extraction of fucoidan from Kjellmaniella crassifolia based on kinetic study of enzymatic hydrolysis of algal cellulose. Algal Res. 2022, 66, 102795. [Google Scholar] [CrossRef]
- Yucetepe, A.; Okudan, E.Ş.; Özçelik, B. Antioxidant activity and techno-functional properties of protein extracts from Caulerpa prolifera: Optimization of enzyme-assisted extraction by response surface methodology. J. Food Nutr. Res. 2022, 61, 264–276. [Google Scholar]
- Van Breda, D.; Lufu, R.; Goosen, N.J. Optimisation of cellulase-assisted extraction of laminarin from the brown seaweed Ecklonia maxima, using response surface methodology. Biomass Conv. Bioref. 2021, 13, 10399–10412. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, M.; Gomez, L.P.; Senthamaraikannan, R.; Padamati, R.B.; O’Donnell, C.P.; Tiwari, B.K. Investigation of enzyme-assisted methods combined with ultrasonication under a controlled alkali pretreatment for agar extraction from Gelidium sesquipedale. Food Hydrocoll. 2021, 120, 106905. [Google Scholar] [CrossRef]
- Habeebullah, S.F.K.; Alagarsamy, S.; Arnous, A.; Jacobsen, C. Enzymatic extraction of antioxidant ingredients from Danish seaweeds and characterization of active principles. Algal Res. 2021, 56, 102292. [Google Scholar] [CrossRef]
- Nazarudin, M.F.; Shahidan, M.S.; Mazli, N.A.I.N.; Teng, T.H.; Khaw, Y.S.; Yasin, I.S.M.; Isha, A.; Aliyu-Paiko, M. Assessment of Malaysian brown seaweed Padina gymnospora antioxidant properties and antimicrobial activity in different solvent extractions. Fish. Sci. 2022, 88, 493–507. [Google Scholar] [CrossRef]
- Rajendran, P.; Subramani, P.A.; Michael, D. Polysaccharides from marine macroalga, Padina gymnospora improve the nonspecific and specific immune responses of Cyprinus carpio and protect it from different pathogens. Fish Shellfish Immunol. 2016, 58, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Meini, M.-R.; Cabezudo, I.; Boschetti, C.E.; Romanini, D. Recovery of phenolic antioxidants from Syrah grape pomace through the optimization of an enzymatic extraction process. Food Chem. 2019, 283, 257–264. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, Q.; Gu, H.; Yang, L. An approach for extraction of kernel oil from Pinus pumila using homogenate-circulating ultrasound in combination with an aqueous enzymatic process and evaluation of its antioxidant activity. J. Chromatogr. A 2016, 1471, 68–79. [Google Scholar] [CrossRef]
- Islam, M.R.; Kamal, M.M.; Kabir, M.R.; Hasan, M.M.; Haque, A.R.; Hasan, S.K. Phenolic compounds and antioxidants activity of banana peel extracts: Testing and optimization of enzyme-assisted conditions. Meas. Food 2023, 10, 100085. [Google Scholar] [CrossRef]
- Liao, N.; Zhong, J.; Ye, X.; Lu, S.; Wang, W.; Zhang, R.; Xu, J.; Chen, S.; Liu, D. Ultrasonic-assisted enzymatic extraction of polysaccharide from Corbicula fluminea: Characterization and antioxidant activity. LWT Food Sci. Technol. 2015, 60, 1113–1121. [Google Scholar] [CrossRef]
