Anti-Inflammatory and Immunomodulatory Properties of a Crude Polysaccharide Derived from Green Seaweed Halimeda tuna: Computational and Experimental Evidences
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Yield and Chemical Characterization
2.2. Spectroscopic Analysis
2.2.1. FT-IR Spectrometric Analysis
2.2.2. UV Absorption Peak Detection
2.2.3. Monosaccharide Analysis by HPLC-FID
2.2.4. X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM)
2.3. In Vitro Biological Properties of PSHT
2.3.1. DPPH Free Radical Scavenging Assay
2.3.2. Reducing Power Assay
2.3.3. Determination of Nitric Oxide Inhibition
2.3.4. Anti-Hemolytic Activity and the Impact of PSHT in Stabilizing Erythrocyte Membranes In Vitro
3. Effect of PSHT in RAW264.7
3.1. Cell Viability Assay
3.2. Determination of Nitrite Production
3.3. PSHT Effect on GM-CSF and TNF-α Production In Vitro
4. In Vivo PSHT Application
4.1. Effect of PSHT in Carrageenan-Induced Paw Edema
4.2. Effect of PSHT on Hematological Parameters
4.3. Effect of PSHT on Inflammation-Related Serum Protein Levels
5. In Silico Findings
6. Materials and Methods
6.1. Algal Material
6.2. Extraction Yield and Chemical Characterization
6.3. Spectroscopic Analysis
6.3.1. FT-IR Spectrometric Analysis
6.3.2. UV Absorption Peak Detection
6.3.3. X-ray Diffraction (XRD)
6.3.4. Monosaccharide Analysis by HPLC-FID
6.3.5. Scanning Electron Microscopy (SEM)
6.4. In Vitro Biological Properties of PSHT
6.4.1. DPPH Free Radical Scavenging Assay
6.4.2. Reducing Power Assay
6.4.3. Determination of Nitric Oxide Inhibition
6.5. Hemolytic Activity of Sulfate Polysaccharide
6.6. Effect of Sulfate Polysaccharide on Macrophages RAW264.7
6.6.1. Cell Culture RAW264.7
6.6.2. Macrophages Viability Assay
6.6.3. Nitric Oxide Assay
6.7. Cytokines Quantification in Culture Supernatants
6.8. In Vivo PSHT Application
6.8.1. Animals and Experimental Design
6.8.2. Sample Collection
6.8.3. Effect of PSHT and CARR on Hematological Parameters
6.8.4. Evaluation of Oxidative Stress Parameters in Skin and Erythrocytes
- Preparation of Extracts
- Determination of Skin and Erythrocyte Protein, Malondialdehyde, and Advanced Oxidation Protein Products Levels
- Determination of Skin and Erythrocyte Enzymatic and Non-Enzymatic Anti-Oxidants
6.8.5. Histological Examination
6.9. Computational Study
6.10. Statistical Analysis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hirayama, D.; Iida, T.; Nakase, H. The Phagocytic Function of Macrophage-Enforcing Innate Immunity and Tissue Homeostasis. Int. J. Mol. Sci. 2017, 19, 92. [Google Scholar] [CrossRef]
- Fioranelli, M.; Roccia, M.G.; Flavin, D.; Cota, L. Regulation of Inflammatory Reaction in Health and Disease. Int. J. Mol. Sci. 2021, 22, 5277. [Google Scholar] [CrossRef]
- Austermann, J.; Roth, J.; Barczyk-Kahlert, K. The Good and the Bad: Monocytes’ and Macrophages’ Diverse Functions in Inflammation. Cells 2022, 11, 1979. [Google Scholar] [CrossRef]
- Du, L.; Miao, X.; Jia, H.; Gao, Y.; Liu, K.; Zhang, X.; Liu, Y. Detection of nitric oxide in macrophage cells for the assessment of the cytotoxicity of gold nanoparticles. Talanta 2012, 101, 11–16. [Google Scholar] [CrossRef]
- Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol. 2020, 180, 114147. [Google Scholar] [CrossRef]
- Amaro, H.M.; Pagels, F.; Tavares, T.G.; Costa, I.; Sousa-Pinto, I.; Guedes, A.C. Antioxidant and Anti-Inflammatory Potential of Seaweed Extracts as Functional Ingredients. Hydrobiology 2022, 1, 469–482. [Google Scholar] [CrossRef]
- Mhadhebi, L.; Mhadhebi, A.; Robert, J.; Bouraoui, A. Antioxidant, Anti-inflammatory and Antiproliferative Effects of Aqueous Extracts of Three Mediterranean Brown Seaweeds of the Genus Cystoseira. Iran. J. Pharm. Res. 2014, 13, 207–220. [Google Scholar] [PubMed]
- Jaworowska, A.; Murtaza, A. Seaweed Derived Lipids Are a Potential Anti-Inflammatory Agent: A Review. Int. J. Environ. Res. Public Health 2023, 20, 730. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.; Wang, Q.; Luo, H.; Lei, D.; Tang, Z.; Lei, S.; Xiao, H. Inhibitory Effects of Polyphenols-Rich Components from Three Edible Seaweeds on Inflammation and Colon Cancer in vitro. Front. Nutr. 2022, 9, 856273. [Google Scholar] [CrossRef] [PubMed]
