Antioxidative and Anti-Atopic Dermatitis Effects of Peptides Derived from Hydrolyzed Sebastes schlegelii Tail By-Products
Abstract
:1. Introduction
2. Results
2.1. Yield and ABTS Radical Scavenging Activity of Hydrolysates from Sebastes schlegelii Tail
2.2. Isolation of Antioxidant Peptides from Sebastes schlegelii Tail Hydrolysates
2.3. Effects of MP003 on Symptoms of AD in DNCB-Induced NC/Nga Mice
2.4. Effect of MP003 on Eosinophil and Mast Cell Infiltration in Skin Tissues of DNCB-Induced NC/Nga Mice
2.5. Effect of MP003 on Cytokine and IgE Levels in the Serum of DNCB-Induced NC/Nga Mice
2.6. Effect of MP003 on IL-1β and IL-6 Gene Expression in the Skin Tissues of DNCB-Induced NC/Nga Mice
2.7. Effect of MP003 on STAT3 Protein Expression in the Skin Tissues of DNCB-Induced NC/Nga Mice
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Production of Hydrolysate from Sebastes schlegelii Tail By-Products
4.3. Measurement of ABTS Radical Scavenging Activity
4.4. Peptide Separation from Hydrolysate
4.5. Amino Acid Sequence Analysis and Synthesis
4.6. Histological Evaluation in the DNCB-Induced AD Model
4.7. Measurement of Cytokine and IgE Levels in Serum
4.8. RNA Extraction and RT-PCR
4.9. Western Blot Analysis
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Langan, S.M.; Irvine, A.D.; Weidinger, S. Atopic Dermatitis. Lancet 2020, 396, 345–360. [Google Scholar] [CrossRef] [PubMed]
- Sroka-Tomaszewska, J.; Trzeciak, M. Molecular Mechanisms of Atopic Dermatitis Pathogenesis. Int. J. Mol. Sci. 2021, 22, 4130. [Google Scholar] [CrossRef] [PubMed]
- Edslev, S.M.; Agner, T.; Andersen, P.S. Skin Microbiome in Atopic Dermatitis. Acta Derm. Venereol. 2020, 100, adv00164. [Google Scholar] [CrossRef] [PubMed]
- Fishbein, A.B.; Silverberg, J.I.; Wilson, E.J.; Ong, P.Y. Update on Atopic Dermatitis: Diagnosis, Severity Assessment, and Treatment Selection. J. Allergy Clin. Immunol. Pract. 2020, 8, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, J.I. Comorbidities and the Impact of Atopic Dermatitis. Ann. Allergy Asthma Immunol. 2019, 123, 144–151. [Google Scholar] [CrossRef]
- Puar, N.; Chovatiya, R.; Paller, A.S. New Treatments in Atopic Dermatitis. Ann. Allergy Asthma Immunol. 2021, 126, 21–31. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations [FAO]. The State of World Fisheries and Aquaculture 2020: Sustainability in Action; FAO: Rome, Italy, 2020. [Google Scholar]
- Al Khawli, F.; Martí-Quijal, F.J.; Ferrer, E.; Ruiz, M.J.; Berrada, H.; Gavahian, M.; Barba, F.J. Aquaculture and Its By-products as a Source of Nutrients and Bioactive Compounds. Adv. Food Nutr. Res. 2020, 92, 1–33. [Google Scholar]
- Zeller, D.; Cashion, T.; Palomares, M.; Pauly, D. Global Marine Fisheries Discards: A Synthesis of Reconstructed Data. Fish Fish. 2018, 19, 30–39. [Google Scholar] [CrossRef]