- Bhotmange, D.U.; Wallenius, J.H.; Singhal, R.S.; Shamekh, S.S. Enzymatic extraction and characterization of polysaccharide from Tuber aestivum. Bioact. Carbohydr. Diet. Fibre 2017, 10, 1–9. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, Q.; Mao, G.; Zou, Y.; Feng, W.; Zheng, D.; Wang, W.; Zhou, L.; Zhang, T.; Yang, J. Optimization of enzyme-assisted extraction and characterization of polysaccharides from Hericium erinaceus. Carbohydr. Polym. 2014, 101, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Dong, X.; Tong, J. Optimization of enzyme-assisted extraction of polysaccharides from alfalfa and its antioxidant activity. Int. J. Biol. Macromol. 2013, 62, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Huynh, N.T.; Smagghe, G.; Gonzales, G.B.; Van Camp, J.; Raes, K. Enzyme-assisted extraction enhancing the phenolic release from cauliflower (Brassica oleracea L. var. botrytis) outer leaves. J. Agric. Food Chem. 2014, 62, 7468–7476. [Google Scholar] [CrossRef]
- Casas, M.P.; Conde, E.; Dominguez, H.; Moure, A. Ecofriendly extraction of bioactive fractions from Sargassum muticum. Process Biochem. 2019, 79, 166–173. [Google Scholar] [CrossRef]
- Jamshidi, M.; Keramat, J.; Hamdami, N.; Farhadian, O. Optimization of protein extraction from Gelidiella acerosa by carbohydrases using response surface methodology. Phycol. Res. 2018, 66, 231–237. [Google Scholar] [CrossRef]
- Li, F.; Mao, Y.-D.; Wang, Y.-F.; Raza, A.; Qiu, L.-P.; Xu, X.-Q. Optimization of ultrasonic-assisted enzymatic extraction conditions for improving total phenolic content, antioxidant and antitumor activities in vitro from Trapa quadrispinosa Roxb. Residues. Molecules 2017, 22, 396. [Google Scholar] [CrossRef]
- Charoensiddhi, S.; Franco, C.; Su, P.; Zhang, W. Improved antioxidant activities of brown seaweed Ecklonia radiata extracts prepared by microwave-assisted enzymatic extraction. J. Appl. Phycol. 2015, 27, 2049–2058. [Google Scholar] [CrossRef]
- Zvyagintseva, T.N.; Shevchenko, N.M.; Chizhov, A.O.; Krupnova, T.N.; Sundukova, E.V.; Isakov, V.V. Water-soluble polysaccharides of some far-eastern brown seaweeds. Distribution, structure, and their dependence on the developmental conditions. J. Exp. Mar. Biol. Ecol. 2003, 294, 1–13. [Google Scholar] [CrossRef]
- Kravchenko, A.; Byankina Barabanova, A.; Glazunov, V.; Yakovleva, I.; Yermak, I. Seasonal variations in a polysaccharide composition of Far Eastern red seaweed Ahnfeltiopsis flabelliformis (Phyllophoraceae). J. Appl. Phycol. 2018, 30, 535–545. [Google Scholar] [CrossRef]
- García-Ríos, V.; Ríos-Leal, E.; Robledo, D.; Freile-Pelegrin, Y. Polysaccharides composition from tropical brown seaweeds. Phycol. Res. 2012, 60, 305–315. [Google Scholar] [CrossRef]
- Rhein-Knudsen, N.; Reyes-Weiss, D.; Horn, S.J. Extraction of high purity fucoidans from brown seaweeds using cellulases and alginate lyases. Int. J. Biol. Macromol. 2023, 229, 199–209. [Google Scholar] [CrossRef]
- Abraham, R.E.; Su, P.; Puri, M.; Raston, C.L.; Zhang, W. Optimisation of biorefinery production of alginate, fucoidan and laminarin from brown seaweed Durvillaea potatorum. Algal Res. 2019, 38, 101389. [Google Scholar] [CrossRef]
- Li, B.; Lu, F.; Wei, X.; Zhao, R. Fucoidan: Structure and bioactivity. Molecules 2008, 13, 1671–1695. [Google Scholar] [CrossRef] [PubMed]
- Grina, F.; Ullah, Z.; Kaplaner, E.; Moujahid, A.; Eddoha, R.; Nasser, B.; Terzioğlu, P.; Yilmaz, M.A.; Ertaş, A.; Öztürk, M.; et al. In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical fingerprints of five Moroccan seaweeds. S. Afr. J. Bot. 2020, 128, 152–160. [Google Scholar] [CrossRef]
