Semisynthesis, Structure Elucidation and Anti-Mycobacterium marinum Activity of a Series of Marine-Derived 14-Membered Resorcylic Acid Lactones with Interesting Ketal Groups
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Evaluation of Biological Activity
2.2.1. Anti-M. marinum and Other-Antimicrobial Activity
2.2.2. Anti-M. marinum Effects of Compounds 23, 24, 29, and 30 in Combination with Positive Drugs
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Fungal Material
3.3. Fermentation, Extraction, and Isolation
3.4. General Synthetic Methods for Compounds 10–37
3.4.1. General Procedure for the Synthesis of 10–26
3.4.2. General Procedure for the Synthesis of 28, 31, 33, and 34
3.4.3. General Procedure for the Synthesis of 27, 29, 30, 32, 35, and 37
3.4.4. Characterization Data of Compounds 10–37
3.5. Antimicrobial Activity
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holden, I.K.; Kehrer, M.; Andersen, A.B.; Wejse, C.; Svensson, E.; Johansen, I.S. Mycobacterium marinum infections in Denmark from 2004 to 2017: A retrospective study of incidence, patient characteristics, treatment regimens and outcome. Sci. Rep. 2018, 8, 6738. [Google Scholar] [CrossRef] [PubMed]
- Aubry, A.; Mougari, F.; Reibel, F.; Cambau, E. Mycobacterium marinum. Microbiol. Spectr. 2017, 5, 735–752. [Google Scholar] [CrossRef]
- Petrini, B. Mycobacterium marinum: Ubiquitous agent of waterborne granulomatous skin infections. Eur. J. Clin. Microbiol. Infect. Dis. 2006, 25, 609–613. [Google Scholar] [CrossRef]
- Jernigan, J.A.; Farr, B.M. Incubation period and sources of exposure for cutaneous Mycobacterium marinum infection: Case report and review of the literature. Clin. Infect. Dis. 2000, 31, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Steinbrink, J.; Alexis, M.; Angulo-Thompson, D.; Ramesh, M.; Alangaden, G.; Miceli, M.H. Mycobacterium marinum remains an unrecognized cause of indolent skin infections. Cutis 2017, 100, 331–336. [Google Scholar]
- Johnson, M.G.; Stout, J.E. Twenty-eight cases of Mycobacterium marinum infection: Retrospective case series and literature review. Infection 2015, 43, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, D.T.; Rhodes, M.W. Mycobacteriosis in fishes: A review. Vet. J. 2009, 180, 33–47. [Google Scholar] [CrossRef]
- Aubry, A.; Chosidow, O.; Caumes, E.; Robert, J.; Cambau, E. Sixtythree cases of Mycobacterium marinum infection: Clinical features, treatment, and antibiotic susceptibility of causative isolates. Arch. Intern. Med. 2002, 162, 1746–1752. [Google Scholar] [CrossRef]
- Haworth, C.S.; Banks, J.; Capstick, T.; Fisher, A.J.; Gorsuch, T.; Laurenson, I.F.; Leitch, A.; Loebinger, M.R.; Milburn, H.J.; Nightingale, M.; et al. British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax 2017, 72, ii1–ii64. [Google Scholar] [CrossRef]
