Beyond Earth: Harnessing Marine Resources for Sustainable Space Colonization
Abstract
:1. Exploring the Intersection of Space Biotechnology and Marine Resources
1.1. Pioneering Sustainable Biotechnological Solutions for Space Exploration
1.2. Embracing Resource Utilization and Sustainability in Long-Duration Space Missions
2. Marine Resources for Bioregenerative Life Support Systems
2.1. Algal Oxygenation: Harnessing Marine Algae for Life Support and In Situ Production
2.2. Utilization of Marine Microorganisms for Wastewater Treatment and Nutrient Recycling
2.3. Potential of Marine Aquaculture for Food Production in Space Habitats
3. Marine Pharmaceuticals and Biomaterials
3.1. Exploration of Marine-Derived Compounds for Drug Discovery and Biomedical Applications
3.2. Use of Marine Biomaterials for Tissue Engineering, 3D Bioprinting, and Nanotechnologies in Space
4. Marine Resources for Bioenergy and Radiation Protection
4.1. Fueling the Future: Marine Algae for Space Biofuel Production
4.2. Potential of Marine Organisms for Shielding against Cosmic Radiation
5. Challenges and Future Directions
5.1. Technical and Biological Challenges in Utilizing Marine Resources in Space
5.2. Strategies for Sustainable Resource Management and Ecosystem Preservation
5.3. Future Prospects and Potential Collaborations between Marine Science and Space Agencies
6. Conclusion Remarks: Forging a Path beyond Earth
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Santomartino, R.; Averesch, N.; Bhuiyan, M.; Cockell, C.S.; Colangelo-Lillis, J.R.; Gumulya, Y.; Lehner, B.A.; Lopez-Ayala, I.; McMahon, S.; Mohanty, A.; et al. Toward sustainable space exploration: A roadmap for harnessing the power of microorganisms. Nat. Commun. 2023, 14, 1391. [Google Scholar] [CrossRef] [PubMed]
- Hendrix, A.; Hurford, T.A.; Barge, L.M.; Bland, M.T.; Bowman, J.S.; Brinckerhoff, W.B.; Buratti, B.J.; Cable, M.L.; Castillo-Rogez, J.; Collins, G.C.; et al. The NASA roadmap to ocean worlds. Astrobiology 2019, 19, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Maiwald, V.; Schubert, D.; Quantius, D.; Zabel, P. From space back to Earth: Supporting sustainable development with spaceflight technologies. Sustain. Earth 2021, 4, 3. [Google Scholar] [CrossRef]
- Averesch, N.; Berliner, A.J.; Nangle, S.N.; Zezulka, S.; Vengerova, G.; Ho, D.; Casale, C.A.; Lehner, B.A.; Snyder, J.; Clark, K.; et al. Microbial biomanufacturing for space-exploration—What to take and when to make. Nat. Commun. 2023, 14, 2311. [Google Scholar] [CrossRef] [PubMed]
- Keller, R.; Goli, K.; Porter, W.F.; Alrabaa, A.; Jones, J.A. Cyanobacteria and algal-based biological life support system (BLSS) and planetary surface atmospheric revitalizing bioreactor brief concept review. Life 2023, 13, 816. [Google Scholar] [CrossRef]
- Bajpai, R.; Aguda, R.; Chistoserdov, A.; Fortela, D.L.; Hernández, R.; Zappi, M.E. Microalgae cultivation for space exploration: Assessing the potential for a new generation of waste to human life-support system for long duration space travel and planetary human habitation. Algal Res. 2021, 55, 102258. [Google Scholar] [CrossRef]
- Bhola, V.; Swalaha, F.M.; Kumar, R.R.; Singh, M.; Bux, F. Overview of the potential of microalgae for CO2 sequestration. Int. J. Environ. Sci. Technol. 2014, 11, 2103–2118. [Google Scholar] [CrossRef]
- Verbeelen, T.; Leys, N.; Ganigué, R.; Mastroleo, F. Development of nitrogen recycling strategies for bioregenerative life support systems in space. Front. Microbiol. 2021, 12, 700810. [Google Scholar] [CrossRef]
- Abdelfattah, A.; Ali, S.S.; Ramadan, H.; El-Aswar, E.I.; Eltawab, R.; Ho, S.; Elsamahy, T.; Li, S.; El-Sheekh, M.M.; Schagerl, M.; et al. Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and future prospects. Environ. Sci. Ecotechnol. 2023, 13, 100205. [Google Scholar] [CrossRef]
- Brown, L.; Peick, J.; Pickett, M.; Fanara, T.; Gilchrist, S.; Smiley, A.; Roberson, L. Aquatic invertebrate protein sources for long-duration space travel. Life Sci. Space Res. 2021, 28, 1–10. [Google Scholar] [CrossRef]
- Przybyla, C. Space aquaculture: Prospects for raising aquatic vertebrates in a B«bioregenerative life-support system on a lunar base. Front. Astron. Space Sci. 2021, 8, 699097. [Google Scholar] [CrossRef]
- Gonzales, J. Aquaculture in bio-regenerative life support systems (BLSS): Considerations. Adv. Space Res. 2009, 43, 1250–1255. [Google Scholar] [CrossRef]
- McNulty, M.J.; Xiong, Y.; Yates, K.; Karuppanan, K.; Hilzinger, J.M.; Berliner, A.J.; Delzio, J.; Arkin, A.P.; Lane, N.E.; Nandi, S.; et al. Molecular pharming to support human life on the moon, mars, and beyond. Crit. Rev. Biotechnol. 2021, 41, 849–864. [Google Scholar] [CrossRef] [PubMed]