- Martí-Quijal, F.J.; Remize, F.; Meca, G.; Ferrer, E.; Ruiz, M.J.; Barba, F.J. Fermentation in Fish and By-products Processing: An Overview of Current Research and Future Prospects. Curr. Opin. Food Sci. 2020, 31, 9–16. [Google Scholar] [CrossRef]
- Ucak, I.; Afreen, M.; Montesano, D.; Carrillo, C.; Tomasevic, I.; Simal-Gandara, J.; Barba, F.J. Functional and Bioactive Properties of Peptides Derived from Marine Side Streams. Mar. Drugs 2021, 19, 71. [Google Scholar] [CrossRef]
- Abhari, K.; Khaneghah, A.M. Alternative Extraction Techniques to Obtain, Isolate and Purify Proteins and Bioactives from Aquaculture and By-Products. Adv. Food Nutr. Res. 2020, 92, 35–52. [Google Scholar] [PubMed]
- Dave, D.; Liu, Y.; Clark, L.; Dave, N.; Trenholm, S.; Westcott, J. Availability of Marine Collagen from Newfoundland Fisheries and Aquaculture Waste Resources. Bioresour. Technol. Rep. 2019, 7, 100271. [Google Scholar] [CrossRef]
- León-López, A.; Morales-Peñaloza, A.; Martínez-Juárez, V.M.; Vargas-Torres, A.; Zeugolis, D.I.; Aguirre-Álvarez, G. Hydrolyzed Collagen-Sources and Applications. Molecules 2019, 24, 4031. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, A.; Blanco, M.; Correa, B.; Perez-Martin, R.I.; Sotelo, C.G. Effect of Fish Collagen Hydrolysates on Type I Collagen mRNA Levels of Human Dermal Fibroblast Culture. Mar. Drugs 2018, 16, 144. [Google Scholar] [CrossRef] [PubMed]
- Nasrollahi, S.A.; Ayatollahi, A.; Yazdanparast, T.; Samadi, A.; Hosseini, H.; Shamsipour, M.; Akhlaghi, A.A.; Yadangi, S.; Abels, C.; Firooz, A. Comparison of Linoleic Acid-Containing Water-in-Oil Emulsion with Urea-Containing Water-in-Oil Emulsion in the Treatment of Atopic Dermatitis: A Randomized Clinical Trial. Clin. Cosmet. Investig. Dermatol. 2018, 5, 21–28. [Google Scholar] [CrossRef]
- Aguirre-Cruz, G.; León-López, A.; Cruz-Gómez, V.; Jiménez-Alvarado, R.; Aguirre-Álvarez, G. Collagen Hydrolysates for Skin Protection: Oral Administration and Topical Formulation. Antioxidants 2020, 9, 181. [Google Scholar] [CrossRef]
- Henriques, A.; Vázquez, J.A.; Valcarcel, J.; Mendes, R.; Bandarra, N.M.; Pires, C. Characterization of Protein Hydrolysates from Fish Discards and By-Products from the North-West Spain Fishing Fleet as Potential Sources of Bioactive Peptides. Mar. Drugs 2021, 19, 338. [Google Scholar] [CrossRef]
- Atef, M.; Chait, Y.A.; Ojagh, S.M.; Latifi, A.M.; Esmaeili, M.; Hammami, R.; Udenigwe, C.C. Anti-Salmonella Activity and Peptidomic Profiling of Peptide Fractions Produced from Sturgeon Fish Skin Collagen (Huso huso) Using Commercial Enzymes. Nutrients 2021, 13, 2657. [Google Scholar] [CrossRef]
- Kim, H.Y.; Lee, G.O.; Shin, J.; Kim, C.E.; Kang, G.H.; Kim, S.H.; Kang, H.W.; Lee, H.S.; Kim, J.Y. Validation of an Analytical Method for the Quantification of a Marker Compound and Determination of Its Biological Activities in Skate Skin Collagen Peptides. Korean J. Food Preserv. 2022, 29, 1174–1188. [Google Scholar] [CrossRef]