- Canetti, D.; Riccardi, N.; Antonello, R.M.; Nozza, S.; Sotgiu, G. Mycobacterium marinum: A brief update for clinical purposes. Eur. J. Intern. Med. 2022, 105, 5–19. [Google Scholar] [CrossRef]
- Rallis, E.; Koumantaki-Mathioudaki, E. Treeatment of Mycobacterium marinum cutaneous infections. Expert. Opin. Pharmacother. 2007, 8, 2965–2978. [Google Scholar] [CrossRef] [PubMed]
- Gu, A.k.; Zhang, Y. Research progress of Mycobacterium marinum. Chin. J. Infect. Control 2022, 21, 1048–1052. [Google Scholar]
- Alffenaar, J.W.; Märtson, A.G.; Heysell, S.K.; Cho, J.G.; Patanwala, A.; Burch, G.; Kim, H.Y.; Sturkenboom, M.G.G.; Byrne, A.; Marriott, D.; et al. Therapeutic Drug Monitoring in Non-Tuberculosis Mycobacteria Infections. Clin. Pharmacokinet. 2021, 60, 711–725. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug. Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Lachance, H.; Wetzel, S.; Kumar, K.; Waldmann, H. Charting, navigating, and populating natural product chemical space for drug discovery. J. Med. Chem. 2012, 55, 5989–6001. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.X.; Yue, J.M. Frontier studies on natural products: Moving toward paradigm shifts. Sci. China Chem. 2023, 66, 928–942. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Hai, Y.; Cai, Z.M.; Li, P.J.; Wei, M.Y.; Wang, C.Y.; Gu, Y.C.; Shao, C.L. Trends of antimalarial marine natural products: Progresses, challenges and opportunities. Nat. Prod. Rep. 2022, 39, 969–990. [Google Scholar] [CrossRef]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2022, 39, 1122–1171. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.F.; Wu, N.N.; Wu, Y.W.; Qi, Y.X.; Wei, M.Y.; Pineda, L.M.; Ng, M.G.; Spadafora, C.; Zheng, J.Y.; Lu, L.; et al. Structure modification, antialgal, antiplasmodial, and toxic evaluations of a series of new marine-derived 14-membered resorcylic acid lactone derivatives. Mar. Life Sci. Technol. 2022, 4, 88–97. [Google Scholar] [CrossRef]
- Hou, X.M.; Wang, C.Y.; Gerwick, W.H.; Shao, C.L. Marine natural products as potential anti-tubercular agents. Eur. J. Med. Chem. 2019, 165, 273–292. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.L.; Wu, H.X.; Wang, C.Y.; Liu, Q.A.; Xu, Y.; Wei, M.Y.; Qian, P.Y.; Gu, Y.C.; Zheng, C.J.; She, Z.G.; et al. Potent antifouling resorcylic acid lactones from the gorgonian-derived fungus Cochliobolus lunatus. J. Nat. Prod. 2011, 74, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhou, Y.; Zhang, X.X.; Yang, L.J.; Liu, J.Y.; Wightman, S.M.; Lv, L.; Liu, Z.Q.; Wang, C.Y.; Zhao, C.Y. Identification of marine natural product Pretrichodermamide B as a STAT3 inhibitor for efficient anticancer therapy. Mar. Life Sci. Technol. 2023, 5, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Mándi, A.; Li, H.L.; Li, X.M.; Li, X.; Meng, L.H.; Yang, S.Q.; Shi, X.S.; Kurtán, T.; Wang, B.G. Isolation and characterization of three pairs of verrucosidin epimers from the marine sediment-derived fungus Penicillium cyclopium and configuration revision of penicyrone A and related analogues. Mar. Life Sci. Technol. 2023, 5, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2016, 33, 382–431. [Google Scholar] [CrossRef]
