Ultrasound-Assisted Extraction of Alginate from Fucus vesiculosus Seaweed By-Product Post-Fucoidan Extraction
Abstract
:1. Introduction
2. Results
2.1. Proximate Analysis of Fucus vesiculosus Byproduct
2.2. Experimental Design and Statistical Analysis
2.3. Model Fitting
2.4. Impact of Ultrasound Amplitude (%) and Sonication Treatment Time on Alginate Yield, Alginate Content and Mw
2.5. Comparison of Optimized UAE with Conventional Extraction Method for Alginate Yield, Alginate Content, Mw, and Color
2.6. Characterization Studies of Standard Sodium Alginate, Sodium Bicarbonate, and Alginate Obtained Using Optimized Ultrasound-Assisted Extraction Conditions
2.6.1. Thermal Properties (TGA and DSC) of Alginate Samples
2.6.2. Fourier Transform Infrared Spectroscopy
3. Materials and Methods
3.1. Biological Material
3.2. Chemicals
3.3. Proximate Analysis of Byproduct
3.4. Ultrasound-Assisted Extraction and Conventional Extraction Method to Obtain Alginate from Byproduct
3.5. Experimental Design
3.6. Alginate Content Determination
3.7. Alginate Molecular Weight Determination
3.8. Color Analysis of Alginate Samples
3.9. Alginate Characterization
3.9.1. Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC)
3.9.2. Fourier-Transform Infrared Spectroscopy (FTIR)
3.10. Response Surface Modeling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Vázquez-Rodríguez, B.; Gutiérrez-Uribe, J.A.; Antunes-Ricardo, M.; Santos-Zea, L.; Cruz-Suárez, L.E. Ultrasound-Assisted Extraction of Phlorotannins and Polysaccharides from Silvetia Compressa (Phaeophyceae). J. Appl. Phycol. 2020, 32, 1441–1453. [Google Scholar] [CrossRef]
- Rioux, L.-E.; Turgeon, S.L. Seaweed Carbohydrates. In Seaweed Sustainability; Elsevier: Amsterdam, The Netherlands, 2015; pp. 141–192. [Google Scholar]
- Gallego, R.; Bueno, M.; Herrero, M. Sub- and Supercritical Fluid Extraction of Bioactive Compounds from Plants, Food-by-Products, Seaweeds and Microalgae—An Update. TrAC Trends Anal. Chem. 2019, 116, 198–213. [Google Scholar] [CrossRef]
- MacArthur, E. Towards the Circular Economy. J. Ind. Ecol. 2013, 2, 23–44. [Google Scholar]
- Baghel, R.S.; Trivedi, N.; Reddy, C.R.K. A Simple Process for Recovery of a Stream of Products from Marine Macroalgal Biomass. Bioresour. Technol. 2016, 203, 160–165. [Google Scholar] [CrossRef]
- Sudhakar, M.P.; Arunkumar, K.; Perumal, K. Pretreatment and Process Optimization of Spent Seaweed Biomass (SSB) for Bioethanol Production Using Yeast (Saccharomyces cerevisiae). Renew Energy 2020, 153, 456–471. [Google Scholar] [CrossRef]
- Bertagnolli, C.; da Silva, M.G.C.; Guibal, E. Chromium Biosorption Using the Residue of Alginate Extraction from Sargassum Filipendula. Chem. Eng. J. 2014, 237, 362–371. [Google Scholar] [CrossRef]
- Laohakunjit, N.; Selamassakul, O.; Kerdchoechuen, O. Seafood-like Flavour Obtained from the Enzymatic Hydrolysis of the Protein by-Products of Seaweed (Gracilaria sp.). Food Chem. 2014, 158, 162–170. [Google Scholar] [CrossRef]