- Menezes, A.A.; Montague, M.; Cumbers, J.; Hogan, J.A.; Arkin, A.P. Grand challenges in space synthetic biology. J. R. Soc. Interface 2015, 12, 20150803. [Google Scholar] [CrossRef]
- Kijjoa, A.; Sawangwong, P. Drugs and Cosmetics from the Sea. Mar. Drugs 2004, 2, 73–82. [Google Scholar] [CrossRef]
- Barta, D.; Henninger, D.L. Regenerative life support systems—Why do we need them? Adv. Space Res. 1994, 14, 403–410. [Google Scholar] [CrossRef]
- Cilliers, J.; Hadler, K.; Rasera, J. Toward the utilisation of resources in space: Knowledge gaps, open questions, and priorities. Npj Microgravity 2023, 9, 22. [Google Scholar] [CrossRef]
- Hay, J.; Gresham, E.; Mullins, C.; Graham, R.T.; Graham, R. Technology Frontiers: Highlights from NASA’s report on breakthrough capabilities for space exploration. In Proceedings of the AIAA SPACE 2011 Conference & Exposition, Long Beach, CA, USA, 27–29 September 2011; p. 7291. [Google Scholar] [CrossRef]
- Gingerich, D.E. Resource planning for long-duration robotic space missions. In Proceedings of the 2014 IEEE International Conference on Space Mission Challenges for Information Technology, Laurel, MD, USA, 24–26 September 2014; pp. 75–82. [Google Scholar] [CrossRef]
- Watson, J.K.; Ivins, M.; Robbins, W.W.; Cise, E.V.; Cunningham, R.; Rust, R.; Curell, P.; Roy, W. Supportability concepts for long-duration human exploration missions. In Proceedings of the AIAA Space 2003 Conference & Exposition, Long Beach, CA, USA, 23–25 September 2003; p. 6240. [Google Scholar] [CrossRef]
- Wickman, L. Water reclamation for remote environments: An ecologically sound approach. In Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 8–11 January 2007; p. 1365. [Google Scholar] [CrossRef]
- Espinosa-Ortiz, E.J.; Gerlach, R.; Peyton, B.M.; Roberson, L.; Yeh, D.H. Biofilm reactors for the treatment of used water in space: Potential, challenges, and future perspectives. Biofilm 2023, 6, 100140. [Google Scholar] [CrossRef]
- Pickett, M.; Roberson, L.; Calabria, J.L.; Bullard, T.J.; Turner, G.; Yeh, D.H. Regenerative water purification for space applications: Needs, challenges, and technologies towards ‘closing the loop’. Life Sci. Space Res. 2020, 24, 64–82. [Google Scholar] [CrossRef]
- Pickering, K.D.; Anderson, M.; Carter, L.; Motil, B.; Flynn, M.; Garland, J.L. Water recovery systems for exploration missions. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9–12 January 2006; p. 141. [Google Scholar] [CrossRef]
- Pino, P.; Salmeri, A.; Hugo, A.; Hume, S. Waste management for lunar resources activities: Toward a circular lunar economy. New Space 2022, 10, 274–283. [Google Scholar] [CrossRef]
- Ellery, A. Supplementing closed ecological life support systems with in-situ resources on the Moon. Life 2021, 11, 770. [Google Scholar] [CrossRef] [PubMed]
- Leach, N. 3D Printing in space. Architectural 2014, 84, 108–113. [Google Scholar] [CrossRef]
- Despeisse, M.; Ford, S. The role of additive manufacturing in improving resource efficiency and sustainability. In Advances in Production Management Systems: Innovative Production Management Towards Sustainable Growth: IFIP WG 5.7, Proceedings of the International Conference, APMS 2015, Tokyo, Japan, 7–9 September 2015; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; Volume 460, pp. 129–136. [Google Scholar] [CrossRef]
- Gavert, R.B. Market driven space exploration. AIP Conf. Proc. 2004, 699, 183–188. [Google Scholar] [CrossRef]
- Buden, D.; Angelo, J.A. The broad view of nuclear technology for aerospace. AIP Conf. Proc. 1991, 217, 92–99. [Google Scholar] [CrossRef]
- Jones, C.S.; Mayfield, S.P. Algae biofuels: Versatility for the future of bioenergy. Curr. Opin. Biotechnol. 2012, 23, 346–351. [Google Scholar] [CrossRef]
- Nambiar, S.; Yeow, J.T.W. Polymer-composite materials for radiation protection. ACS Appl. Mater. Interfaces 2012, 4, 5717–5726. [Google Scholar] [CrossRef]
- Vuolo, M.; Baiocco, G.; Barbieri, S.; Bocchini, L.; Giraudo, M.; Gheysens, T.; Lobascio, C.; Ottolenghi, A. Exploring innovative radiation shielding approaches in space: A material and design study for a wearable radiation protection spacesuit. Life Sci. Space Res. 2017, 15, 69–78. [Google Scholar] [CrossRef]
- Worden-Buckner, K.A.; Rhatigan, J.L.; Tackett, S.; Rhoades, M.M. Reducing human radiation risks on deep space missions. In Proceedings of the 2018 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2018; pp. 1–19. [Google Scholar] [CrossRef]
- Wilson, J.; Clowdsley, M.S.; Cucinotta, F.A.; Tripathi, R.K.; Nealy, J.E.; Angelis, G.D. Deep space environments for human exploration. Adv. Space Res. 2004, 34, 1281–1287. [Google Scholar] [CrossRef]