- Yuan, Y.; Macquarrie, D.J. Microwave assisted step-by-step process for the production of fucoidan, alginate sodium, sugars and biochar from Ascophyllum nodosum through a biorefinery concept. Bioresour. Technol. 2015, 198, 819–827. [Google Scholar] [CrossRef]
- McDonald, S.; Prenzler, P.D.; Antolovich, M.; Robards, K. Phenolic content and antioxidant activity of olive extracts. Food Chem. 2001, 73, 73–84. [Google Scholar] [CrossRef]
- Dai, J.; Wu, Y.; Chen, S.W.; Zhu, S.; Yin, H.P.; Wang, M.; Tang, J. Sugar compositional determination of polysaccharides from Dunaliella salina by modified RP-HPLC method of precolumn derivatization with 1-phenyl-3-methyl-5-pyrazolone. Carbohydr. Polym. 2010, 82, 629–635. [Google Scholar] [CrossRef]
- Torres, P.; Novaes, P.; Ferreira, L.G.; Santos, J.P.; Mazepa, E.; Duarte, M.E.R.; Noseda, M.D.; Chow, F.; dos Santos, D.Y. Effects of extracts and isolated molecules of two species of Gracilaria (Gracilariales, Rhodophyta) on early growth of lettuce. Algal Res. 2018, 32, 142–149. [Google Scholar] [CrossRef]
- Mahdi-Pour, B.; Jothy, S.L.; Latha, L.Y.; Chen, Y.; Sasidharan, S. Antioxidant activity of methanol extracts of different parts of Lantana camara. Asian Pac. J. Trop. Biomed. 2012, 2, 960–965. [Google Scholar] [CrossRef]
Enzyme | Polysaccharide Recovery (%) * | Phenolic Recovery (%) ** |
---|---|---|
Cellulast | 10.00 ± 0.18 d | 27.02 ± 1.21 f |
Pectinex | 9.11 ± 0.22 f | 23.68 ± 0.85 g |
Alcalase | 65.93 ± 0.19 a | 74.96 ± 2.49 a |
Alcalase:Pectinex (1:1) | 50.93 ± 0.42 b | 60.67 ± 2.13 b |
Alcalase:Cellulast (1:1) | 38.35 ± 0.38 c | 54.69 ± 0.78 c |
Cellulast:Pectinex (1:1) | 9.54 ± 0.19 ef | 41.11 ± 0.29 d |
Distilled water alone | 7.79 ± 0.15 g | 29.87 ± 0.50 e |
Run | Variables | Responses | ||||
---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | Y1 (%) | Y2 (%) | |
1 | 0 | 1 | −1 | 0 | 80.64 | 73.90 |
2 | −1 | 1 | 0 | 0 | 81.67 | 80.51 |
3 | 0 | 1 | 0 | 1 | 74.22 | 86.20 |
4 | 1 | −1 | 0 | 0 | 76.45 | 85.63 |
5 | −1 | 0 | 1 | 0 | 72.79 | 71.98 |
6 | −1 | 0 | −1 | 0 | 79.42 | 76.60 |
7 | 0 | −1 | 0 | −1 | 70.34 | 82.79 |
8 | −1 | 0 | 0 | −1 | 72.26 | 78.17 |
9 | 0 | 0 | 1 | −1 | 75.70 | 71.83 |
10 | 1 | 0 | −1 | 0 | 79.14 | 67.85 |
11 | 0 | 1 | 0 | −1 | 82.59 | 79.59 |
12 | 0 | −1 | 1 | 0 | 73.47 | 84.21 |
13 | 0 | 0 | −1 | −1 | 80.19 | 74.89 |
14 | 1 | 0 | 0 | −1 | 82.19 | 86.06 |
15 | 0 | 0 | −1 | 1 | 78.38 | 64.86 |
16 | −1 | −1 | 0 | 0 | 64.76 | 85.92 |
17 | 0 | 0 | 1 | 1 | 76.51 | 86.06 |
18 | −1 | 0 | 0 | 1 | 76.56 | 81.29 |
19 | 1 | 1 | 0 | 0 | 73.87 | 91.89 |
20 | 0 | −1 | 0 | 1 | 73.55 | 82.79 |
21 | 0 | −1 | −1 | 0 | 75.53 | 67.57 |
22 | 0 | 1 | 1 | 0 | 77.09 | 75.75 |
23 | 1 | 0 | 0 | 1 | 73.70 | 87.62 |
24 | 1 | 0 | 1 | 0 | 78.28 | 85.28 |
25 | 0 | 0 | 0 | 0 | 84.49 | 98.72 |
26 | 0 | 0 | 0 | 0 | 83.91 | 97.16 |
27 | 0 | 0 | 0 | 0 | 84.10 | 97.16 |
Source | DF | SS | MS | F Value | Probability (P) > F |
---|---|---|---|---|---|
Model 1 (Polysaccharide recovery) | |||||
Model | 14 | 553.65 | 39.55 | 49.76 | <0.0001 |
Residual (error) | 12 | 9.54 | 0.80 | ||
Lack of fit | 10 | 9.37 | 0.94 | 10.94 | 0.087 |
Total | 26 | 563.19 | |||
R2 = 0.98; adjusted R2 = 0.96 | |||||
Model 2 (Phenolic recovery) | |||||