- Adrien, A.; Bonnet, A.; Dufour, D.; Baudouin, S.; Maugard, T.; Bridiau, N. Anticoagulant Activity of Sulfated Ulvan Isolated from the Green Macroalga Ulva rigida. Mar. Drugs 2019, 17, 291. [Google Scholar] [CrossRef]
- Wang, L.; Je, J.-G.; Huang, C.; Oh, J.-Y.; Fu, X.; Wang, K.; Ahn, G.; Xu, J.; Gao, X.; Jeon, Y.-J. Anti-Inflammatory Effect of Sulfated Polysaccharides Isolated from Codium fragile In Vitro in RAW 264.7 Macrophages and In Vivo in Zebrafish. Mar. Drugs 2022, 20, 391. [Google Scholar] [CrossRef]
- Patel, S. Therapeutic importance of sulfated polysaccharides from seaweeds: Updating the recent findings. 3 Biotech 2012, 2, 171–185. [Google Scholar] [CrossRef]
- Hira, K.; Sultana, V.; Khatoon, N.; Ara, J.; Ehteshamul-Haque, S. Protective effect of crude sulphated polysaccharides from Sargassum Swartzii (Turn.) C.Ag. against acetaminophen induced liver toxicity in rats. Clin. Phytosci. 2019, 5, 14. [Google Scholar] [CrossRef]
- Zaitseva, O.O.; Sergushkina, M.I.; Khudyakov, A.N.; Polezhaeva, T.V.; Solomina, O.N. Seaweed sulfated polysaccharides and their medicinal properties. Algal. Res. 2022, 68, 102885. [Google Scholar] [CrossRef]
- Ren, Y.; Zheng, G.; You, L.; Wen, L.; Li, C.; Fu, X.; Zhou, L. Structural characterization and macrophage immunomodulatory activity of a polysaccharide isolated from Gracilaria lemaneiformis. J. Funct. Foods 2017, 33, 286–296. [Google Scholar] [CrossRef]
- Peppelenbosch, M.; Desmedt, M.; Hove, T.; van Deventer, S.; Grooten, J. Lipopolysaccharide Regulates Macrophage Fluid Phase Pinocytosis Via CD14-Dependent and CD14-Independent Pathways. Blood 1999, 93, 4011–4018. [Google Scholar] [CrossRef]
- Qin, L.; Xu, H.; He, Y.; Liang, C.; Wang, K.; Cao, J.; Qu, C.; Miao, J. Purification, Chemical Characterization and Immunomodulatory Activity of a Sulfated Polysaccharide from Marine Brown Algae Durvillaea antarctica. Mar. Drugs 2022, 20, 223. [Google Scholar] [CrossRef] [PubMed]
- Giuliano, F.; Warner, T.D. Origins of prostaglandin E2: Involvements of cyclooxygenase (COX)-1 and COX-2 in human and rat systems. J. Pharmacol. Exp. Ther. 2002, 303, 1001–1006. [Google Scholar] [CrossRef] [PubMed]
- de Brito, T.V. Antiinflammatory effect of a sulphated polysaccharide fraction extracted from the red algae Hypnea musciformis via the suppression of neutrophil migration by the nitric oxide signalling pathway. J. Pharm. Pharmacol. 2013, 65, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Supardy, N.A.; Ibrahim, D.; Sulaiman, S.F.; Zakaria, N.A. Inhibition of Klebsiella pneumoniae ATCC 13883 cells by hexane extract of Halimeda discoidea (Decaisne) and the identification of its potential bioactive compounds. J. Microbiol. Biotechnol. 2012, 22, 872–881. [Google Scholar] [CrossRef]
- Gazali, M.; Nurjanah; Zamani, N.P.; Zuriat; Nasution, M.A. A study on a potential bioactive compound in green seaweed Chaetomorpha antennina Kützing (1847) extract as antioxidant from the Gosong Telaga Coast, Aceh Singkil. IOP Conf. Ser. Earth Environ. Sci. 2020, 564, 012058. [Google Scholar] [CrossRef]
- Balakrishnan, D.S.; Indira, K.; Srinivasan, M.; Subramanian, B.; Thangavel, B. Evaluation of in vitro antimicrobial property of seaweed (Halimeda tuna) from Tuticorin coast, Tamil Nadu, Southeast coast of India. Afr. J. Biotechnol. 2013, 12, 284–289. [Google Scholar] [CrossRef]
- Mancini-Filho, J.; Novoa, A.V.; González, A.E.B.; de Andrade-Wartha, E.R.S.; de O e Silva, A.M.; Pinto, J.R.; Mancini, D.A.P. Free phenolic acids from the seaweed Halimeda monile with antioxidant effect protecting against liver injury. Z Naturforsch. C J. Biosci. 2009, 64, 657–663. [Google Scholar] [CrossRef]
- Costa, L.S.; Fidelis, G.P.; Cordeiro, S.L.; Oliveira, R.M.; Sabry, D.A.; Câmara, R.B.G.; Nobre, L.T.D.B.; Costa, M.S.S.P.; Almeida-Lima, J.; Farias, E.H.C.; et al. Biological activities of sulfated polysaccharides from tropical seaweeds. Biomed. Pharmacother. 2010, 64, 21–28. [Google Scholar] [CrossRef]