- Martins, A.; Silva, J.; Alves, C.; Pinteus, S.; Félix, C.; Augusto, A.; Pedrosa, R.; Mestre, A.S.; Santos, R.M.M.; Carvalho, A.P.; et al. Towards a Zero-Waste Sustainable Biorefinery of Codium sp. Seaweed: From Bioactives Application to Soil Enhancement Materials. J. Clean. Prod. 2024, 453, 142191. [Google Scholar] [CrossRef]
- Häder, D.; Braun, M.; Hemmersbach, R. Bioregenerative life support systems in space research. In Gravitational Biology I; Springer Briefs in Space Life Sciences; Springer: Berlin/Heidelberg, Germany, 2018; pp. 113–122. [Google Scholar] [CrossRef]
- Keller, D.P.; Lenton, A.; Littleton, E.; Oschlies, A.; Scott, V.; Vaughan, N.E. The Effects of carbon dioxide removal on the carbon cycle. Curr. Clim. Change Rep. 2018, 4, 250–265. [Google Scholar] [CrossRef]
- Najm, Y.; Jeong, S.; Leiknes, T. Nutrient utilization and oxygen production by Chlorella vulgaris in a hybrid membrane bioreactor and algal membrane photobioreactor system. Bioresour. Technol. 2017, 237, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Kao, P.; Tsai, C.; Lee, D.; Chang, J. Engineering strategies for simultaneous enhancement of C-phycocyanin production and CO2 fixation with Spirulina platensis. Bioresour. Technol. 2013, 145, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Ganzer, B.; Messerschmid, E. Integration of an algal photobioreactor into an environmental control and life support system of a space station. Acta Astronaut. 2009, 65, 248–261. [Google Scholar] [CrossRef]
- Niederwieser, T.; Liu, Y.; Hoehn, A.; Klaus, D.M. Effect of altered nitrogen partial pressure on Chlorellaceae for spaceflight applications. Algal Res. 2019, 41, 101543. [Google Scholar] [CrossRef]
- Cycil, L.M.; Hausrath, E.M.; Ming, D.W.; Adcock, C.T.; Raymond, J.A.; Remias, D.; Ruemmele, W.P. Investigating the growth of algae under low atmospheric pressures for potential food and oxygen production on Mars. Front. Microbiol. 2021, 12, 733244. [Google Scholar] [CrossRef]
- Häder, D. On the way to Mars—Flagellated algae in bioregenerative life support systems under microgravity conditions. Front. Plant Sci. 2020, 10, 01621. [Google Scholar] [CrossRef]
- Niederwieser, T.; Liu, Y.; Klaus, D.M. Spacecraft cabin environment effects on the growth and behavior of Chlorella vulgaris for life support applications. Life Sci. Space Res. 2018, 16, 8–17. [Google Scholar] [CrossRef]
- Lehto, K.; Lehto, H.J.; Kanervo, E. Suitability of different photosynthetic organisms for an extraterrestrial biological life support system. Res. Microbiol. 2006, 157, 69–76. [Google Scholar] [CrossRef]
- Detrell, G. Chlorella vulgaris Photobioreactor for oxygen and food production on a Moon base—Potential and challenges. Front. Astron. Space Sci. 2021, 8, 700579. [Google Scholar] [CrossRef]
- Casula, M.; Fais, G.; Manis, C.; Scano, P.; Verseux, C.; Concas, A.; Cao, G.; Caboni, P. Cultivation and nutritional characteristics of Chlorella vulgaris cultivated using Martian regolith and synthetic urine. Life Sci. Space Res. 2024, 42, 108–116. [Google Scholar] [CrossRef]
- Fu, W.; Gudmundsson, O.; Feist, A.M.; Herjólfsson, G.; Brynjólfsson, S.; Palsson, B.O. Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor. J. Biotechnol. 2012, 161, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Fais, G.; Manca, A.; Concas, A.; Pantaleo, A.; Cao, G. A novel process to grow edible microalgae on Mars by exploiting in situ-available resources: Experimental investigation. Acta Astronaut. 2022, 201, 454–463. [Google Scholar] [CrossRef]
- Casula, M.; Caboni, P.; Fais, G.; Dessì, D.; Scano, P.; Lai, N.; Cincotti, A.; Cao, G.; Concas, A. In-situ resource utilization to produce Haematococcus pluvialis biomass in simulated Martian environment. Algal Res. 2024, 79, 103489. [Google Scholar] [CrossRef]
- Verseux, C.; Heinicke, C.; Ramalho, T.P.; Determann, J.; Duckhorn, M.; Smagin, M.; Avila, M. A low-pressure, N2/CO2 atmosphere is suitable for cyanobacterium-nased life-support systems on Mars. Front. Microbiol. 2021, 12, 611798. [Google Scholar] [CrossRef] [PubMed]
- Matula, E.E.; Nabity, J. Failure modes, causes, and effects of algal photobioreactors used to control a spacecraft environment. Life Sci. Space Res. 2019, 20, 35–52. [Google Scholar] [CrossRef]
- Lu, Z.; Loftus, S.; Sha, J.; Wang, W.; Park, M.; Zhang, X.; Johnson, Z.I.; Hu, Q. Water reuse for sustainable microalgae cultivation: Current knowledge and future directions. Resour. Conserv. Recycl. 2020, 161, 104975. [Google Scholar] [CrossRef]
- Narala, R.R.; Garg, S.; Sharma, K.; Thomas-Hall, S.R.; Deme, M.; Li, Y.; Schenk, P.M. Comparison of microalgae cultivation in photobioreactor, open raceway pond, and a two-stage hybrid system. Front. Energy Res. 2016, 4, 00029. [Google Scholar] [CrossRef]