- Sudhakar, M.P.; Merlyn, R.; Arunkumar, K.; Perumal, K. Characterization, Pretreatment and Saccharification of Spent Seaweed Biomass for Bioethanol Production Using Baker’s Yeast. Biomass Bioenergy 2016, 90, 148–154. [Google Scholar] [CrossRef]
- Bikker, P.; van Krimpen, M.M.; van Wikselaar, P.; Houweling-Tan, B.; Scaccia, N.; van Hal, J.W.; Huijgen, W.J.J.; Cone, J.W.; López-Contreras, A.M. Biorefinery of the Green Seaweed Ulva Lactuca to Produce Animal Feed, Chemicals and Biofuels. J. Appl. Phycol. 2016, 28, 3511–3525. [Google Scholar] [CrossRef]
- Gajaria, T.K.; Suthar, P.; Baghel, R.S.; Balar, N.B.; Sharnagat, P.; Mantri, V.A.; Reddy, C.R.K. Integration of Protein Extraction with a Stream of Byproducts from Marine Macroalgae: A Model Forms the Basis for Marine Bioeconomy. Bioresour. Technol. 2017, 243, 867–873. [Google Scholar] [CrossRef]
- Mazumder, A.; Holdt, S.L.; De Francisci, D.; Alvarado-Morales, M.; Mishra, H.N.; Angelidaki, I. Extraction of Alginate from Sargassum Muticum: Process Optimization and Study of Its Functional Activities. J. Appl. Phycol. 2016, 28, 3625–3634. [Google Scholar] [CrossRef]
- Wen, L.; Zhang, Z.; Sun, D.-W.; Sivagnanam, S.P.; Tiwari, B.K. Combination of Emerging Technologies for the Extraction of Bioactive Compounds. Crit. Rev. Food Sci. Nutr. 2020, 60, 1826–1841. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-S.; Xie, Y.-J.; He, W. Research Progress on Chemical Modification of Alginate: A Review. Carbohydr. Polym. 2011, 84, 33–39. [Google Scholar] [CrossRef]
- Qin, Y.; Jiang, J.; Zhao, L.; Zhang, J.; Wang, F. Applications of Alginate as a Functional Food Ingredient. In Biopolymers for Food Design; Elsevier: Amsterdam, The Netherlands, 2018; pp. 409–429. [Google Scholar]
- Sahoo, D.R.; Biswal, T. Alginate and Its Application to Tissue Engineering. SN Appl. Sci. 2021, 3, 30. [Google Scholar] [CrossRef]
- Ertesvåg, H. Alginate-Modifying Enzymes: Biological Roles and Biotechnological Uses. Front. Microbiol. 2015, 6, 523. [Google Scholar] [CrossRef]
- Fawzy, M.A.; Gomaa, M.; Hifney, A.F.; Abdel-Gawad, K.M. Optimization of Alginate Alkaline Extraction Technology from Sargassum Latifolium and Its Potential Antioxidant and Emulsifying Properties. Carbohydr. Polym. 2017, 157, 1903–1912. [Google Scholar] [CrossRef]
- McHugh, D.J. A Guide to the Seaweed Industry; FAO Fisheries Technical Paper 441; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003. [Google Scholar]
- Wang, J.; Hu, S.; Nie, S.; Yu, Q.; Xie, M. Reviews on Mechanisms of In Vitro Antioxidant Activity of Polysaccharides. Oxid. Med. Cell. Longev. 2016, 2016, 5692852. [Google Scholar] [CrossRef]
- Xing, M.; Cao, Q.; Wang, Y.; Xiao, H.; Zhao, J.; Zhang, Q.; Ji, A.; Song, S. Advances in Research on the Bioactivity of Alginate Oligosaccharides. Mar. Drugs 2020, 18, 144. [Google Scholar] [CrossRef]
