Therapeutic Effect of Decellularized Extracellular Matrix from Fish Skin for Accelerating Skin Regeneration
Abstract
:1. Introduction
2. Results
2.1. Decellularization of Fish Skin and Measurement of DNA Content
2.2. Chemical Composition
2.3. FT-IR Analysis
2.4. Thermodynamic Analysis
2.5. Tensile Properties
2.6. Wound Closure and Re-Epithelization in Cutaneous Wound
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of Decellulairzed Extracellular Matrix from Olive Flounder
4.3. Approximate Chemical Composition
4.4. DNA Content and Histological Assessment
4.5. Glycosaminoglycans (GAGs) Content Analysis
4.6. Collagen Content Analaysis
4.7. Analysis of dECM Morphology
4.8. FT-IR
4.9. Analysis of Mechanical Properties
4.10. Thermal Analysis
4.11. In Vivo Cutaneous Wound Healing on Animal Model After dFS Implantation
4.12. Histological Analysis In Vivo
4.13. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Memic, A.; Abdullah, T.; Mohammed, H.S.; Joshi Navare, K.; Colombani, T.; Bencherif, S.A. Latest progress in electrospun nanofibers for wound healing applications. ACS Appl. Bio Mater. 2019, 2, 952–969. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Li, J.; Gao, W.; Shi, M.; Tang, F.; Fu, X.; Chen, X. Coaxial nanofibrous scaffolds mimicking the extracellular matrix transition in the wound healing process promoting skin regeneration through enhancing immunomodulation. J. Mater. Chem. B 2021, 9, 1395–1405. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, T.; Wang, L.; Jiang, J.; Xie, G.; Huangfu, X.; Dong, S.; Zhao, J. Tissue-engineered decellularized allografts for anterior cruciate ligament reconstruction. ACS Biomater. Sci. Eng. 2020, 6, 5700–5710. [Google Scholar] [CrossRef] [PubMed]
- Yao, D.; Liu, H.; Fan, Y. Silk scaffolds for musculoskeletal tissue engineering. Exp. Biol. Med. 2016, 241, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Schlottmann, F.; Bucan, V.; Vogt, P.M.; Krezdorn, N. A short history of skin grafting in burns: From the gold standard of autologous skin grafting to the possibilities of allogeneic skin grafting with immunomodulatory approaches. Medicina 2021, 57, 225. [Google Scholar] [CrossRef]
- Esmaeili, A.; Soleimani, M.; Rouhani, M.; Noorkhajavi, G.; Aghaei-Zarch, S.M.; Hasannejad-Asl, B.; Bagheri-Mohammadi, S.; Ebrahimi, M.; Keshel, S.H. Xenograft-based skin substitutes: A critical review. J. Drug Deliv. Sci. Technol. 2024, 95, 105613. [Google Scholar] [CrossRef]
- Xu, H.; Wan, H.; Sandor, M.; Qi, S.; Ervin, F.; Harper, J.R.; Silverman, R.P.; McQuillan, D.J. Host response to human acellular dermal matrix transplantation in a primate model of abdominal wall repair. Tissue Eng. Part A 2008, 14, 2009–2019. [Google Scholar] [CrossRef]
- Wong, M.L.; Griffiths, L.G. Immunogenicity in xenogeneic scaffold generation: Antigen removal vs. decellularization. Acta Biomater. 2014, 10, 1806–1816. [Google Scholar] [CrossRef]
- Hsieh, C.-M.; Wang, W.; Chen, Y.-H.; Wei, P.-S.; Liu, Y.-H.; Sheu, M.-T.; Ho, H.-O. A novel composite hydrogel composed of formic acid-decellularized pepsin-soluble extracellular matrix hydrogel and sacchachitin hydrogel as wound dressing to synergistically accelerate diabetic wound healing. Pharmaceutics 2020, 12, 538. [Google Scholar] [CrossRef]