- Jia, Y.L.; Wei, M.Y.; Chen, H.Y.; Guan, F.F.; Wang, C.Y.; Shao, C.L. (+)- and (−)-Pestaloxazine A, a Pair of Antiviral Enantiomeric Alkaloid Dimers with a Symmetric Spiro[oxazinane-piperazinedione] Skeleton from Pestalotiopsis sp. Org. Lett. 2015, 17, 4216–4219. [Google Scholar] [CrossRef]
- Han, Y.Q.; Zhang, Q.; Xu, W.F.; Hai, Y.; Chao, R.; Wang, C.F.; Hou, X.M.; Wei, M.Y.; Gu, Y.C.; Wang, C.Y. Targeted isolation of antitubercular cycloheptapeptides and an unusual pyrroloindoline-containing new analog, asperpyrroindotide A, using LC-MS/MS-based molecular networking. Mar. Life Sci. Technol. 2023, 5, 85–93. [Google Scholar] [CrossRef]
- Chen, J.; Xu, L.; Zhang, X.Q.; Liu, X.; Zhang, Z.X.; Zhu, Q.M.; Liu, J.Y.; Iqbal, M.O.; Ding, N.; Shao, C.L. Discovery of a natural small-molecule AMP-activated kinase activator that alleviates nonalcoholic steatohepatitis. Mar. Life Sci. Technol. 2023, 5, 196–210. [Google Scholar] [CrossRef]
- Jana, N.; Nanda, S. Resorcylic acid lactones (RALs) and their structural congeners: Recent advances in their biosynthesis, chemical synthesis and biology. New J. Chem. 2018, 42, 17803–17873. [Google Scholar] [CrossRef]
- Liu, Q.A.; Shao, C.L.; Gu, Y.C.; Blum, M.; Gan, L.S.; Wang, K.L.; Chen, M.; Wang, C.Y. Antifouling and Fungicidal Resorcylic Acid Lactones from the Sea Anemone-Derived Fungus Cochliobolus lunatus. J. Agric. Food. Chem. 2014, 62, 3183–3191. [Google Scholar] [CrossRef]
- Xu, W.F.; Xue, X.J.; Qi, Y.X.; Wu, N.N.; Wang, C.Y.; Shao, C.L. Cochliomycin G, a 14-membered resorcylic acid lactone from a marine-derived fungus Cochliobolus lunatus. Nat. Prod. Res. 2021, 35, 490–493. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Q.; Spadafora, C.; Pineda, L.M.; Ng, M.G.; Sun, J.H.; Wang, W.; Wang, C.Y.; Gu, Y.C.; Shao, C.L. Discovery, Semisynthesis, Antiparasitic and Cytotoxic Evaluation of 14-Membered Resorcylic Acid Lactones and Their Derivatives. Sci. Rep. 2017, 7, 11822. [Google Scholar] [CrossRef] [PubMed]
- Jing, Q.Q.; Yin, J.N.; Cheng, Y.J.; Zhang, Q.; Cao, X.Z.; Xu, W.F.; Shao, C.L.; Wei, M.Y. Study on the Anti-Mycobacterium marinum Activity of a Series of Marine-Derived 14-Membered Resorcylic Acid Lactone Derivatives. Mar. Drugs 2024, 22, 135. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Shao, C.L.; Chen, M.; Liu, Q.A.; Wang, C.Y. Brominated resorcylic acid lactones from the marine-derived fungus Cochliobolus lunatus induced by histone deacetylase inhibitors. Tetrahedron Lett. 2014, 55, 4888–4891. [Google Scholar] [CrossRef]