- Frossard, E.E.; Crain, G.; Giménez de Azcárate Bordóns, I.; Hirschvogel, C.; Oberson, A.; Paille, C.; Pellegri, G.; Udert, K.M. Recycling nutrients from organic waste for growing higher plants in the Micro Ecological Life Support System Alternative (MELiSSA) loop during long-term space missions. Life Sci Space Res. 2024, 40, 176–185. [Google Scholar] [CrossRef]
- Mohsenpour, S.F.; Hennige, S.; Willoughby, N.; Adeloye, A.J.; Gutiérrez, T. Integrating micro-algae into wastewater treatment: A review. Sci. Total Environ. 2021, 752, 142168. [Google Scholar] [CrossRef]
- Acién Fernández, F.G.; Gómez-Serrano, C.; Fernández-Sevilla, J.M. Recovery of nutrients from wastewaters using microalgae. Front. Sustain. Food Syst. 2018, 2, 00059. [Google Scholar] [CrossRef]
- Arrigo, K.R. Marine microorganisms and global nutrient cycles. Nature 2004, 437, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Hendrickx, L.; Wever, H.D.; Hermans, V.; Mastroleo, F.; Morin, N.; Wilmotte, A.; Janssen, P.; Mergeay, M. Microbial ecology of the closed artificial ecosystem MELiSSA (Micro-Ecological Life Support System Alternative): Reinventing and compartmentalizing the Earth’s food and oxygen regeneration system for long-haul space exploration missions. Res. Microbiol. 2006, 157, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Rittmann, B.E. Environmental biotechnology in water and wastewater treatment. J. Environ. Eng. 2010, 136, 348–353. [Google Scholar] [CrossRef]
- Ruiz, J.J.; Alvarez, P.A.; Arbib, Z.; Garrido, C.; Barragán, J.; Perales, J.A. Effect of nitrogen and phosphorus concentration on their removal kinetic in treated urban wastewater by Chlorella vulgaris. Int. J. Phytoremediat. 2011, 13, 884–896. [Google Scholar] [CrossRef]
- Tam, N.F.; Wong, Y.S. Wastewater nutrient removal by Chlorella pyrenoidosa and Scenedesmus sp. Environ. Pollut. 1989, 58, 19–34. [Google Scholar] [CrossRef]
- Song, T.; Zhang, X.; Li, J.; Wu, X.; Feng, H.; Dong, W. A review of research progress of heterotrophic nitrification and aerobic denitrification microorganisms (HNADMs). Sci. Total Environ. 2021, 801, 149319. [Google Scholar] [CrossRef]
- Meyer, B.L.; Shepherd, N.S. Nutrient balance and nitrogen cycling in a multistage, multispecies space farm. In Proceedings of the AIAA SPACE 2016, Long Beach, CA, USA, 13–16 September 2016; p. 5586. [Google Scholar] [CrossRef]
- Koehle, A.P.; Brumwell, S.L.; Seto, E.; Lynch, A.M.; Urbaniak, C. Microbial applications for sustainable space exploration beyond low Earth orbit. Npj Microgravity 2023, 9, 47. [Google Scholar] [CrossRef]
- Nashashibi-Rabah, M.; Christodoulatos, C.; Korfiatis, G.P. Development of a gravity-independent wastewater bioprocessor for advanced life support in space. Water Environ. Res. 2005, 77, 138–145. [Google Scholar] [CrossRef]
- Lindeboom, R.E.; Ilgrande, C.; Carvajal-Arroyo, J.M.; Coninx, I.; Hoey, O.V.; Heintz-Buschart, A.; Morozova, J.; Udert, K.M.; Sas, B.; Paillé, C.; et al. Nitrogen cycle microorganisms can be reactivated after Space exposure. Sci. Rep. 2018, 8, 13783. [Google Scholar] [CrossRef]
- Tang, H.; Rising, H.H.; Majji, M.; Brown, R.D. Long-term space nutrition: A scoping review. Nutrients 2021, 14, 194. [Google Scholar] [CrossRef]
- Granada, L.; Sousa, N.S.M.; Lopes, S.; Lemos, M.F.L. Is integrated multitrophic aquaculture the solution to the sectors’ major challenges?—A review. Rev. Aquac. 2016, 8, 283–300. [Google Scholar] [CrossRef]
- Milanez, F.H.; Ashkenazy, A.; Fediuk, M.; Conjieski, D.; Eshchar, M.; Mozes, N. Marine recirculating systems in Israel—Performance, production cost analysis and rationale for desert conditions. Isr. J. Aquac.-Bamidgeh 2003, 55, 20352. [Google Scholar] [CrossRef]
- Fong, C.R.; Gonzales, C.M.; Rennick, M.; Gardner, L.D.; Halpern, B.S.; Froehlich, H.E. Global yield from aquaculture systems. Rev. Aquac. 2023, 16, 1021–1029. [Google Scholar] [CrossRef]
- Schroeder, G.L.; Serfling, S.A. High-yield aquaculture using low-cost feed and waste recycling methods. Renew. Agric. Food Syst. 1989, 4, 71–74. [Google Scholar] [CrossRef]
- Detrell, G.; Helisch, H.; Keppler, J.; Martin, J.; Henn, N. Microalgae for combined air revitalization and biomass production for space applications. In From Biofiltration to Promising Options in Gaseous Fluxes Biotreatment; Soreanu, G., Dumont, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 419–445. ISBN 9780128190647. [Google Scholar] [CrossRef]