- Devi, G.K.; Manivannan, K.; Thirumaran, G.; Rajathi, F.A.A.; Anantharaman, P. In vitro Antioxidant Activities of Selected Seaweeds from Southeast Coast of India. Asian. Pac. J. Trop. Med. 2011, 4, 205–211. [Google Scholar] [CrossRef]
- Gazali, M.; Jolanda, O.; Husni, A.; Nurjanah, N.; Majid, F.A.A.; Zuriat, Z.; Syafitri, R. In vitro α-Amylase and α-Glucosidase Inhibitory Activity of Green Seaweed Halimeda Tuna Extract from the Coast of Lhok Bubon, Aceh. Plants 2023, 12, 393. [Google Scholar] [CrossRef]
- Reis, S.E.; Andrade, R.G.C.; Accardo, C.M.; Maia, L.F.; Oliveira, L.F.C.; Nader, H.B.; Aguiar, J.A.K.; Medeiros, V.P. Influence of Sulfated Polysaccharides from Ulva Lactuca L. upon Xa and IIa Coagulation Factors and on Venous Blood Clot Formation. Alg. Res. 2020, 45, 101750. [Google Scholar] [CrossRef]
- Venkatesan, M.; Arumugam, V.; Pugalendi, R.; Ramachandran, K.; Sengodan, K.; Vijayan, S.R.; Sundaresan, U.; Ramachandran, S.; Pugazhendhi, A. Antioxidant, anticoagulant and mosquitocidal properties of water soluble polysaccharides (WSPs) from Indian seaweeds. Process Biochem. 2019, 84, 196–204. [Google Scholar] [CrossRef]
- Chaiklahan, R.; Srinorasing, T.; Chirasuwan, N.; Tamtin, M.; Bunnag, B. The potential of polysaccharide extracts from Caulerpa lentillifera waste. Int. J. Biol. Macromol. 2020, 161, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Alipour, H.J.; Rezaei, M.; Shabanpour, B.; Tabarsa, M. Effects of sulfated polysaccharides from green alga Ulva intestinalis on physicochemical properties and microstructure of silver carp surimi. Food Hydrocoll. 2018, 74, 87–96. [Google Scholar] [CrossRef]
- Pangestuti, R.; Siahaan, E.A.; Kim, S.-K. Photoprotective Substances Derived from Marine Algae. Mar. Drugs 2018, 16, 399. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Yang, Y.; Bian, X.; Li, X.; Wang, B.; Wang, D.; Su, D.; Liu, L.; Yu, D.; Guo, X.; et al. Physicochemical, Rheological, Structural, Antioxidant, and Antimicrobial Properties of Polysaccharides Extracted from Tamarind Seeds. J. Food Qual. 2022, 2022, 9788248. [Google Scholar] [CrossRef]
- Kammoun, I.; Sellem, I.; Ben Saad, H.; Boudawara, T.; Nasri, M.; Gharsallah, N.; Mallouli, L.; Amara, I.B. Potential Benefits of Polysaccharides Derived from Marine Alga Ulva Lactuca against Hepatotoxicity and Nephrotoxicity Induced by Thiacloprid, an Insecticide Pollutant. Environ. Toxicol. 2019, 34, 1165–1176. [Google Scholar] [CrossRef] [PubMed]
- Yaich, H.; Garna, H.; Besbes, S.; Paquot, M.; Blecker, C.; Attia, H. Effect of extraction conditions on the yield and purity of ulvan extracted from Ulva lactuca. Food Hydrocoll. 2013, 31, 375–382. [Google Scholar] [CrossRef]
- Hao, H.; Han, Y.; Yang, L.; Hu, L.; Duan, X.; Yang, X.; Huang, R. Structural characterization and immunostimulatory activity of a novel polysaccharide from green alga Caulerpa racemosa var peltata. Int. J. Biol. Macromol. 2019, 134, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Fleury, N.; Lahaye, M. Chemical and physico-chemical characterisation of fibres from Laminaria digitata (kombu breton): A physiological approach. J. Sci. Food Agric. 1991, 55, 389–400. [Google Scholar] [CrossRef]
- Hamzaoui, A.; Ghariani, M.; Sellem, I.; Hamdi, M.; Feki, A.; Jaballi, I.; Nasri, M.; Amara, I.B. Extraction, characterization and biological properties of polysaccharide derived from green seaweed “Chaetomorpha linum” and its potential application in Tunisian beef sausages. Int. J. Biol. Macromol. 2020, 148, 1156–1168. [Google Scholar] [CrossRef]
- Ghariani, M.; Saad, H.B.; Hamzaoui, A.; Ajela, M.; Hilali, A.; Amara, I.B. Effect of the incorporation of polysaccharides from green alga Bryopsis plumosa on beef sausages quality. Cell. Mol. Biol. 2022, 68, 30–37. [Google Scholar] [CrossRef]
- Jaballi, I.; Sallem, I.; Feki, A.; Cherif, B.; Kallel, C.; Boudawara, O.; Jamoussi, K.; Mellouli, L.; Nasri, M.; Amara, I.B. Polysaccharide from a Tunisian red seaweed Chondrus canaliculatus: Structural characteristics, antioxidant activity and in vivo hemato-nephroprotective properties on maneb induced toxicity. Int. J. Biol. Macromol. 2019, 123, 1267–1277. [Google Scholar] [CrossRef]