- Youssouf, L.; Lallemand, L.; Giraud, P.; Soulé, F.; Bhaw-Luximon, A.; Meilhac, O.; D’Hellencourt, C.L.; Jhurry, D.; Couprie, J. Ultrasound-Assisted Extraction and Structural Characterization by NMR of Alginates and Carrageenans from Seaweeds. Carbohydr. Polym. 2017, 166, 55–63. [Google Scholar] [CrossRef]
- Flórez-Fernández, N.; Domínguez, H.; Torres, M.D. A Green Approach for Alginate Extraction from Sargassum Muticum Brown Seaweed Using Ultrasound-Assisted Technique. Int. J. Biol. Macromol. 2019, 124, 451–459. [Google Scholar] [CrossRef]
- Santagata, G.; Grillo, G.; Immirzi, B.; Tabasso, S.; Cravotto, G.; Malinconico, M. Non-Conventional Ultrasound-Assisted Extraction of Alginates from Sargassum Seaweed: From Coastal Waste to a Novel Polysaccharide Source. In Proceedings of the International Conference on Microplastic Pollution in the Mediterranean Sea, Capri, Italy, 26–29 September 2018; pp. 211–217. [Google Scholar]
- Ummat, V.; Sivagnanam, S.P.; Rai, D.K.; O’Donnell, C.; Conway, G.E.; Heffernan, S.M.; Fitzpatrick, S.; Lyons, H.; Curtin, J.; Tiwari, B.K. Conventional Extraction of Fucoidan from Irish Brown Seaweed Fucus Vesiculosus Followed by Ultrasound-Assisted Depolymerization. Sci. Rep. 2024, 14, 6214. [Google Scholar] [CrossRef] [PubMed]
- Oroian, M.; Ursachi, F.; Dranca, F. Influence of Ultrasonic Amplitude, Temperature, Time and Solvent Concentration on Bioactive Compounds Extraction from Propolis. Ultrason. Sonochem. 2020, 64, 105021. [Google Scholar] [CrossRef] [PubMed]
- Luque-García, J.L.; Luque de Castro, M.D. Ultrasound: A Powerful Tool for Leaching. TrAC Trends Anal. Chem. 2003, 22, 41–47. [Google Scholar] [CrossRef]
- Kadam, S.U.; Tiwari, B.K.; O’Donnell, C.P. Effect of Ultrasound Pre-Treatment on the Drying Kinetics of Brown Seaweed Ascophyllum Nodosum. Ultrason. Sonochem. 2015, 23, 302–307. [Google Scholar] [CrossRef]
- Ummat, V.; Sivagnanam, S.P.; Rajauria, G.; O’Donnell, C.; Tiwari, B.K. Advances in Pre-Treatment Techniques and Green Extraction Technologies for Bioactives from Seaweeds. Trends Food Sci. Technol. 2021, 110, 90–106. [Google Scholar] [CrossRef]
- Feng, L.; Cao, Y.; Xu, D.; Wang, S.; Zhang, J. Molecular Weight Distribution, Rheological Property and Structural Changes of Sodium Alginate Induced by Ultrasound. Ultrason. Sonochem. 2017, 34, 609–615. [Google Scholar] [CrossRef]
- Liew, S.Q.; Teoh, W.H.; Yusoff, R.; Ngoh, G.C. Comparisons of Process Intensifying Methods in the Extraction of Pectin from Pomelo Peel. Chem. Eng. Process.-Process Intensif. 2019, 143, 107586. [Google Scholar] [CrossRef]
- Sorolla-Rosario, D.; Llorca-Porcel, J.; Pérez-Martínez, M.; Lozano-Castelló, D.; Bueno-López, A. Study of Microplastics with Semicrystalline and Amorphous Structure Identification by TGA and DSC. J. Environ. Chem. Eng. 2022, 10, 106886. [Google Scholar] [CrossRef]
- Flores-Hernández, C.G.; Cornejo-Villegas, M.d.l.A.; Moreno-Martell, A.; Del Real, A. Synthesis of a Biodegradable Polymer of Poly (Sodium Alginate/Ethyl Acrylate). Polymers 2021, 13, 504. [Google Scholar] [CrossRef]
