Porous Nano-Fiber Structure of Modified Electrospun Chitosan GBR Membranes Improve Osteoblast Calcium Phosphate Deposition in Osteoblast-Fibroblast Co-Cultures
Abstract
:1. Introduction
2. Results and Discussion
2.1. Membrane Characterizations
2.2. Fibroblast and Osteoblast Co-Culture
3. Materials and Methods
3.1. Chitosan Membrane and Film Preparation
3.2. Membrane Characterizations
3.3. Fibroblast and Osteoblast Co-Culture
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bee, S.-L.; Hamid, Z.A.A. Asymmetric Resorbable-Based Dental Barrier Membrane for Periodontal Guided Tissue Regeneration and Guided Bone Regeneration: A Review. J. Biomed. Mater. Res. Part B Appl. Biomater. 2022, 110, 2157–2182. [Google Scholar] [CrossRef]
- Sanz, M.; Dahlin, C.; Apatzidou, D.; Artzi, Z.; Bozic, D.; Calciolari, E.; De Bruyn, H.; Dommisch, H.; Donos, N.; Eickholz, P.; et al. Biomaterials and Regenerative Technologies Used in Bone Regeneration in the Craniomaxillofacial Region: Consensus Report of Group 2 of the 15th European Workshop on Periodontology on Bone Regeneration. J. Clin. Periodontol. 2019, 46, 82–91. [Google Scholar] [CrossRef]
- Kim, K.; Su, Y.; Kucine, A.J.; Cheng, K.; Zhu, D. Guided Bone Regeneration Using Barrier Membrane in Dental Applications. ACS Biomater. Sci. Eng. 2023, 9, 5457–5478. [Google Scholar] [CrossRef]
- Caballé-Serrano, J.; Munar-Frau, A.; Ortiz-Puigpelat, O.; Soto-Penaloza, D.; Peñarrocha, M.; Hernández-Alfaro, F. On the Search of the Ideal Barrier Membrane for Guided Bone Regeneration. J. Clin. Exp. Dent. 2018, 10, e477–e483. [Google Scholar] [CrossRef]
- Liang, C.; Wang, G.; Liang, C.; Li, M.; Sun, Y.; Tian, W.; Liao, L. Hierarchically Patterned Triple-Layered Gelatin-Based Electrospun Membrane Functionalized by Cell-Specific Extracellular Matrix for Periodontal Regeneration. Dent. Mater. 2024, 40, 90–101. [Google Scholar] [CrossRef]
- Qian, M.; Li, S.; Xi, K.; Tang, J.; Shen, X.; Liu, Y.; Guo, R.; Zhang, N.; Gu, Y.; Xu, Y.; et al. ECM-Engineered Electrospun Fibers with an Immune Cascade Effect for Inhibiting Tissue Fibrosis. Acta Biomater. 2023, 171, 308–326. [Google Scholar] [CrossRef]
- Su, H.; Liu, K.-Y.; Karydis, A.; Abebe, D.G.; Wu, C.; Anderson, K.M.; Ghadri, N.; Adatrow, P.; Fujiwara, T.; Bumgardner, J.D. In Vitro and in Vivo Evaluations of a Novel Post-Electrospinning Treatment to Improve the Fibrous Structure of Chitosan Membranes for Guided Bone Regeneration. Biomed. Mater. 2016, 12, 015003. [Google Scholar] [CrossRef]
- Cooper, A.; Bhattarai, N.; Kievit, F.M.; Rossol, M.; Zhang, M. Electrospinning of Chitosan Derivative Nanofibers with Structural Stability in an Aqueous Environment. Phys. Chem. Chem. Phys. 2011, 13, 9969–9972. [Google Scholar] [CrossRef]
- Sangsanoh, P.; Supaphol, P. Stability Improvement of Electrospun Chitosan Nanofibrous Membranes in Neutral or Weak Basic Aqueous Solutions. Biomacromolecules 2006, 7, 2710–2714. [Google Scholar] [CrossRef]
- Norowski, P.A.; Fujiwara, T.; Clem, W.C.; Adatrow, P.C.; Eckstein, E.C.; Haggard, W.O.; Bumgardner, J.D. Novel Naturally Crosslinked Electrospun Nanofibrous Chitosan Mats for Guided Bone Regeneration Membranes: Material Characterization and Cytocompatibility. J. Tissue Eng. Regen. Med. 2015, 9, 577–583. [Google Scholar] [CrossRef]
- Masoudi Rad, M.; Nouri Khorasani, S.; Ghasemi-Mobarakeh, L.; Prabhakaran, M.P.; Foroughi, M.R.; Kharaziha, M.; Saadatkish, N.; Ramakrishna, S. Fabrication and Characterization of Two-Layered Nanofibrous Membrane for Guided Bone and Tissue Regeneration Application. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 80, 75–87. [Google Scholar] [CrossRef]
- Yang, F.; Both, S.K.; Yang, X.; Walboomers, X.F.; Jansen, J.A. Development of an Electrospun Nano-Apatite/PCL Composite Membrane for GTR/GBR Application. Acta Biomater. 2009, 5, 3295–3304. [Google Scholar] [CrossRef]
- Dos Santos, V.I.; Merlini, C.; Aragones, Á.; Cesca, K.; Fredel, M.C. In Vitro Evaluation of Bilayer Membranes of PLGA/Hydroxyapatite/β-Tricalcium Phosphate for Guided Bone Regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 112, 110849. [Google Scholar] [CrossRef]