- Raguraman, V.; Jyotsna, J.; Palaniappan, S.; Gopal, S.; Thirugnanasambandam, R.; Kirubagaran, R. Sulfated polysaccharide from Sargassum tenerrimum attenuates oxidative stress induced reactive oxygen species production in in vitro and in zebrafish model. Carbohydr. Polym. 2019, 203, 441–449. [Google Scholar] [CrossRef]
- Qian, J.-Y.; Chen, W.; Zhang, W.-M.; Zhang, H. Adulteration identification of some fungal polysaccharides with SEM, XRD, IR and optical rotation: A primary approach. Carbohydr. Polym. 2009, 78, 620–625. [Google Scholar] [CrossRef]
- Gao, X.; Qu, H.; Shan, S.; Song, C.; Baranenko, D.; Li, Y.; Lu, W. A novel polysaccharide isolated from Ulva Pertusa: Structure and physicochemical property. Carbohydr. Polym. 2020, 233, 115849. [Google Scholar] [CrossRef]
- Ma, X.-T.; Sun, X.-Y.; Yu, K.; Gui, B.-S.; Gui, Q.; Ouyang, J.-M. Effect of Content of Sulfate Groups in Seaweed Polysaccharides on Antioxidant Activity and Repair Effect of Subcellular Organelles in Injured HK-2 Cells. Oxid. Med. Cell Longev. 2017, 2017, 2542950. [Google Scholar] [CrossRef]
- Shao, P.; Chen, X.; Sun, P. In vitro antioxidant and antitumor activities of different sulfated polysaccharides isolated from three algae. Int. J. Biol. Macromol. 2013, 62, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Leelaprakash, G.; Dass, S.M. In vitro anti-inflammatory activity of methanol extract of Enicostemma axillare. Int. J. Drug Dev. Res. 2011, 3, 189–196. [Google Scholar]
- Eljoudi, S.; Feki, A.; Bkhairia, I.; Barkia, A.; Ben Amara, I.; Nasri, M.; Hajji, M. New polysaccharides extracted from Malcolmia triloba: Structure characterization, biological properties and application to beef meat preservation. J. Food Compos. Anal. 2022, 107, 104380. [Google Scholar] [CrossRef]
- Gunasekaran, S.; Govindan, S.; Ramani, P. Sulfated modification, characterization and bioactivities of an acidic polysaccharide fraction from an edible mushroom Pleurotus eous (Berk.) Sacc. Heliyon 2021, 7, e05964. [Google Scholar] [CrossRef] [PubMed]
- Shreshtha, S.; Sharma, P.; Kumar, P.; Sharma, R.; Singh, S. Nitric Oxide: It’s Role in Immunity. JCDR 2018, 12, BE01–BE05. [Google Scholar] [CrossRef]
- Saad, H.; Frikha-Dammak, D.; Bouallegue, A.; Badraoui, R.; Mellouli, M.; Kallel, H.; Ben Amara, I. Mitigation of Hepatic Impairment with Polysaccharides from Red Alga Albidum corallinum Supplementation through Promoting the Lipid Profile and Liver Homeostasis in Tebuconazole-Exposed Rats. Pharmaceuticals 2023, 16, 1305. [Google Scholar] [CrossRef] [PubMed]
- El-Sheekh, M.M.; Ward, F.; Deyab, M.A.; Al-Zahrani, M.; Touliabah, H.E. Chemical Composition, Antioxidant, and Antitumor Activity of Fucoidan from the Brown Alga Dictyota dichotoma. Molecules 2023, 28, 7175. [Google Scholar] [CrossRef] [PubMed]
- Ananthi, S.; Raghavendran, H.R.B.; Sunil, A.G.; Gayathri, V.; Ramakrishnan, G.; Vasanthi, H.R. In vitro antioxidant and in vivo anti-inflammatory potential of crude polysaccharide from Turbinaria ornata (Marine Brown Alga). Food Chem. Toxicol. 2010, 48, 187–192. [Google Scholar] [CrossRef]
- Shinde, U.A.; Phadke, A.S.; Nair, A.M.; Mungantiwar, A.A.; Dikshit, V.J.; Saraf, M.N. Membrane stabilizing activity—A possible mechanism of action for the anti-inflammatory activity of Cedrus deodara wood oil. Fitoterapia 1999, 3, 251–257. [Google Scholar] [CrossRef]
- Fidele, K.Z.; Michèle, B.G.; Auguste, A.J. Evaluation of Hemostatic and Antihemolytic Effects of Aqueous Extract of Garcinia kola (Clusiaceae) Fresh Seeds. JBM 2022, 10, 205–218. [Google Scholar] [CrossRef]
- Saraswati; Giriwono, P.E.; Iskandriati, D.; Tan, C.P.; Andarwulan, N. Sargassum Seaweed as a Source of Anti-Inflammatory Substances and the Potential Insight of the Tropical Species: A Review. Mar. Drugs 2019, 17, 590. [Google Scholar] [CrossRef] [PubMed]
- González-Vega, R.I.; Del-Toro-Sánchez, C.L.; Moreno-Corral, R.A.; López-Elías, J.A.; Reyes-Díaz, A.; García-Lagunas, N.; Carvajal-Millán, E.; Fimbres-Olivarría, D. Sulfated polysaccharide-rich extract from Navicula incerta: Physicochemical characteristics, antioxidant activity, and anti-hemolytic property, AIMSBOA. AIMS Bioeng. 2022, 9, 364–382. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Zhang, Z.; Li, Z. Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. Int. J. Biol. Macromol. 2008, 42, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Citkowska, A.; Szekalska, M.; Winnicka, K. Possibilities of Fucoidan Utilization in the Development of Pharmaceutical Dosage Forms. Mar. Drugs 2019, 17, 458. [Google Scholar] [CrossRef]