Model | 14 | 2047.13 | 146.22 | 67.31 | <0.0001 |
Residual (error) | 12 | 26.07 | 2.17 | ||
Lack of fit | 10 | 24.45 | 2.44 | 3.01 | 0.275 |
Total | 26 | ||||
R2 = 0.99; adjusted R2 = 0.97 |
Model Term | Model 1 (Y1, Polysaccharide Recovery) | Model 2 (Y2, Phenolic Recovery) | ||||||
---|---|---|---|---|---|---|---|---|
Parameter Estimate | Standard Error | t Value a | p Value | Parameter Estimate | Standard Error | t Value a | p Value | |
β0 | 84.17 | 0.51 | 163.53 | 0.000 b | 97.68 | 0.85 | 114.79 | 0.000 b |
β1 | 1.35 | 0.26 | 5.24 | 0.000 b | 2.49 | 0.43 | 5.85 | 0.000 b |
β2 | 3.00 | 0.26 | 11.65 | 0.000 b | −0.09 | 0.43 | −0.21 | 0.838 |
β3 | −1.62 | 0.26 | −6.30 | 0.000 b | 4.12 | 0.43 | 9.68 | 0.000 b |
β4 | −0.86 | 0.26 | −3.53 | 0.006 b | 1.29 | 0.43 | 0.03 | 0.010 b |
β11 | −4.42 | 0.39 | −11.45 | 0.000 b | −6.04 | 0.64 | −9.47 | 0.000 b |
β22 | −5.28 | 0.39 | −13.68 | 0.000 b | −6.30 | 0.64 | −9.87 | 0.000 b |
β33 | −2.41 | 0.39 | −6.25 | 0.000 b | −15.79 | 0.64 | −24.75 | 0.000 b |
β44 | −3.78 | 0.39 | −9.80 | 0.000 b | −8.12 | 0.64 | −12.73 | 0.000 b |
β12 | −4.87 | 0.45 | −10.34 | 0.000 b | 2.92 | 0.74 | 3.96 | 0.002 b |
β13 | 1.45 | 0.45 | 3.24 | 0.007 b | 5.51 | 0.74 | 7.48 | 0.000 b |
β14 | −3.20 | 0.45 | −7.18 | 0.000 b | −0.39 | 0.74 | −0.53 | 0.606 |
β23 | −0.37 | 0.45 | −0.84 | 0.420 | −3.70 | 0.74 | −5.02 | 0.000 b |
β24 | −2.90 | 0.45 | −6.50 | 0.000 b | 1.65 | 0.74 | 2.24 | 0.045 b |
β34 | 0.66 | 0.45 | 1.47 | 0.166 | 6.07 | 0.74 | 8.23 | 0.000 b |
Sample | Monosaccharide Compositions (%) * | |||||
---|---|---|---|---|---|---|
Mannuronic Acid | Guluronic Acid | Fucose | Glucose | Mannose | Others ** | |
Fraction A | 44.28 | 26.25 | - | 3.80 | 7.67 | 18.00 |
Fraction F | - | - | 54.28 | 2.53 | 5.84 | 37.35 |
Sample | IC50 Value (µg/mL) |
---|---|
Fraction F (enzymatic extraction) | 126.21 ± 1.31 d |
Fraction A (enzymatic extraction) | 140.55 ± 2.91 e |
Fraction P (enzymatic extraction) | 48.17 ± 1.80 b |
Phenolic (ethanol extraction) | 74.69 ± 1.20 c |
Fucoidan (acid extraction) | 265.68 ± 2.02 f |
Ascorbic acid | 28.65 ± 0.73 a |
Input Variables | Symbols | Levels | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Enzyme loading (%) | X1 | 0.2 | 0.3 | 0.4 |
Water-to-sample ratio (mL/g) | X2 | 50 | 60 | 70 |
Temperature (°C) | X3 | 50 | 60 | 70 |
Extraction time (h) | X4 | 1 | 2 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, H.C.; Ngo, K.N.; Tran, H.K.; Barrow, C.J. Enzyme-Assisted Coextraction of Phenolics and Polysaccharides from Padina gymnospora. Mar. Drugs 2024, 22, 42. https://doi.org/10.3390/md22010042
Nguyen HC, Ngo KN, Tran HK, Barrow CJ. Enzyme-Assisted Coextraction of Phenolics and Polysaccharides from Padina gymnospora. Marine Drugs. 2024; 22(1):42. https://doi.org/10.3390/md22010042
Chicago/Turabian StyleNguyen, Hoang Chinh, Kim Ngan Ngo, Hoai Khang Tran, and Colin J. Barrow. 2024. "Enzyme-Assisted Coextraction of Phenolics and Polysaccharides from Padina gymnospora" Marine Drugs 22, no. 1: 42. https://doi.org/10.3390/md22010042
APA StyleNguyen, H. C., Ngo, K. N., Tran, H. K., & Barrow, C. J. (2024). Enzyme-Assisted Coextraction of Phenolics and Polysaccharides from Padina gymnospora. Marine Drugs, 22(1), 42. https://doi.org/10.3390/md22010042