- Przybyla, C.; Dutto, G.; Bernard, M.G.; Rollin, B.J.; Laurand, X.; Averseng, J.; Gasset, E.; Tadadjeu, I.; Dusseau, L. European sea bass (Dicentrarchus labrax) and meagre (Argyrosomus regius) fertilized egg resistance to a spacecraft launcher vibration qualifying test. Aquac. Int. 2020, 28, 2465–2479. [Google Scholar] [CrossRef]
- Shimura, R.; Ijiri, K.; Mizuno, R.; Nagaoka, S. Aquatic animal research in space station and its issues—Focus on support technology on nitrate toxicity—. Adv. Space Res. 2002, 30, 803–808. [Google Scholar] [CrossRef]
- Burge, C.A.; Closek, C.J.; Friedman, C.S.; Groner, M.L.; Jenkins, C.; Shore, A.; Welsh, J.E. The use of filter-feeders to manage disease in a changing world. Integr. Comp. Biol. 2016, 56, 573–587. [Google Scholar] [CrossRef]
- Augusto, A.; Lemos, M.F.L.; Silva, S.F.J. Exploring marine-based food production: The challenges for a sustainable and fast biotechnology-based development. Appl. Sci. 2024, 14, 8255. [Google Scholar] [CrossRef]
- Salido, M.; Soto, M.; Seoane, S. Seaweed: Nutritional and gastronomic perspective. A review. Algal Res. 2024, 77, 103357. [Google Scholar] [CrossRef]
- Chopin, T.; Buschmann, A.H.; Halling, C.; Troell, M.; Kautsky, N.; Neori, A.; Kraemer, G.P.; Zertuche-González, J.A.; Yarish, C.; Neefus, C.D. Integrating seaweeds into marine aquaculture systems: A key toward sustainability. J. Phycol. 2001, 37, 975–986. [Google Scholar] [CrossRef]
- Gunning, D.; Maguire, J.; Burnell, G. The development of sustainable saltwater-based food production systems: A review of established and novel concepts. Water 2016, 8, 598. [Google Scholar] [CrossRef]
- Boyd, C.E.; D’Abramo, L.R.; Glencross, B.D.; Huyben, D.C.; Juárez, L.M.; Lockwood, G.S.; McNevin, A.A.; Tacon, A.G.J.; Teletchea, F.; Tomasso, J.R.; et al. Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. J. World Aquac. Soc. 2020, 51, 578–633. [Google Scholar] [CrossRef]
- Daniotti, S.; Re, I. Marine biotechnology: Challenges and development market trends for the enhancement of biotic resources in industrial pharmaceutical and food applications. A statistical analysis of scientific literature and business models. Mar. Drugs 2021, 19, 61. [Google Scholar] [CrossRef] [PubMed]
- Jindal, S. Exploring the ocean for new drug developments: Marine pharmacology. J. Pharm. Bioallied Sci. 2016, 8, 83–91. [Google Scholar] [CrossRef]
- Lindequist, U. Marine-derived pharmaceuticals—Challenges and opportunities. Biomol. Ther. 2016, 24, 561–571. [Google Scholar] [CrossRef]
- Karthikeyan, A.; Joseph, A.; Nair, B.G. Promising bioactive compounds from the marine environment and their potential effects on various diseases. J. Genet. Eng. Biotechnol. 2022, 20, 14. [Google Scholar] [CrossRef]
- Hu, G.-P.; Yuan, J.; Sun, L.; She, Z.-G.; Wu, J.-H.; Lan, X.-J.; Zhu, X.; Lin, Y.-C.; Chen, S.-P. Statistical Research on Marine Natural Products Based on Data Obtained between 1985 and 2008. Mar. Drugs 2011, 9, 514–525. [Google Scholar] [CrossRef]
- Mayer, A.M.S.; Hamann, M.T. Marine pharmacology in 2001–2002: Marine compounds with anthelmintic, antibacterial, anticoagulant, antidiabetic, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems and other miscellaneous mechanisms of action. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2005, 140, 265–286. [Google Scholar] [CrossRef]
- Mayer, A.M.S.; Rodríguez, A.D.; Taglialatela-Scafati, O.; Fusetani, N. Marine pharmacology in 2009–2011: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs 2013, 11, 2510–2573. [Google Scholar] [CrossRef]
- Wiese, J.; Imhoff, J.F. Marine bacteria and fungi as promising source for new antibiotics. Drug Dev. Res. 2018, 80, 24–27. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, X.; Liang, Q.; Ao, Q. Characteristics of marine biomaterials and their applications in biomedicine. Mar. Drugs 2022, 20, 372. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.H.; Alves, A.; Ferreira, B.; Oliveira, J.M.; Reys, L.L.; Ferreira, R.; Sousa, R.A.; Silva, S.S.; Mano, J.F.; Reis, R.L. Materials of marine origin: A review on polymers and ceramics of biomedical interest. Int. Mater. Rev. 2012, 57, 276–306. [Google Scholar] [CrossRef]
- Chandika, P.; Ko, S.; Jung, W. Marine-derived biological macromolecule-based biomaterials for wound healing and skin tissue regeneration. Int. J. Biol. Macromol. 2015, 77, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Diogo, G.S.; Senra, E.L.; Pirraco, R.P.; Canadas, R.F.; Fernandes, E.M.; Serra, J.; Pérez-Martín, R.I.; Sotelo, C.G.; Marques, A.P.; González, P.; et al. Marine collagen/apatite composite scaffolds envisaging hard tissue applications. Mar. Drugs 2018, 16, 269. [Google Scholar] [CrossRef]