- Anosike, C.A.; Igboegwu, O.N.; Nwodo, O.F.C. Antioxidant properties and membrane stabilization effects of methanol extract of Mucuna pruriens leaves on normal and sickle erythrocytes. J. Tradit. Complement. Med. 2019, 9, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Arellano, J.L.; Barrios, M.N.; Martín, T.; Sánchez, M.L.; Jiménez, A.; González-Buitrago, J.M. Hydrolytic enzyme of the alveolar macrophage in diffuse pulmonary interstitial disease. Respir. Med. 1996, 90, 159–166. [Google Scholar] [CrossRef]
- Aki, T.; Funakoshi, T.; Noritake, K.; Unuma, K.; Uemura, K. Extracellular glucose is crucially involved in the fate decision of LPS-stimulated RAW264.7 murine macrophage cells. Sci. Rep. 2020, 10, 10581. [Google Scholar] [CrossRef]
- Ghonime, M.; Emara, M.; Shawky, R.; Soliman, H.; El-Domany, R.; Abdelaziz, A. Immunomodulation of RAW 264.7 murine macrophage functions and antioxidant activities of 11 plant extracts. Immunol. Investig. 2015, 44, 237–252. [Google Scholar] [CrossRef]
- Qu, D.; Lian, S.; Hu, H.; Sun, W.; Si, H. Characterization and macrophages immunomodulatory activity of two water-soluble polysaccharides from Abrus cantoniensis. Front. Nutr. 2022, 9, 969512. [Google Scholar] [CrossRef]
- Cheng, X.-D.; Wu, Q.-X.; Zhao, J.; Su, T.; Lu, Y.-M.; Zhang, W.-N.; Wang, Y.; Chen, Y. Immunomodulatory effect of a polysaccharide fraction on RAW 264.7 macrophages extracted from the wild Lactarius deliciosus. Int. J. Biol. Macromol. 2019, 128, 732–739. [Google Scholar] [CrossRef]
- Mezdour, H.; Menad, A.; Gherib, A.; Algabr, M.; Souad, A. Immunomodulatory and anti-inflammatory activities of ALGERIAN ulva lactuca. World J. Pharm. Res. 2017, 6, 72–95. [Google Scholar] [CrossRef]
- Jiang, F.; Ding, Y.; Tian, Y.; Yang, R.; Quan, M.; Tong, Z.; Zhang, X.; Luo, D.; Chi, Z.; Liu, C. Hydrolyzed low-molecular-weight polysaccharide from Enteromorpha prolifera exhibits high anti-inflammatory activity and promotes wound healing. Biomater. Adv. 2022, 133, 112637. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Z.; Li, L.; Zhang, J.; Zhao, Q.; Lin, N.; Zhong, W.; Jiang, M. Immunomodulatory effects of the polysaccharide from Sinonovacula constricta on RAW264.7 macrophage cells. Food Sci. Nutr. 2022, 10, 1093–1102. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zou, P.; Zhao, H.; Qiu, J.; Regenstein, J.M.; Yang, X. Isolation, purification, structure and antioxidant activity of polysaccharide from pinecones of Pinus koraiensis. Carbohydr. Polym. 2021, 251, 117078. [Google Scholar] [CrossRef] [PubMed]
- Marrocco, A.; Ortiz, L.A. Role of metabolic reprogramming in pro-inflammatory cytokine secretion from LPS or silica-activated macrophages. Front. Immunol. 2022, 13, 936167. [Google Scholar] [CrossRef]
- Singh, N.; Baby, D.; Rajguru, J.P.; Patil, P.B.; Thakkannavar, S.S.; Pujari, V.B. Inflammation and cancer. Ann. Afr. Med. 2019, 18, 121–126. [Google Scholar] [CrossRef]
- Peng, Y.; Song, Y.; Wang, Q.; Hu, Y.; He, Y.; Ren, D.; Wu, L.; Liu, S.; Cong, H.; Zhou, H. In vitro and in vivo immunomodulatory effects of fucoidan compound agents. Int. J. Biol. Macromol. 2019, 127, 48–56. [Google Scholar] [CrossRef]
- Sousa, S.G.; Oliveira, L.A.; de Aguiar Magalhães, D.; de Brito, T.V.; Batista, J.A.; Pereira, C.M.C.; de Souza Costa, M.; Mazulo, J.C.R.; de Carvalho Filgueiras, M.; Vasconselos, D.F.P.; et al. Chemical structure and anti-inflammatory effect of polysaccharide extracted from Morinda citrifolia Linn (Noni). Carbohydr. Polym. 2018, 197, 515–523. [Google Scholar] [CrossRef]
- Ruiz-Baca, E.; Pérez-Torres, A.; Romo-Lozano, Y.; Cervantes-García, D.; Alba-Fierro, C.A.; Ventura-Juárez, J.; Torriello, C. The Role of Macrophages in the Host’s Defense against Sporothrix schenckii. Pathogens 2021, 10, 905. [Google Scholar] [CrossRef] [PubMed]