- Pihlanto-Leppala, A. Bioactive Peptides Derived from Bovine Whey Proteins: Opioid and ACE-Inhibitory Peptides. Trends Food Sci. Technol. 2000, 11, 347–356. [Google Scholar] [CrossRef]
- Atef, M.; Mahdi Ojagh, S. Health Benefits and Food Applications of Bioactive Compounds from Fish By-products: A Review. J. Funct. Foods 2017, 35, 673–681. [Google Scholar] [CrossRef]
- Jo, C.; Khan, F.F.; Khan, M.I.; Iqbal, J. Marine Bioactive Peptides: Types, Structures, and Physiological Functions. Food Rev. Int. 2017, 33, 44–61. [Google Scholar] [CrossRef]
- Wang, X.; Yu, H.; Xing, R.; Li, P. Characterization, Preparation, and Purification of Marine Bioactive Peptides. BioMed. Res. Int. 2017, 2017, 9746720. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Dong, J.; Zhang, Z.; Xu, X.; Zhang, X. Microsatellite-Based Parentage Analysis of Offspring Conducted in Different Regions of the Black Rockfish (Sebastes schlegelii) Ovary. J. Fish. Sci. China 2021, 28, 391–402. [Google Scholar]
- Gao, T.; Han, Z.; Zhang, X.; Luo, J.; Yanagimoto, T.; Zhang, H. Population Genetic Differentiation of the Black Rockfish (Sebastes schlegelii) Revealed by Microsatellites. Biochem. Syst. Ecol. 2016, 68, 170–177. [Google Scholar] [CrossRef]
- Wijesekara, I.; Kim, S.K. Angiotensin-I-Converting Enzyme (ACE) Inhibitors from Marine Resources: Prospects in the Pharmaceutical Industry. Mar. Drugs 2010, 8, 1080–1093. [Google Scholar] [CrossRef]
- Lee, S.G.; Hwang, J.W.; Kang, H. Antioxidant and Skin-Whitening Efficacy of a Novel Decapeptide (DP, KGYSSYICDK) Derived from Fish By-Products. Mar. Drugs 2024, 22, 374. [Google Scholar] [CrossRef]
- Kim, S.K.; Wijesekara, I. Development and Biological Activities of Marine-Derived Bioactive Peptides: A Review. J. Funct. Foods 2010, 2, 1–9. [Google Scholar] [CrossRef]
- Hwang, J.W.; Lee, S.G.; Kang, H. Antioxidant, Antibacterial Properties of Novel Peptide CP by Enzymatic Hydrolysis of Chromis notata By-Products and Its Efficacy on Atopic Dermatitis. Mar. Drugs 2024, 22, 44. [Google Scholar] [CrossRef]
- Irvine, A.D.; McLean, W.H.; Leung, D.Y. Filaggrin Mutations Associated with Skin and Allergic Diseases. N. Engl. J. Med. 2011, 365, 1315–1327. [Google Scholar] [CrossRef]
- Kim, Y.M.; Park, Y.S.; Yoon, T.S.; Lee, J.S.; Kim, J.S. Marine Peptides Attenuate Fibrotic and Inflammatory Markers In Vitro. Int. J. Mol. Sci. 2019, 20, 3021. [Google Scholar]
- Paller, A.S.; Eichenfield, L.F.; Tom, W.L. Atopic Dermatitis: A Practical Guide for Clinicians. J. Allergy Clin. Immunol. 2019, 143, 1573–1578. [Google Scholar]
- Wollenberg, A.; Schmidt, H.; Köneke, J. Atopic Dermatitis: From Pathophysiology to Treatment. Ther. Adv. Chronic Dis. 2018, 9, 307–319. [Google Scholar]
- Rawlings, A.V.; Harding, C.R. Moisturization and Skin Barrier Function. Dermatol. Ther. 2004, 17, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Darlenski, R.; Tsankov, N. Skin Barrier Function. Dermatology 2010, 220, 217–224. [Google Scholar]