- Ju, K.; Lee, W.J.; Im, G.H.; Lee, S.; Pyo, J.; Park, S.B.; Lee, J.Y.; Lee, J. Bio-inspired, melanin-like nanoparticles as a highly efficient contrast agent for t1-weighted magnetic resonance imaging. Biomacromolecules 2013, 14, 3491–3497. [Google Scholar] [CrossRef]
- Gerwick, W.H.; Moore, B.S. Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem. Biol. 2012, 19, 85–98. [Google Scholar] [CrossRef]
- Fenner, A.M.; Gerwick, W.H. Marine bioprospecting. In Natural Products: Discourse, Diversity, and Design; Osbourn, A., Goss, R.J., Carter, G.T., Eds.; Wiley: Hoboken, NJ, USA, 2023; pp. 83–101. [Google Scholar] [CrossRef]
- Wang, L.; Li, W.; Qin, S. Three polymers from the sea: Unique structures, directional modifications, and medical applications. Polymers 2021, 13, 2482. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, D.; Chen, J.; Zhang, X.; Li, X.; Zhao, W.; Xu, T. Biomaterials based on marine resources for 3D bioprinting applications. Mar. Drugs 2019, 17, 555. [Google Scholar] [CrossRef]
- Iliou, K.; Kikionis, S.; Ioannou, E.; Roussis, V. Marine biopolymers as bioactive functional ingredients of electrospun nanofibrous scaffolds for biomedical applications. Mar. Drugs 2022, 20, 314. [Google Scholar] [CrossRef]
- Banach-Kopeć, A.; Mania, S.; Tylingo, R. Marine polymers in tissue bioprinting: Current achievements and challenges. Rev. Adv. Mater. Sci. 2024, 63, 20230180. [Google Scholar] [CrossRef]
- Ferreira, C.A.M.; Januário, A.P.; Félix, R.; Alves, N.; Lemos, M.F.L.; Dias, J.R. Multifunctional gelatin/chitosan electrospun wound dressing dopped with Undaria pinnatifida phlorotannin-enriched extract for skin regeneration. Pharmaceutics 2021, 13, 2152. [Google Scholar] [CrossRef] [PubMed]
- Khiari, Z. Recent developments in bio-ink formulations using marine-derived biomaterials for three-dimensional (3D) bioprinting. Mar. Drugs 2024, 22, 134. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.; Dritsas, S.; Fernandez, J.G. Martian biolith: A bioinspired regolith composite for closed-loop extraterrestrial manufacturing. PLoS ONE 2020, 15, e0238606. [Google Scholar] [CrossRef]
- D’Ovidio, A.; Knarr, B.A.; Blanchard, A.J.; Bennett, G.W.; Leiva, W.; Duan, B.; Zuñiga, J.M. Characterization of antimicrobial poly(lactic acid)- and polyurethane-based materials enduring closed-loop recycling with applications in space. Polymers 2024, 16, 626. [Google Scholar] [CrossRef] [PubMed]
- Sarabi, M.R.; Yetisen, A.K.; Taşoğlu, S. Bioprinting in microgravity. ACS Biomater. Sci. Eng. 2023, 9, 3074–3083. [Google Scholar] [CrossRef]
- Bayu, A.; Rachman, A.; Noerdjito, D.R.; Putra, M.Y.; Widayatno, W.B. High-value chemicals from marine diatoms: A biorefinery approach. IOP Conf. Ser. Earth Environ. Sci. 2020, 460, 012012. [Google Scholar] [CrossRef]
- Chen, X.; Wang, C.; Baker, E.; Sun, E. Numerical and experimental investigation of light trapping effect of nanostructured diatom frustules. Sci. Rep. 2015, 5, 11977. [Google Scholar] [CrossRef]
- D’Mello, Y.; Bernal, S.; Petrescu, D.; Skoric, J.; Andrews, M.; Plant, D.V. Solar energy harvesting mechanisms of the frustules of Nitzschia filiformis diatoms. Opt. Mater. Express 2022, 12, 4665–4681. [Google Scholar] [CrossRef]
- Ehrlich, H.; Motylenko, M.; Sundareshwar, P.V.; Ereskovsky, A.; Zgłobicka, I.; Noga, T.; Płociński, T.; Tsurkan, M.V.; Wyroba, E.; Suski, S.; et al. Multiphase biomineralization: Enigmatic invasive siliceous diatoms produce crystalline calcite. Adv. Funct. Mater. 2016, 26, 2503–2510. [Google Scholar] [CrossRef]
- Hossain, J.; Jahan, R. Biofuel: Marine Biotechnology securing alternative sources of renewable energy. In Advances in the Domain of Environmental Biotechnology; Maddela, N.R., Cruzatty, L.C.G., Chakraborty, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 161–194. [Google Scholar] [CrossRef]
- Stephenson, P.G.; Moore, C.M.; Terry, M.J.; Zubkov, M.V.; Bibby, T.S. Improving photosynthesis for algal biofuels: Toward a green revolution. Trends Biotechnol. 2011, 29, 615–623. [Google Scholar] [CrossRef]
- Kumar, K.; Ghosh, S.; Angelidaki, I.; Holdt, S.L.; Karakashev, D.; Alvarado-Morales, M.; Das, D. Recent developments on biofuels production from microalgae and macroalgae. Renew. Sustain. Energy Rev. 2016, 65, 235–249. [Google Scholar] [CrossRef]
- Sarwer, A.; Hamed, S.M.; Osman, A.I.; Jamil, F.; Al-Muhtaseb, A.H.; Alhajeri, N.S.; Rooney, D.W. Algal biomass valorization for biofuel production and carbon sequestration: A review. Environ. Chem. Lett. 2022, 20, 2797–2851. [Google Scholar] [CrossRef]
- Ramkrishnan, U.; Bruno, L.B.; Swaminathan, S. Sequestration of CO2 by halotolerant algae. J. Environ. Health Sci. Eng. 2014, 12, 81. [Google Scholar] [CrossRef] [PubMed]