- Zammel, N.; Saeed, M.; Bouali, N.; Elkahoui, S.; Alam, J.M.; Rebai, T.; Kausar, M.A.; Adnan, M.; Siddiqui, A.J.; Badraoui, R. Antioxidant and Anti-Inflammatory Effects of Zingiber officinale roscoe and Allium subhirsutum: In Silico, Biochemical and Histological Study. Foods 2021, 10, 1383. [Google Scholar] [CrossRef] [PubMed]
- Gulhar, R.; Ashraf, M.A.; Jialal, I. Physiology, Acute Phase Reactants. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Varela, M.L.; Mogildea, M.; Moreno, I.; Lopes, A. Acute Inflammation and Metabolism. Inflammation 2018, 41, 1115–1127. [Google Scholar] [CrossRef] [PubMed]
- Kaysen, G.A. Effects of inflammation on plasma composition and endothelial structure and function. J. Ren. Nutr. 2005, 15, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Sproston, N.R.; Ashworth, J.J. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front. Immunol. 2018, 9, 754. [Google Scholar] [CrossRef]
- Badraoui, R.; Saoudi, M.; Hamadou, W.S.; Elkahoui, S.; Siddiqui, A.J.; Alam, J.M.; Jamal, A.; Adnan, M.; Suliemen, A.M.E.; Alreshidi, M.M.; et al. Antiviral Effects of Artemisinin and Its Derivatives against SARS-CoV-2 Main Protease: Computational Evidences and Interactions with ACE2 Allelic Variants. Pharmaceuticals 2022, 15, 129. [Google Scholar] [CrossRef]
- Badraoui, R.; Saeed, M.; Bouali, N.; Hamadou, W.S.; Elkahoui, S.; Alam, M.J.; Siddiqui, A.J.; Adnan, M.; Saoudi, M.; Rebai, T. Expression Profiling of Selected Immune Genes and Trabecular Microarchitecture in Breast Cancer Skeletal Metastases Model: Effect of α–Tocopherol Acetate Supplementation. Calcif. Tissue Int. 2022, 110, 475–488. [Google Scholar] [CrossRef] [PubMed]
- Mhadhbi, N.; Dgachi, S.; Belgacem, S.; Ahmed, A.B.; Henry, N.; Loiseau, T.; Nasr, S.; Badraoui, R.; Naïli, H. Design, theoretical study, druggability, pharmacokinetics and properties evolution of a new organo-bromocadmate compound as prospective anticancer agent. J. Mol. Struct. 2023, 1274, 134439. [Google Scholar] [CrossRef]
- Jedli, O.; Ben-Nasr, H.; Zammel, N.; Rebai, T.; Saoudi, M.; Elkahoui, S.; Jamal, A.; Siddiqui, A.J.; Sulieman, A.E.; Alreshidi, M.M.; et al. Attenuation of Ovalbumin-Induced Inflammation and Lung Oxidative Injury in Asthmatic Rats by Zingiber Officinale Extract: Combined in Silico and in vivo Study on Antioxidant Potential, STAT6 and TNF-α Pathways. 3 Biotech 2022, 12, 191. [Google Scholar] [CrossRef]
- Akacha, A.; Badraoui, R.; Rebai, T.; Zourgui, L. Effect of Opuntia Ficus Indica Extract on Methotrexate-Induced Testicular Injury: A Biochemical, Docking and Histological Study. J. Biomol. Struct. Dyn. 2022, 40, 4341–4351. [Google Scholar] [CrossRef]
- Ben-Nasr, H.; Badraoui, R. Approach of Utilizing Artemisia Herbs to Treat Covid-19. Braz. J. Pharm. Sci. 2022, 58, e20345. [Google Scholar] [CrossRef]
- Feki, A.; Jaballi, I.; Cherif, B.; Ktari, N.; Naifar, M.; Makni Ayadi, F.; Kallel, R.; Boudawara, O.; Kallel, C.; Nasri, M.; et al. Therapeutic potential of polysaccharide extracted from fenugreek seeds against thiamethoxam-induced hepatotoxicity and genotoxicity in Wistar adult rats. Toxicol. Mech. Methods 2019, 29, 355–367. [Google Scholar] [CrossRef]
- Lowry, O.C.; Rosebrough, N.; Farr, A.; Randall, R. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Filisetti-Cozzi, T.M.C.C.; Carpita, N.C. Measurement of uronic acids without interference from neutral sugars. Anal. Biochem. 1991, 197, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Dodgson, K.S.; Price, R.G. A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochem. J. 1962, 84, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Lopes-Lutz, D.; Alviano, D.S.; Alviano, C.S.; Kolodziejczyk, P.P. Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils. Phytochemistry 2008, 69, 1732–1738. [Google Scholar] [CrossRef] [PubMed]
- Oyaizu, M. Studies on Products of Browning Reactions Antioxidative Activities of Product of Browning Reaction Prepared from Glucosamine. Japan Journal of Nutrition, 44, 307–315.—References—Scientific Research Publishing. 1986. Available online: https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=1125699 (accessed on 20 November 2023).