- Gittler, J.K.; Shemer, A.; Suárez-Fariñas, M.; Fuentes-Duculan, J.; Gulewicz, K.J.; Wang, C.Q.; Mitsui, H.; Cardinale, I.; de Guzman Strong, C.; Krueger, J.G.; et al. Progressive Activation of Th2/Th22 Cytokines and Selective Epidermal Proteins Characterizes Acute and Chronic Atopic Dermatitis. J. Allergy Clin. Immunol. 2012, 130, 1344–1354. [Google Scholar] [CrossRef]
- Udenigwe, C.C.; Aluko, R.E. Food Protein-Derived Bioactive Peptides: Production, Processing, and Potential Health Benefits. J. Food Sci. 2012, 77, 11–24. [Google Scholar] [CrossRef]
- Su, Y.; Li, X.; Ma, W.; Yuan, L.; Wang, K.; Xiao, R. The Effects of Marine-Derived Bioactive Peptides on the Immune Response and Gut Microbiota. Mar. Drugs 2020, 18, 22. [Google Scholar]
- Sano, S. Role of STAT3 in Inflammatory Dermatoses. JAK-STAT 2013, 2, e23493. [Google Scholar]
- Levy, D.E.; Lee, C.K. What Does Stat3 Do? J. Clin. Investig. 2002, 109, 1143–1148. [Google Scholar] [CrossRef]
- Fan, Z.; Zhao, L.; Wang, Z.; Zheng, X.; Gong, M. Marine Peptides as Potential Agents for the Prevention and Treatment of Chronic Inflammatory Diseases. J. Funct. Foods 2020, 70, 103986. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, H.; Ran, C.; Lyu, Y.; Li, F.; Yao, Y.; Xing, S.; Wang, L.; Chen, S. Anti-Inflammatory Effects of Amarogentin on 2,4-Dinitrochlorobenzene-Induced Atopic Dermatitis-like Mice and in HaCaT Cells. Anim. Model. Exp. Med. 2023, 6, 255–265. [Google Scholar] [CrossRef] [PubMed]
Hydrolysates | Yields of Protein Hydrolysates (%) | RC50 (μg/mL) 1 |
---|---|---|
Alcalase | 64.41 | 79.64 ± 2.64 b2 |
Flavourzyme | 75.20 | 77.23 ± 2.17 b |
Neutrase | 73.36 | 97.70 ± 4.46 a |
Protamex | 72.09 | 69.69 ± 0.41 c |
Gene | Sequences | |
---|---|---|
IL-1β | Forward | 5′-CATATGAGCTGAAAGCTCTCCA-3′ |
Reverse | 5′-GACACAGATTCCATGGTGAAGTC-3′ | |
IL-6 | Forward | 5′-GGAGGCTTAATTACACATGTT-3″ |
Reverse | 5′-TGATTTCAAAGATGAATTGGAT-3′ | |
GAPDH | Forward | 5′-CCAGTATGACTCCACTCACG-3′ |
Reverse | 5′-CCTTCCACAATGCCAAGTT-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-G.; Hwang, J.-W.; Kang, H. Antioxidative and Anti-Atopic Dermatitis Effects of Peptides Derived from Hydrolyzed Sebastes schlegelii Tail By-Products. Mar. Drugs 2024, 22, 479. https://doi.org/10.3390/md22100479
Lee S-G, Hwang J-W, Kang H. Antioxidative and Anti-Atopic Dermatitis Effects of Peptides Derived from Hydrolyzed Sebastes schlegelii Tail By-Products. Marine Drugs. 2024; 22(10):479. https://doi.org/10.3390/md22100479
Chicago/Turabian StyleLee, Sung-Gyu, Jin-Woo Hwang, and Hyun Kang. 2024. "Antioxidative and Anti-Atopic Dermatitis Effects of Peptides Derived from Hydrolyzed Sebastes schlegelii Tail By-Products" Marine Drugs 22, no. 10: 479. https://doi.org/10.3390/md22100479
APA StyleLee, S. -G., Hwang, J. -W., & Kang, H. (2024). Antioxidative and Anti-Atopic Dermatitis Effects of Peptides Derived from Hydrolyzed Sebastes schlegelii Tail By-Products. Marine Drugs, 22(10), 479. https://doi.org/10.3390/md22100479