- Cancela, Á.; Maceiras, R.; Sánchez, Á.; Alfonsín, V.; Madriñán, S.U. Transesterification of marine macroalgae using microwave technology. Energy Sources Part A Recovery Util. Environ. Eff. 2016, 38, 1598–1603. [Google Scholar] [CrossRef]
- Halim, R.; Acquah, C.; Webley, P.A. Extraction of oil from microalgae for biodiesel production: A review. Biotechnol. Adv. 2012, 30, 709–732. [Google Scholar] [CrossRef]
- Mutanda, T.; Desikan, R.; Karthikeyan, S.; Kumari, S.; Anandraj, A.; Bux, F. Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour. Technol. 2011, 102, 57–70. [Google Scholar] [CrossRef]
- Klein-Marcuschamer, D.; Chisti, Y.; Benemann, J.R.; Lewis, D. A matter of detail: Assessing the true potential of microalgal biofuels. Biotechnol. Bioeng. 2013, 110, 2317–2322. [Google Scholar] [CrossRef]
- Li, Y.; Horsman, M.; Wu, N.; Lan, C.Q.; Dubois-Calero, N. Biofuels from microalgae. Biotechnol. Prog. 2008, 24, 815–820. [Google Scholar] [CrossRef]
- Gouveia, L.; Oliveira, A.C. Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol. 2008, 36, 269–274. [Google Scholar] [CrossRef]
- Keller, R.; Porter, W.F.; Goli, K.; Rosenthal, R.; Butler, N.; Jones, J.A. Biologically-based and physiochemical life support and in situ resource utilization for exploration of the solar system—Reviewing the current state and defining future development needs. Life 2021, 11, 844. [Google Scholar] [CrossRef]
- Hepp, A.F.; Kulis, M.J.; Ree, A.D.L.; Zubrin, R.; Beggren, M.; Hensel, J.; Kimble, M.C. Green aerospace fuels from non-petroleum sources. In Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 4–7 January 2011; p. 702. [Google Scholar] [CrossRef]
- Greene, C.S.; Scott-Buechler, C.; Hausner, A.; Johnson, Z.I.; Lei, X.G.; Huntley, M. Transforming the future of marine aquaculture: A circular economy approach. Oceanography 2022, 35, 26–34. [Google Scholar] [CrossRef]
- Radmer, R.; Cox, J.; Lieberman, D.M.; Behrens, P.; Arnett, K. Biomass recycle as a means to improve the energy efficiency of CELSS algal culture systems. Adv. Space Res. 1987, 7, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Chowdury, K.H.; Nahar, N.; Deb, U.K. The growth factors involved in microalgae cultivation for biofuel production: A review. Comput. Water Energy Environ. Eng. 2020, 9, 185–215. [Google Scholar] [CrossRef]
- Vasistha, S.; Khanra, A.; Clifford, M.; Rai, M.P. Current advances in microalgae harvesting and lipid extraction processes for improved biodiesel production: A review. Renew. Sustain. Energy Rev. 2021, 137, 110498. [Google Scholar] [CrossRef]
- Enamala, M.K.; Enamala, S.; Chavali, M.; Jagadish, D.; Yadavalli, R.; Kolapalli, B.; Aradhyula, T.V.; Velpuri, J.; Chandrasekhar, K. Production of biofuels from microalgae—A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renew. Sustain. Energy Rev. 2018, 94, 49–68. [Google Scholar] [CrossRef]
- Sihver, L.; Mortazavi, S.M.J. Radiation risks and countermeasures for humans on deep space missions. In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019; pp. 1–10. [Google Scholar] [CrossRef]
- Kennedy, A.R. Biological effects of space radiation and development of effective countermeasures. Life Sci. Space Res. 2014, 1, 10–43. [Google Scholar] [CrossRef]
- Oh, J.; Fernando, I.P.S.; Jeon, Y. Potential applications of radioprotective phytochemicals from marine algae. Algae 2016, 31, 403–414. [Google Scholar] [CrossRef]
- Shin, T.; Ahn, M.; Hyun, J.W.; Kim, S.H.; Moon, C. Antioxidant marine algae phlorotannins and radioprotection: A review of experimental evidence. Acta Histochem. 2014, 116, 669–674. [Google Scholar] [CrossRef]
- Bonaventura, R.; Matranga, V. Overview of the molecular defense systems used by sea urchin embryos to cope with UV radiation. Mar. Environ. Res. 2017, 128, 25–35. [Google Scholar] [CrossRef]
- Lesser, M.P. Oxidative stress in tropical marine ecosystems. In Oxidative Stress in Aquatic Ecosystems; Abele, D., Vázquez-Medina, J.P., Zenteno-Savín, T., Eds.; Wiley: Hoboken, NJ, USA, 2011; pp. 7–19. [Google Scholar] [CrossRef]
- Rastogi, R.P.; Babbar, R.; Sinha, R.P.; Singh, S.P.; Häder, D. Photoprotective compounds from marine organisms. J. Ind. Microbiol. Biotechnol. 2010, 37, 537–558. [Google Scholar] [CrossRef]
- Tziveleka, L.; Tammam, M.A.; Tzakou, O.; Roussis, V.; Ioannou, E. Metabolites with antioxidant activity from marine macroalgae. Antioxidants 2021, 10, 1431. [Google Scholar] [CrossRef] [PubMed]
- Bannova, O.; Gulacsi, E. Architectural approach for evaluation of radiation shielding integration in space habitats. Acta Astronaut. 2024, 220, 27–36. [Google Scholar] [CrossRef]
- Bito, T.; Teng, F.; Watanabe, F. Bioactive compounds of edible purple laver Porphyra sp. (Nori). J. Agric. Food Chem. 2017, 65, 10685–10692. [Google Scholar] [CrossRef]