- Marcocci, L.; Maguire, J.J.; Droy-Lefaix, M.T.; Packer, L. The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. Biochem. Biophys. Res. Commun. 1994, 201, 748–755. [Google Scholar] [CrossRef] [PubMed]
- Uddin, J.; Julie, A.S.; Ali, M.H.; Islam, M.N.; Khan, S.A.; Labu, Z.K. Antimicrobial, Thrombolytic, Membrane Stabilizing Activities and Total Flavonoid Content of Various Partitionates of Aerial Parts of Eclipta alba (L.) Hassk. Dhaka Univ. J. Pharm. Sci. 2015, 14, 207–213. [Google Scholar] [CrossRef]
- Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proc. Soc. Exp. Biol. Med. 1962, 111, 544–547. [Google Scholar] [CrossRef]
- Draper, H.H.; Hadley, M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzym. 1990, 186, 421–431. [Google Scholar] [CrossRef]
- Kayali, R.; Cakatay, U.; Akçay, T.; Altuğ, T. Effect of alpha-lipoic acid Supplementation on markers of protein oxidation in post-mitotic tissues of ageing rat. Cell Biochem. Funct. 2006, 24, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef] [PubMed]
- Flohe, L.; Günzler, W. Assays of Glutathione peroxidase. Methods Enzymol. 1984, 105, 114–121. [Google Scholar] [CrossRef]
Parameters | PSHT |
---|---|
Yield (%) | 15.9 ± 0.5 |
Total sugar (%) | 70.0 ± 0.3 |
Total sulfate (%) | 3.6 ± 0.3 |
Uronic acid (%) | 17.2 ± 0.0 |
Protein (%) | 1.9 ± 0.2 |
Groups | 1H | 2H | 3H | 4H | 5H |
---|---|---|---|---|---|
CARR + DIC | 4.1 ± 1.2% | 25 ± 3.0% | 50 ± 1.0% | 73.1 ± 0.7% | 88.9 ± 0.7% |
CARR + PSHT | 3.1 ± 0.4% | 20.9 ± 2.4% | 48.6 ± 0.5% | 69.2 ± 0.2% | 88.7 ± 0.3% |
Controls | CARR * | CARR + DIC # | CARR + PSHT # | |
---|---|---|---|---|
WBC | 10.7 ± 0.1 | 15.3 ± 01 *** | 11.4 ± 0.1 ### | 11.7 ± 0.1 ### |
RBC | 7.7 ± 0.1 | 6.6 ± 0.2 *** | 7.6 ± 0.1 ### | 7.6 ± 0.0 ### |
LYM | 42.2 ± 1.9 | 62.6 ± 1.6 *** | 45.4 ± 1.7 ### | 45.1 ± 0.7 ### |
PLT | 983 ± 8.7 | 1085.8 ± 21.9 *** | 944.3 ± 12.5 ### | 989.8 ± 45.1 ### |
Hb | 13.2 ± 0.2 | 10.5 ± 0.4 *** | 13.2 ± 0.3 ### | 12.9 ± 0.3 ### |
MCHC | 31.2 ± 0.3 | 31.3 ± 0.2 | 31.4 ± 0.0 | 31.3 ± 0.2 |
MCH | 18.1 ± 0.3 | 18.1 ± 0.2 | 18.2 ± 0.3 | 18.2 ± 0.4 |
Ht | 35.5 ± 1.6 | 36.1 ± 1.4 | 35.8 ± 1.9 | 36.0 ± 0.8 |
Controls | CARR * | CARR + DIC # | CARR + PSHT # | |
---|---|---|---|---|
Neutrophils (%) | 44 ± 1.3 | 50 ± 1.3 ** | 45 ± 0.7 ## | 44 ± 0.2 ## |
Monocytes (%) | 01 ± 0.3 | 02 ± 0.1 | 03 ± 0.1 | 06 ± 0.1 ## |
Eosinophils (%) | 01 ± 0.1 | 00 | 02 ± 0.1 | 02 ± 0.1 |
Lymphocytes (%) | 42.2 ± 0.3 | 48 ± 0.7 ** | 43.2 ± 0.3 ## | 44 ± 1.3 ## |
Total Proteins | Albumin | Alpha1-Globulin | Beta1-Globulin | Gamma-Globulin | |
---|---|---|---|---|---|
Controls (g/dL) | 54.6 ± 0.2 | 22.1 ± 0.4 | 7.1 ± 0.3 | 7.4 ± 0.2 | 7.2 ± 0.0 |
CARR * (g/dL) | 63.6 ± 1.4 *** | 18.0 ± 0.3 *** | 10.8 ± 0.1 *** | 8.3 ± 0.3 *** | 7.8 ± 0.1 *** |