- Jorgensen, A.M.; Chou, Z.; Gillispie, G.; Lee, S.J.; Yoo, J.J.; Soker, S.; Atala, A. Decellularized skin extracellular matrix (dsECM) improves the physical and biological properties of fibrinogen hydrogel for skin bioprinting applications. Nanomaterials 2020, 10, 1484. [Google Scholar] [CrossRef]
- He, M.; Callanan, A. Comparison of methods for whole-organ decellularization in tissue engineering of bioartificial organs. Tissue Eng. Part B Rev. 2013, 19, 194–208. [Google Scholar] [CrossRef] [PubMed]
- Dussoyer, M.; Michopoulou, A.; Rousselle, P. Decellularized scaffolds for skin repair and regeneration. Appl. Sci. 2020, 10, 3435. [Google Scholar] [CrossRef]
- Long, Y.; Li, Q.; Zhou, B.; Song, G.; Li, T.; Cui, Z. De novo assembly of mud loach (Misgurnus anguillicaudatus) skin transcriptome to identify putative genes involved in immunity and epidermal mucus secretion. PLoS ONE 2013, 8, e56998. [Google Scholar] [CrossRef] [PubMed]
- Rakers, S.; Gebert, M.; Uppalapati, S.; Meyer, W.; Maderson, P.; Sell, A.F.; Kruse, C.; Paus, R. ‘Fish matters’: The relevance of fish skin biology to investigative dermatology. Exp. Dermatol. 2010, 19, 313–324. [Google Scholar] [CrossRef]
- Sackett, S.D.; Tremmel, D.M.; Ma, F.; Feeney, A.K.; Maguire, R.M.; Brown, M.E.; Zhou, Y.; Li, X.; O’Brien, C.; Li, L. Extracellular matrix scaffold and hydrogel derived from decellularized and delipidized human pancreas. Sci. Rep. 2018, 8, 10452. [Google Scholar] [CrossRef]
- Kim, B.S.; Kwon, Y.W.; Kong, J.-S.; Park, G.T.; Gao, G.; Han, W.; Kim, M.-B.; Lee, H.; Kim, J.H.; Cho, D.-W. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: A step towards advanced skin tissue engineering. Biomaterials 2018, 168, 38–53. [Google Scholar] [CrossRef]
- Moyer, A.M.; Gandhi, M.J. Human leukocyte antigen (HLA) testing in pharmacogenomics. In Pharmacogenomics in Drug Discovery and Development; Springer: Berlin/Heidelberg, Germany, 2022; pp. 21–45. [Google Scholar]
- Shu, S.; Ren, J.; Song, J. Cardiac xenotransplantation: A promising way to treat advanced heart failure. Heart Fail. Rev. 2022, 27, 71–91. [Google Scholar] [CrossRef]
- Lu, Y.; Shao, A.; Shan, Y.; Zhao, H.; Leiguo, M.; Zhang, Y.; Tang, Y.; Zhang, W.; Jin, Y.; Xu, L. A standardized quantitative method for detecting remnant alpha-Gal antigen in animal tissues or animal tissue-derived biomaterials and its application. Sci. Rep. 2018, 8, 15424. [Google Scholar] [CrossRef]
- Jang, J.; Park, H.-J.; Kim, S.-W.; Kim, H.; Park, J.Y.; Na, S.J.; Kim, H.J.; Park, M.N.; Choi, S.H.; Park, S.H. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials 2017, 112, 264–274. [Google Scholar] [CrossRef]
- Alexanian, R.A.; Mahapatra, K.; Lang, D.; Vaidyanathan, R.; Markandeya, Y.S.; Gill, R.K.; Zhai, A.J.; Dhillon, A.; Lea, M.R.; Abozeid, S. Induced cardiac progenitor cells repopulate decellularized mouse heart scaffolds and differentiate to generate cardiac tissue. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2020, 1867, 118559. [Google Scholar] [CrossRef]
- Hos, D.; van Essen, T.; Bock, F.; Chou, C.-H.; Pan, H.-A.; Lin, C.-C.; Huang, M.-C.; Chen, S.-C.; Cursiefen, C.; Jager, M. Decellularized collagen matrix from tilapia fish scales for corneal reconstruction (BioCornea). Ophthalmologe 2014, 111, 1027–1032. [Google Scholar] [CrossRef] [PubMed]