- Wang, K.L.; Zhang, G.; Sun, J.; Xu, Y.; Han, Z.; Liu, L.L.; Shao, C.L.; Liu, Q.A.; Wang, C.Y.; Qian, P.Y. Cochliomycin A inhibits the larval settlement of Amphibalanus amphitrite by activating the NO/cGMP pathway. Biofouling 2016, 32, 35–44. [Google Scholar] [CrossRef]
- Zhang, Q.; Lv, L.X.; Wang, W.H.; Wei, M.Y.; Gu, Y.C.; Shao, C.L. Recent Advances of Bioactive Marine Natural Products in Drug Discovery. J. Ocean Univ. China 2024, 23, 1297–1318. [Google Scholar] [CrossRef]
- Koul, A.; Arnoult, E.; Lounis, N.; Guillemont, J.; Andries, K. The challenge of new drug discovery for tuberculosis. Nature 2011, 469, 483–490. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- Chen, W.J.; Bao, F.F.; Pan, Q.; Liu, T.T.; Xue, X.T.; Liu, H.; Zhang, F.R. A Series of 35 Cutaneous Infections Caused by Mycobacterium marinum in Han Chinese Population. J. Trop. Med. 2023, 2023, 5514275. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, P.; Wu, R.; Li, H.L.; Duan, Y.; Cai, C.N.; Liu, Z.X.; She, P.F.; Zhang, D. Simeprevir restores the anti-Staphylococcus activity of polymyxins. AMB Express 2023, 13, 122. [Google Scholar] [CrossRef]
Compound | 4′ | 5′ | 6′ |
---|---|---|---|
11 | 4.19, m | 3.68, dd (8.5, 2.5) | 4.62, t (8.5) |
12 | 4.32, m | 3.93, dd (8.5, 2.3) | 4.49, t (8.5) |
13 | 4.20, m | 3.74, dd (8.4, 2.4) | 4.58, t (8.4) |
14 | 4.27, m | 3.91, dd 8.4, 2.3) | 4.49, t (8.4) |
15 | 4.32, m | 3.73, dd (7.3, 2.2) | 4.70, dd (9.5, 7.3) |
16 | 4.22, m | 4.03, dd (8.3, 2.2) | 4.59, t (8.3) |
17 | 4.31, m | 3.71, dd (7.3, 2.2) | 4.69, dd (9.5, 7.3) |
18 | 4.22, m | 4.02, dd (8.4, 2.2) | 4.58, t (8.4) |
19 | 4.34, m | 3.73, dd (7.3, 2.2) | 4.72, dd (9.4, 7.3) |
20 | 4.26, m | 4.02, dd (8.4, 2.3) | 4.55, t (8.4) |
21 | 4.30, m | 3.69, dd (7.3, 2.2) | 4.69, dd (9.4, 7.3) |
22 | 4.22, m | 4.02, dd (8.3, 2.2) | 4.56, t (8.3) |
23 | 4.19, m | 3.79, dd (8.5, 2.4) | 4.60, t (8.5) |
24 | 4.21, m | 3.90, dd (8.3, 2.1) | 4.58, t (8.3) |
25 | 4.23, m | 3.89, dd (8.4, 2.3) | 4.62, t (8.4) |
26 | 4.26, m | 3.96, dd (7.6, 2.1) | 4.62, t (7.6) |
29 | 4.17, m | 3.71, dd (8.7, 2.5) | 4.59, t (8.7) |
30 | 4.20, m | 3.81, dd (8.6, 2.2) | 4.56, t (8.6) |
31 | 4.30, m | 3.65, dd (9.0, 2.4) | 4.69, t (9.0) |
32 | 4.20, m | 3.94, dd (8.6, 2.2) | 4.53, t (8.6) |
33 | 4.32, m | 3.64, dd (8.1, 2.3) | 4.70, t (8.1) |
34 | 4.24, m | 3.95, dd (8.7, 2.4) | 4.51, t (8.7) |
36 | 4.17, m | 3.67, dd (8.7, 2.5) | 4.57, t (8.7) |
37 | 4.25, m | 3.82, dd (8.7, 2.4) | 4.45, t (8.7) |
Compound | MIC90 (µM) | |||||
---|---|---|---|---|---|---|
M. marinum | S. aureus | E. coli | P. aeruginosa | C. albicans | V. vulnificus | |
11 | >200 | >100 | >100 | >100 | >100 | >100 |
15 | 80 | 25 | >100 | >100 | >100 | >100 |
16 | 80 | >100 | >100 | >100 | >100 | >100 |
17 | 80 | >100 | >100 | >100 | >100 | >100 |
18 | 70 | >100 | >100 | >100 | >100 | >100 |
19 | 70 | >100 | >100 | >100 | >100 | >100 |
20 | 70 | >100 | >100 | >100 | >100 | >100 |