- Saravana, P.S.; Cho, Y.-N.; Woo, H.-C.; Chun, B.-S. Green and Efficient Extraction of Polysaccharides from Brown Seaweed by Adding Deep Eutectic Solvent in Subcritical Water Hydrolysis. J. Clean. Prod. 2018, 198, 1474–1484. [Google Scholar] [CrossRef]
- Faidi, A.; Lassoued, M.A.; Becheikh, M.E.H.; Touati, M.; Stumbé, J.-F.; Farhat, F. Application of Sodium Alginate Extracted from a Tunisian Brown Algae Padina Pavonica for Essential Oil Encapsulation: Microspheres Preparation, Characterization and in Vitro Release Study. Int. J. Biol. Macromol. 2019, 136, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Vinceković, M.; Jalšenjak, N.; Topolovec-Pintarić, S.; Đermić, E.; Bujan, M.; Jurić, S. Encapsulation of Biological and Chemical Agents for Plant Nutrition and Protection: Chitosan/Alginate Microcapsules Loaded with Copper Cations and Trichoderma Viride. J. Agric. Food Chem. 2016, 64, 8073–8083. [Google Scholar] [CrossRef] [PubMed]
- Hentati, F.; Delattre, C.; Ursu, A.V.; Desbrières, J.; Le Cerf, D.; Gardarin, C.; Abdelkafi, S.; Michaud, P.; Pierre, G. Structural Characterization and Antioxidant Activity of Water-Soluble Polysaccharides from the Tunisian Brown Seaweed Cystoseira Compressa. Carbohydr. Polym. 2018, 198, 589–600. [Google Scholar] [CrossRef]
- Lawrie, G.; Keen, I.; Drew, B.; Chandler-Temple, A.; Rintoul, L.; Fredericks, P.; Grøndahl, L. Interactions between Alginate and Chitosan Biopolymers Characterized Using FTIR and XPS. Biomacromolecules 2007, 8, 2533–2541. [Google Scholar] [CrossRef]
- Hou, L.; Wu, P. Exploring the Hydrogen-Bond Structures in Sodium Alginate through Two-Dimensional Correlation Infrared Spectroscopy. Carbohydr. Polym. 2019, 205, 420–426. [Google Scholar] [CrossRef]
- Davis, T.A.; Ramirez, M.; Mucci, A.; Larsen, B. Extraction, Isolation and Cadmium Binding of Alginate from Sargassum spp. J. Appl. Phycol. 2004, 16, 275–284. [Google Scholar] [CrossRef]
- Belattmania, Z.; Kaidi, S.; El Atouani, S.; Katif, C.; Bentiss, F.; Jama, C.; Reani, A.; Sabour, B.; Vasconcelos, V. Isolation and FTIR-ATR and 1H NMR Characterization of Alginates from the Main Alginophyte Species of the Atlantic Coast of Morocco. Molecules 2020, 25, 4335. [Google Scholar] [CrossRef]
- Gómez-Mascaraque, L.G.; Martínez-Sanz, M.; Hogan, S.A.; López-Rubio, A.; Brodkorb, A. Nano- and Microstructural Evolution of Alginate Beads in Simulated Gastrointestinal Fluids. Impact of M/G Ratio, Molecular Weight and PH. Carbohydr. Polym. 2019, 223, 115121. [Google Scholar] [CrossRef]
- Muñoz-Almagro, N.; Rico-Rodriguez, F.; Villamiel, M.; Montilla, A. Pectin Characterisation Using Size Exclusion Chromatography: A Comparison of ELS and RI Detection. Food Chem. 2018, 252, 271–276. [Google Scholar] [CrossRef]
- Ummat, V.; Singh, A.K.; Sidhu, G.K. Effect of Aqueous Ozone on Quality and Shelf Life of Shredded Green Bell Pepper (Capsicum Annuum). J. Food Process. Preserv. 2018, 42, 13718. [Google Scholar] [CrossRef]