CARR + DIC # (g/dL) | 55.1 ± 0.6 ### | 20.7 ± 0.7 ### | 7.2 ± 0.2 ### | 7.4 ± 0.0 ### | 7.2 ± 0.0 ### |
CARR + PSH # (g/dL) | 56.1 ± 0.1 ### | 21.1 ± 0.6 ### | 7.4 ± 0.4 ### | 7.3 ± 0.2 ### | 7.1 ± 0.1 ### |
Monosaccharide (Ligand) | Target Receptor | Intermolecular Interactions | |||
---|---|---|---|---|---|
Binding Affinity (kcal/mol) | No. Closest Interacting Residues | Closest Interacting Residue (Distance, Å) | No. H-Bonds | ||
Arabinose | COX-2 | −5.8 | 4 | Asn39 (2.06) | 5 |
TNF-α | −4.9 | 4 | Glu135 (1.16) | 5 | |
D-fructose | COX-2 | −6.6 | 7 | Asn34 (2.04) | 6 |
TNF-α | −4.9 | 3 | Ile136 (1.91) | 7 | |
D-galactose | COX-2 | −6.4 | 6 | Glu465 (1.92) | 8 |
TNF-α | −4.9 | 5 | Asn46 (1.85) | 5 | |
D-glucose | COX-2 | −6.3 | 5 | Gln461 (2.15) | 7 |
TNF-α | −4.5 | 4 | Leu142 (1.97) | 4 | |
D-ribose | COX-2 | −5.9 | 4 | Gly45 (1.88) | 6 |
TNF-α | −4.3 | 3 | Glu135 (1.96) | 5 | |
Xylose | COX-2 | −6.1 | 4 | Ser121 (1.90) | 4 |
TNF-α | −4.6 | 3 | Leu26 (2.10) | 4 | |
Glucuronic acid | COX-2 | −6.5 | 5 | Thr212 (2.06) | 6 |
TNF-α | −5.1 | 4 | Gln25 (2.15) | 4 | |
Mannose | COX-2 | −6.3 | 4 | Asn571 (1.88) | 5 |
TNF-α | −4.8 | 4 | Ile136 (2.07) | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kraiem, M.; Ben Hamouda, S.; Eleroui, M.; Ajala, M.; Feki, A.; Dghim, A.; Boujhoud, Z.; Bouhamed, M.; Badraoui, R.; Pujo, J.M.; et al. Anti-Inflammatory and Immunomodulatory Properties of a Crude Polysaccharide Derived from Green Seaweed Halimeda tuna: Computational and Experimental Evidences. Mar. Drugs 2024, 22, 85. https://doi.org/10.3390/md22020085
Kraiem M, Ben Hamouda S, Eleroui M, Ajala M, Feki A, Dghim A, Boujhoud Z, Bouhamed M, Badraoui R, Pujo JM, et al. Anti-Inflammatory and Immunomodulatory Properties of a Crude Polysaccharide Derived from Green Seaweed Halimeda tuna: Computational and Experimental Evidences. Marine Drugs. 2024; 22(2):85. https://doi.org/10.3390/md22020085
Chicago/Turabian StyleKraiem, Marwa, Sonia Ben Hamouda, Malek Eleroui, Marwa Ajala, Amal Feki, Amel Dghim, Zakaria Boujhoud, Marwa Bouhamed, Riadh Badraoui, Jean Marc Pujo, and et al. 2024. "Anti-Inflammatory and Immunomodulatory Properties of a Crude Polysaccharide Derived from Green Seaweed Halimeda tuna: Computational and Experimental Evidences" Marine Drugs 22, no. 2: 85. https://doi.org/10.3390/md22020085
APA StyleKraiem, M., Ben Hamouda, S., Eleroui, M., Ajala, M., Feki, A., Dghim, A., Boujhoud, Z., Bouhamed, M., Badraoui, R., Pujo, J. M., Essafi-Benkhadir, K., Kallel, H., & Ben Amara, I. (2024). Anti-Inflammatory and Immunomodulatory Properties of a Crude Polysaccharide Derived from Green Seaweed Halimeda tuna: Computational and Experimental Evidences. Marine Drugs, 22(2), 85. https://doi.org/10.3390/md22020085