21 | 80 | 25 | >100 | >100 | >100 | >100 |
22 | 80 | >100 | nt | >100 | >100 | nt |
23 | 80 | >100 | >100 | >100 | >100 | >100 |
24 | 70 | >100 | >100 | >100 | >100 | 25 |
28 | 70 | >100 | >100 | >100 | >100 | >100 |
29 | 70 | 50 | >100 | >100 | >100 | >100 |
30 | 80 | >100 | 25 | >100 | >100 | >100 |
31 | 80 | >100 | >100 | >100 | >100 | >100 |
32 | 80 | >100 | nt | >100 | >100 | nt |
33 | 80 | >100 | nt | >100 | >100 | nt |
34 | 90 | >100 | nt | >100 | >100 | nt |
35 | 80 | >100 | nt | >100 | >100 | nt |
Isoniazid | 40 | nt | nt | nt | nt | nt |
Rifampicin | 10 | nt | nt | nt | nt | nt |
Ciprofloxacin | nt | 3.13 | 0.10 | 1.56 | nt | nt |
Amphotericin B | nt | nt | nt | nt | 0.84 | nt |
Chloramphenicol | nt | nt | nt | nt | nt | 9.75 |
Isoniazid MIC90 (µM) | Compounds MIC90 (µM) | FICI 1 | Mode of Action | |||
---|---|---|---|---|---|---|
Alone | Combined | Alone | Combined | |||
23 | 40 | 20 | 80 | 40 | 1 | additive |
24 | 40 | 20 | 70 | 8.75 | 0.625 | additive |
29 | 40 | 20 | 70 | 8.75 | 0.625 | additive |
30 | 40 | 20 | 80 | 40 | 1 | additive |
Rifampicin MIC90 (µM) | Compounds MIC90 (µM) | FICI 1 | Mode of Action | |||
---|---|---|---|---|---|---|
Alone | Combined | Alone | Combined | |||
23 | 10 | 5 | 80 | 20 | 0.75 | additive |
24 | 10 | 5 | 70 | 8.75 | 0.625 | additive |
29 | 10 | 5 | 70 | 8.75 | 0.625 | additive |
30 | 10 | 5 | 80 | 20 | 0.75 | additive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, J.-N.; Wang, C.-F.; Zhang, X.-L.; Cheng, Y.-J.; Wu, Y.-W.; Zhang, Q.; Shao, C.-L.; Wei, M.-Y.; Gu, Y.-C. Semisynthesis, Structure Elucidation and Anti-Mycobacterium marinum Activity of a Series of Marine-Derived 14-Membered Resorcylic Acid Lactones with Interesting Ketal Groups. Mar. Drugs 2024, 22, 431. https://doi.org/10.3390/md22100431
Yin J-N, Wang C-F, Zhang X-L, Cheng Y-J, Wu Y-W, Zhang Q, Shao C-L, Wei M-Y, Gu Y-C. Semisynthesis, Structure Elucidation and Anti-Mycobacterium marinum Activity of a Series of Marine-Derived 14-Membered Resorcylic Acid Lactones with Interesting Ketal Groups. Marine Drugs. 2024; 22(10):431. https://doi.org/10.3390/md22100431
Chicago/Turabian StyleYin, Jun-Na, Cui-Fang Wang, Xiu-Li Zhang, Ya-Jie Cheng, Yan-Wei Wu, Qun Zhang, Chang-Lun Shao, Mei-Yan Wei, and Yu-Cheng Gu. 2024. "Semisynthesis, Structure Elucidation and Anti-Mycobacterium marinum Activity of a Series of Marine-Derived 14-Membered Resorcylic Acid Lactones with Interesting Ketal Groups" Marine Drugs 22, no. 10: 431. https://doi.org/10.3390/md22100431
APA StyleYin, J. -N., Wang, C. -F., Zhang, X. -L., Cheng, Y. -J., Wu, Y. -W., Zhang, Q., Shao, C. -L., Wei, M. -Y., & Gu, Y. -C. (2024). Semisynthesis, Structure Elucidation and Anti-Mycobacterium marinum Activity of a Series of Marine-Derived 14-Membered Resorcylic Acid Lactones with Interesting Ketal Groups. Marine Drugs, 22(10), 431. https://doi.org/10.3390/md22100431