- Mortezaeikia, V.; Tavakoli, O.; Khodaparasti, M.S. A Review on Kinetic Study Approach for Pyrolysis of Plastic Wastes Using Thermogravimetric Analysis. J. Anal. Appl. Pyrolysis 2021, 160, 105340. [Google Scholar] [CrossRef]
- Yang, J.; Panda, P.K.; Jie, C.J.; Dash, P.; Chang, Y. Poly (Vinyl Alcohol)/Chitosan/Sodium Alginate Composite Blended Membrane: Preparation, Characterization, and Water-induced Shape Memory Phenomenon. Polym. Eng. Sci. 2022, 62, 1526–1537. [Google Scholar] [CrossRef]
- Lapuk, S.E.; Ziganshin, M.A.; Larionov, R.A.; Mukhametzyanov, T.A.; Schick, C.; Gerasimov, A.V. Differential Scanning Calorimetry Investigation of Crystallization Kinetics and Glass-Forming Ability of Sulfonamides. J. Non-Cryst. Solids 2023, 600, 122038. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, M.; Gomez, L.P.; Senthamaraikannan, R.; Padamati, R.B.; O’Donnell, C.P.; Tiwari, B.K. Investigation of Enzyme-Assisted Methods Combined with Ultrasonication under a Controlled Alkali Pretreatment for Agar Extraction from Gelidium Sesquipedale. Food Hydrocoll. 2021, 120, 106905. [Google Scholar] [CrossRef]
Crude Alginate Yield (% w/w) | Alginate Content (% w/w) | Molecular Weight (kDa) | ||||||
---|---|---|---|---|---|---|---|---|
Treatment (T) | US Amplitude (%) | Sonication Time (min) | A | p | A | P | A | p |
1 | 90 | 20 | 2.16 | 2.24 | 63.90 | 66.15 | 109.89 | 112.12 |
2 | 30 | 30 | 4.49 | 4.36 | 39.76 | 38.31 | 110.94 | 110.88 |
3 | 80 | 10 | 1.42 | 1.93 | 70.77 | 68.37 | 106.74 | 104.31 |
4 | 20 | 20 | 3.45 | 2.99 | 37.34 | 38.94 | 104.57 | 103.07 |
5 | 55 | 20 | 4.17 | 4.89 | 57.04 | 57.80 | 101.50 | 107.59 |
6 | 80 | 30 | 2.79 | 2.28 | 78.18 | 76.28 | 117.92 | 117.28 |
7 | 55 | 34 | 2.93 | 3.46 | 63.64 | 65.21 | 120.41 | 116.77 |
8 | 55 | 20 | 4.30 | 4.89 | 58.15 | 57.80 | 102.23 | 107.59 |
9 | 55 | 20 | 4.31 | 4.89 | 59.93 | 57.80 | 105.82 | 107.59 |
10 | 55 | 20 | 5.46 | 4.89 | 55.68 | 57.80 | 105.18 | 107.59 |
11 | 55 | 6 | 1.70 | 0.79 | 78.22 | 80.50 | 102.45 | 98.42 |
12 | 30 | 10 | 0.020 | 0.91 | 69.79 | 67.84 | 95.63 | 97.91 |
13 | 55 | 20 | 6.19 | 4.89 | 58.18 | 57.80 | 115.45 | 107.59 |
Crude Alginate Yield (%) | Alginate Content (%) | Mw (kDa) | ||||
---|---|---|---|---|---|---|
Source | F Value | p-Value Prob > F | F Value | p-Value Prob > F | F Value | p-Value Prob > F |
Model | 7.09 | 0.0115 | 62.69 | <0.0001 | 11.32 | 0.0027 |
A-US amplitude | 0.67 | 0.4402 | 128.15 | <0.0001 | 4.44 | 0.0614 |
B-Sonication time | 8.52 | 0.0224 | 40.45 | 0.0004 | 18.21 | 0.0016 |
AB | 2.85 | 0.1352 | 60.65 | 0.0001 | ||
A2 | 10.64 | 0.0138 | 8.30 | 0.0236 | ||
B2 | 15.73 | 0.0054 | 68.26 | <0.0001 | ||
Lack of Fit | 1.11 | 0.4429 | 4.13 | 0.1022 | 0.32 | 0.8947 |
Crude Alginate Yield (%) | Alginate Content (%) | Mw (kDa) | |
---|---|---|---|
Std. Dev. | 0.92 | 2.40 | 4.30 |
Mean | 3.34 | 60.81 | 107.59 |