- Parmaksiz, M.; Elcin, A.E.; Elcin, Y.M. Decellularization of bovine small intestinal submucosa and its use for the healing of a critical-sized full-thickness skin defect, alone and in combination with stem cells, in a small rodent model. J. Tissue Eng. Regen. Med. 2017, 11, 1754–1765. [Google Scholar] [CrossRef] [PubMed]
- Badylak, S.F. Decellularized allogeneic and xenogeneic tissue as a bioscaffold for regenerative medicine: Factors that influence the host response. Ann. Biomed. Eng. 2014, 42, 1517–1527. [Google Scholar] [CrossRef] [PubMed]
- Volpi, N. Chondroitin sulfate safety and quality. Molecules 2019, 24, 1447. [Google Scholar] [CrossRef]
- Ahmed, R.; Haq, M.; Chun, B.-S. Characterization of marine derived collagen extracted from the by-products of bigeye tuna (Thunnus obesus). Int. J. Biol. Macromol. 2019, 135, 668–676. [Google Scholar] [CrossRef]
- Lau, C.S.; Hassanbhai, A.; Wen, F.; Wang, D.; Chanchareonsook, N.; Goh, B.T.; Yu, N.; Teoh, S.H. Evaluation of decellularized tilapia skin as a tissue engineering scaffold. J. Tissue Eng. Regen. Med. 2019, 13, 1779–1791. [Google Scholar] [CrossRef]
- Remya, V.; Kumar, N.; Sharma, A.; Mathew, D.D.; Negi, M.; Maiti, S.; Shrivastava, S.; Kurade, N. Bone marrow derived cell-seeded extracellular matrix: A novel biomaterial in the field of wound management. Vet. World 2014, 7, 1019–1025. [Google Scholar] [CrossRef]
- Heo, S.Y.; Ko, S.C.; Nam, S.Y.; Oh, J.; Kim, Y.M.; Kim, J.I.; Kim, N.; Yi, M.; Jung, W.K. Fish bone peptide promotes osteogenic differentiation of MC3T3-E1 pre-osteoblasts through upregulation of MAPKs and Smad pathways activated BMP-2 receptor. Cell Biochem. Funct. 2018, 36, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Transports, T.I.-L.D. A Teleost Polymeric Ig Receptor Exhibiting. J. Immunol. 2007, 178, 5682–5689. [Google Scholar]
- Aleström, P.; Winther-Larsen, H.C. Zebrafish offer aquaculture research their services. In Genomics in Aquaculture; Elsevier: Amsterdam, The Netherlands, 2016; pp. 165–194. [Google Scholar]
- Badylak, S.F.; Brown, B.N.; Gilbert, T.W. Tissue engineering with decellularized tissues. In Biomaterials Science; Elsevier: Amsterdam, The Netherlands, 2013; pp. 1316–1331. [Google Scholar]
- Magnusson, S.; Baldursson, B.T.; Kjartansson, H.; Rolfsson, O.; Sigurjonsson, G.F. Regenerative and antibacterial properties of acellular fish skin grafts and human amnion/chorion membrane: Implications for tissue preservation in combat casualty care. Mil. Med. 2017, 182 (Suppl. 1), 383–388. [Google Scholar] [CrossRef]
- Lohmann, N.; Schirmer, L.; Atallah, P.; Wandel, E.; Ferrer, R.A.; Werner, C.; Simon, J.C.; Franz, S.; Freudenberg, U. Glycosaminoglycan-based hydrogels capture inflammatory chemokines and rescue defective wound healing in mice. Sci. Transl. Med. 2017, 9, eaai9044. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.-F.; Hsu, W.-C.; Hsiao, J.-K.; Chen, G.-S.; Wang, J.-Y. Collagen-glycosaminoglycan matrix implantation promotes angiogenesis following surgical brain trauma. BioMed Res. Int. 2014, 2014, 672409. [Google Scholar] [CrossRef]