- Mancinelli, R.L. The affect of the space environment on the survival of Halorubrum chaoviator and Synechococcus (Nägeli): Ddata from the Space Experiment OSMO on EXPOSE-R. Int. J. Astrobiol. 2014, 14, 123–128. [Google Scholar] [CrossRef]
- Averesch, N.; Shunk, G.K.; Kern, C. Cultivation of the Dematiaceous fungus Cladosporium sphaerospermum Aboard the international space station and effects of ionizing radiation. Front. Microbiol. 2022, 13, 877625. [Google Scholar] [CrossRef]
- Jin, M.; Xiao, A.; Zhu, L.; Zhang, Z.; Huang, H.; Jiang, L. The diversity and commonalities of the radiation-resistance mechanisms of Deinococcus and its up-to-date applications. AMB Express 2019, 9, 138. [Google Scholar] [CrossRef]
- Munteanu, A.; Uivaroşi, V.; Andries, A. Recent progress in understanding the molecular mechanisms of radioresistance in Deinococcus bacteria. Extremophiles 2015, 19, 707–719. [Google Scholar] [CrossRef]
- Makarova, K.S.; Aravind, L.; Wolf, Y.I.; Tatusov, R.L.; Minton, K.W.; Koonin, E.V.; Daly, M.J. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol. Mol. Biol. Rev. 2001, 65, 44–79. [Google Scholar] [CrossRef]
- Galasso, C.; Corinaldesi, C.; Sansone, C. Carotenoids from marine organisms: Biological functions and industrial applications. Antioxidants 2017, 6, 96. [Google Scholar] [CrossRef]
- Abraham, R.E.; Alghazwi, M.; Liang, Q.; Zhang, W. Advances on marine-derived natural radioprotection compounds: Historic development and future perspective. Mar. Life Sci. Technol. 2021, 3, 474–487. [Google Scholar] [CrossRef]
- Wahl, M.; Goecke, F.; Labes, A.; Dobretsov, S.; Weinberger, F. The second skin: Ecological role of epibiotic biofilms on marine organisms. Front. Microbiol. 2012, 3, 002292. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Chancellor, J.C.; Scott, G.; Sutton, J.P. Space radiation: The number one risk to astronaut health beyond low earth orbit. Life 2014, 4, 491–510. [Google Scholar] [CrossRef] [PubMed]
- Audas, C.; Ugalde, S.; Paillé, C.; Lamaze, B.; Lasseur, C. Life support systems beyond low earth orbit advocates for an improved resources management approach. Ecol. Eng. Environ. Prot. 2022, 1, 5–13. [Google Scholar] [CrossRef]
- Prasad, B.; Richter, P.; Vadakedath, N.; Haag, F.W.M.; Strauch, S.M.; Mancinelli, R.L.; Schwarzwälder, A.; Etcheparre, E.; Gaume, N.; Lebert, M. How the space environment influences organisms: An astrobiological perspective and review. Int. J. Astrobiol. 2021, 20, 159–177. [Google Scholar] [CrossRef]
- Douglas, G.L.; Wheeler, R.M.; Fritsche, R. Sustaining astronauts: Resource limitations, technology needs, and parallels between spaceflight food systems and those on earth. Sustainability 2021, 13, 9424. [Google Scholar] [CrossRef]
- Kraus, R. Ballast water management in ports: Monitoring, early warning and response measures to prevent biodiversity loss and risks to human health. J. Mar. Sci. Eng. 2023, 11, 2144. [Google Scholar] [CrossRef]
- Pyšek, P.; Hulme, P.E.; Simberloff, D.; Bacher, S.; Blackburn, T.M.; Carlton, J.T.; Dawson, W.; Essl, F.; Foxcroft, L.C.; Genovesi, P.; et al. Scientists’ warning on invasive alien species. Biol. Rev. 2020, 95, 1511–1534. [Google Scholar] [CrossRef]
- Nelson, M.D.; Dempster, W.F.; Allen, J.P. Key ecological challenges for closed systems facilities. Adv. Space Res. 2013, 52, 86–96. [Google Scholar] [CrossRef]
- Hedayati, R.; Stulova, V. 3D Printing for Space habitats: Requirements, challenges, and recent advances. Aerospace 2023, 10, 653. [Google Scholar] [CrossRef]
- Glass, J.; Dierssen, H.M.; Glein, C.R.; Schmidt, B.E.; Winebrenner, D.P. Defining and characterizing habitable environments in ocean world systems. Oceanography 2022, 35, 30–38. [Google Scholar] [CrossRef]
- McKay, C.P.; Andersen, D.T.; Dávila, A.F. Antarctic environments as models of planetary habitats: University Valley as a model for modern Mars and Lake Untersee as a model for Enceladus and ancient Mars. Polar J. 2017, 7, 303–318. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemos, M.F.L. Beyond Earth: Harnessing Marine Resources for Sustainable Space Colonization. Mar. Drugs 2024, 22, 481. https://doi.org/10.3390/md22110481
Lemos MFL. Beyond Earth: Harnessing Marine Resources for Sustainable Space Colonization. Marine Drugs. 2024; 22(11):481. https://doi.org/10.3390/md22110481
Chicago/Turabian StyleLemos, Marco F. L. 2024. "Beyond Earth: Harnessing Marine Resources for Sustainable Space Colonization" Marine Drugs 22, no. 11: 481. https://doi.org/10.3390/md22110481
APA StyleLemos, M. F. L. (2024). Beyond Earth: Harnessing Marine Resources for Sustainable Space Colonization. Marine Drugs, 22(11), 481. https://doi.org/10.3390/md22110481