C.V.% | 27.50 | 3.95 | 4.00 |
PRESS | 24.09 | 232.80 | 266.80 |
−2 Log Likelihood | 26.62 | 51.65 | 71.40 |
R-Squared | 0.84 | 0.98 | 0.69 |
Adj R-Squared | 0.72 | 0.96 | 0.63 |
Pred R-Squared | 0.33 | 0.87 | 0.56 |
Adeq Precision | 6.58 | 25.83 | 9.38 |
BIC | 42.01 | 67.04 | 79.10 |
AICc | 52.62 | 77.65 | 80.07 |
Parameters | Models (Actual Factors) | Models (Coded Factors) |
---|---|---|
Crude alginate yield (%) | −10.852 + 0.251A + 0.817B − 0.003AB − 0.002A2 − 0.014B2 | 4.89 − 0.27A + 0.95B − 0.77AB − 1.14A2 − 1.38B2 |
Alginate content (%) | 106.036 + 0.098A − 5.611B + 0.037AB − 0.004A2 + 0.075B2 | 57.80 + 9.62A − 5.40B + 9.36AB − 2.63A2 + 7.53B2 |
Molecular weight (kDa) | 87.579 + 0.128A + 0.649B | 107.59 + 3.20A + 6.49B |
Extraction Treatment | Crude Alginate Yield (% w/w) | Alginate Content (% w/w) | Molecular Weight (kDa) | Total Color Difference (ΔE) |
---|---|---|---|---|
Optimized UAE treatment (69% US, 30 min) *O1 | 6.71 | 62.48 | 105.24 | 26.14 |
Optimized UAE treatment (69% US, 30 min) *O2 | 6.94 | 63.17 | 105.8 | 24.31 |
Conventional treatment (60 °C stirring for 24 h) *CA | 8.23 | 66.67 | 113.8 | 48.65 |
Conventional treatment (60 °C stirring for 24 h) *CB | 7.81 | 68.22 | 106.61 | 49.33 |
Independent Variable | Units | Symbol | Factor Levels | ||||
---|---|---|---|---|---|---|---|
−1.412 | −1 | 0 | +1 | +1.412 | |||
US amplitude | % | A | 20 | 30 | 55 | 80 | 90 |
Sonication treatment time | min | B | 6 | 10 | 20 | 30 | 34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ummat, V.; Zhao, M.; Sivagnanam, S.P.; Karuppusamy, S.; Lyons, H.; Fitzpatrick, S.; Noore, S.; Rai, D.K.; Gómez-Mascaraque, L.G.; O’Donnell, C.; et al. Ultrasound-Assisted Extraction of Alginate from Fucus vesiculosus Seaweed By-Product Post-Fucoidan Extraction. Mar. Drugs 2024, 22, 516. https://doi.org/10.3390/md22110516
Ummat V, Zhao M, Sivagnanam SP, Karuppusamy S, Lyons H, Fitzpatrick S, Noore S, Rai DK, Gómez-Mascaraque LG, O’Donnell C, et al. Ultrasound-Assisted Extraction of Alginate from Fucus vesiculosus Seaweed By-Product Post-Fucoidan Extraction. Marine Drugs. 2024; 22(11):516. https://doi.org/10.3390/md22110516
Chicago/Turabian StyleUmmat, Viruja, Ming Zhao, Saravana Periaswamy Sivagnanam, Shanmugapriya Karuppusamy, Henry Lyons, Stephen Fitzpatrick, Shaba Noore, Dilip K. Rai, Laura G. Gómez-Mascaraque, Colm O’Donnell, and et al. 2024. "Ultrasound-Assisted Extraction of Alginate from Fucus vesiculosus Seaweed By-Product Post-Fucoidan Extraction" Marine Drugs 22, no. 11: 516. https://doi.org/10.3390/md22110516
APA StyleUmmat, V., Zhao, M., Sivagnanam, S. P., Karuppusamy, S., Lyons, H., Fitzpatrick, S., Noore, S., Rai, D. K., Gómez-Mascaraque, L. G., O’Donnell, C., Režek Jambark, A., & Tiwari, B. K. (2024). Ultrasound-Assisted Extraction of Alginate from Fucus vesiculosus Seaweed By-Product Post-Fucoidan Extraction. Marine Drugs, 22(11), 516. https://doi.org/10.3390/md22110516