- Wilkinson, H.N.; Hardman, M.J. Wound healing: Cellular mechanisms and pathological outcomes. Open Biol. 2020, 10, 200223. [Google Scholar] [CrossRef] [PubMed]
- Marasinghe, C.K.; Jung, W.-K.; Je, J.-Y. OxLDL-induced foam cell formation inhibitory activity of pepsin hydrolysate of ark shell (Scapharca subcrenata (Lischke, 1869)) in RAW264. 7 macrophages. J. Food Biochem. 2023, 2023, 6905673. [Google Scholar] [CrossRef]
- Kirkpinar, F.; Basmacioglu, H. Effects of pelleting temperature of phytase supplemented broiler feed on tibia mineralization, calcium and phosphorus content of serum and performance. Czech J. Anim. Sci. 2006, 51, 78. [Google Scholar] [CrossRef]
- Ko, S.-C.; Kang, M.C.; Lee, J.-K.; Byun, H.-G.; Kim, S.-K.; Lee, S.-C.; Jeon, B.-T.; Park, P.-J.; Jung, W.-K.; Jeon, Y.-J. Effect of angiotensin I-converting enzyme (ACE) inhibitory peptide purified from enzymatic hydrolysates of Styela plicata. Eur. Food Res. Technol. 2011, 233, 915–922. [Google Scholar] [CrossRef]
- Keane, T.J.; Londono, R.; Turner, N.J.; Badylak, S.F. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials 2012, 33, 1771–1781. [Google Scholar] [CrossRef]
- Kim, T.-H.; Kim, S.-C.; Park, W.S.; Choi, I.-W.; Kim, H.-W.; Kang, H.W.; Kim, Y.-M.; Jung, W.-K. PCL/gelatin nanofibers incorporated with starfish polydeoxyribonucleotides for potential wound healing applications. Mater. Des. 2023, 229, 111912. [Google Scholar] [CrossRef]
- Kim, T.-H.; Kim, M.-S.; Kim, N.-G.; Linh, N.V.; Doan, H.V.; Kim, Y.-M.; Park, S.-H.; Jung, W.-K. Multifunctional Microneedle Patch with Diphlorethohydroxycarmalol for Potential Wound Dressing. Tissue Eng. Regen. Med. 2024, 21, 1007–1019. [Google Scholar] [CrossRef]
Native Fish Skin (g/100 g) | Decellularized Fish Skin (g/100 g) | |
---|---|---|
Protein | 90.9 | 90.8 |
Carbohydrate | 0.4 | 2.7 |
Lipid | 3.5 | 2.9 |
Moisture | 4.0 | 3.6 |
Ash | 1.2 | 0 |
Maximum Stress (MPa) | Tensile Strength (MPa) | Young’s Modulus (MPa) | |
---|---|---|---|
Native fish skin | 32.19 ± 2.11 | 32.30 ± 0.51 | 240.24 ± 16.20 |
Decellularized fish skin | 6.07 ± 1.24 | 6.80 ± 1.15 | 92.89 ± 11.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heo, S.-Y.; Kim, T.-H.; Kim, S.-C.; Oh, G.-W.; Heo, S.-J.; Jung, W.-K. Therapeutic Effect of Decellularized Extracellular Matrix from Fish Skin for Accelerating Skin Regeneration. Mar. Drugs 2024, 22, 437. https://doi.org/10.3390/md22100437
Heo S-Y, Kim T-H, Kim S-C, Oh G-W, Heo S-J, Jung W-K. Therapeutic Effect of Decellularized Extracellular Matrix from Fish Skin for Accelerating Skin Regeneration. Marine Drugs. 2024; 22(10):437. https://doi.org/10.3390/md22100437
Chicago/Turabian StyleHeo, Seong-Yeong, Tae-Hee Kim, Se-Chang Kim, Gun-Woo Oh, Soo-Jin Heo, and Won-Kyo Jung. 2024. "Therapeutic Effect of Decellularized Extracellular Matrix from Fish Skin for Accelerating Skin Regeneration" Marine Drugs 22, no. 10: 437. https://doi.org/10.3390/md22100437
APA StyleHeo, S. -Y., Kim, T. -H., Kim, S. -C., Oh, G. -W., Heo, S. -J., & Jung, W. -K. (2024). Therapeutic Effect of Decellularized Extracellular Matrix from Fish Skin for Accelerating Skin Regeneration. Marine Drugs, 22(10), 437. https://doi.org/10.3390/md22100437