- Ebrahimi, L.; Farzin, A.; Ghasemi, Y.; Alizadeh, A.; Goodarzi, A.; Basiri, A.; Zahiri, M.; Monabati, A.; Ai, J. Metformin-Loaded PCL/PVA Fibrous Scaffold Preseeded with Human Endometrial Stem Cells for Effective Guided Bone Regeneration Membranes. ACS Biomater. Sci. Eng. 2021, 7, 222–231. [Google Scholar] [CrossRef]
- Su, H.; Fujiwara, T.; Anderson, K.M.; Karydis, A.; Ghadri, M.N.; Bumgardner, J.D. A Comparison of Two Types of Electrospun Chitosan Membranes and a Collagen Membrane In Vivo. Dent. Mater. 2021, 37, 60–70. [Google Scholar] [CrossRef]
- Su, H. In Vitro and In Vivo Evaluation and Mechanical Improvement of the Electrospun Chitosan Membrane. Ph.D. Thesis, The University of Memphis, Memphis, TN, USA, 2020. [Google Scholar]
- Jennings, J.A.; Bumgardner, J.D. (Eds.) Chitosan Based Biomaterials; Woodhead Publishing Series in Biomaterials; Elsevier/Woodhead Publishing: Amsterdam, The Netherlands, 2017; ISBN 978-0-08-100230-8. [Google Scholar]
- Pang, E.-K.; Paik, J.-W.; Kim, S.-K.; Jung, U.-W.; Kim, C.-S.; Cho, K.-S.; Kim, C.-K.; Choi, S.-H. Effects of Chitosan on Human Periodontal Ligament Fibroblasts In Vitro and on Bone Formation in Rat Calvarial Defects. J. Periodontol. 2005, 76, 1526–1533. [Google Scholar] [CrossRef]
- Islam, M.d.S.; Yeum, J.H. Electrospun Pullulan/Poly(Vinyl Alcohol)/Silver Hybrid Nanofibers: Preparation and Property Characterization for Antibacterial Activity. Colloids Surf. A Physicochem. Eng. Asp. 2013, 436, 279–286. [Google Scholar] [CrossRef]
- Pipattanawarothai, A.; Suksai, C.; Srisook, K.; Trakulsujaritchok, T. Non-Cytotoxic Hybrid Bioscaffolds of Chitosan-Silica: Sol-Gel Synthesis, Characterization and Proposed Application. Carbohydr. Polym. 2017, 178, 190–199. [Google Scholar] [CrossRef]
- Sibaja, B.; Culbertson, E.; Marshall, P.; Boy, R.; Broughton, R.M.; Solano, A.A.; Esquivel, M.; Parker, J.; Fuente, L.D.L.; Auad, M.L. Preparation of Alginate–Chitosan Fibers with Potential Biomedical Applications. Carbohydr. Polym. 2015, 134, 598–608. [Google Scholar] [CrossRef]
- Haider, S.; Park, S.-Y. Preparation of the Electrospun Chitosan Nanofibers and Their Applications to the Adsorption of Cu(II) and Pb(II) Ions from an Aqueous Solution. J. Membr. Sci. 2009, 328, 90–96. [Google Scholar] [CrossRef]
- Phongying, S.; Aiba, S.; Chirachanchai, S. Direct Chitosan Nanoscaffold Formation via Chitin Whiskers. Polymer 2007, 48, 393–400. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, R.; Luo, G.; Lei, Q.; Shu, Q.; Yao, Z.; Li, H.; Zhou, J.; Tan, J.; Yang, S.; et al. Biomimetic Fibroblast-Loaded Artificial Dermis with “Sandwich” Structure and Designed Gradient Pore Sizes Promotes Wound Healing by Favoring Granulation Tissue Formation and Wound Re-Epithelialization. Acta Biomater. 2016, 30, 246–257. [Google Scholar] [CrossRef]
- Boyan, B.D.; Lotz, E.M.; Schwartz, Z. Roughness and Hydrophilicity as Osteogenic Biomimetic Surface Properties. Tissue Eng. Part A 2017, 23, 1479–1489. [Google Scholar] [CrossRef]
- Ghuman, M.S.; Al-Masri, M.; Xavier, G.; Cobourne, M.T.; McKay, I.J.; Hughes, F.J. Gingival Fibroblasts Prevent BMP-Mediated Osteoblastic Differentiation. J. Periodontal Res. 2019, 54, 300–309. [Google Scholar] [CrossRef]
- Zhu, S.Y.; Wang, P.L.; Liao, C.S.; Yang, Y.Q.; Yuan, C.Y.; Wang, S.; Dissanayaka, W.L.; Heng, B.C.; Zhang, C.F. Transgenic Expression of ephrinB2 in Periodontal Ligament Stem Cells (PDLSCs) Modulates Osteogenic Differentiation via Signaling Crosstalk between ephrinB2 and EphB4 in PDLSCs and between PDLSCs and Pre-Osteoblasts within Co-Culture. J. Periodontal. Res. 2017, 52, 562–573. [Google Scholar] [CrossRef]
- Yang, X.; Chen, X.; Wang, H. Acceleration of Osteogenic Differentiation of Preosteoblastic Cells by Chitosan Containing Nanofibrous Scaffolds. Biomacromolecules 2009, 10, 2772–2778. [Google Scholar] [CrossRef]
- Hamilton, V.; Yuan, Y.; Rigney, D.A.; Puckett, A.D.; Ong, J.L.; Yang, Y.; Elder, S.H.; Bumgardner, J.D. Characterization of Chitosan Films and Effects on Fibroblast Cell Attachment and Proliferation. J. Mater. Sci. Mater. Med. 2006, 17, 1373–1381. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Murai, T.; Hasegawa, C.; Hirata, M.; Tsuchiya, T.; Yagami, T.; Haishima, Y. Endotoxin Contamination in Wound Dressings Made of Natural Biomaterials. J. Biomed. Mater. Res. Part B Appl. Biomater. 2003, 66, 347–355. [Google Scholar] [CrossRef]
CM-Film | Na2CO3-ESCM | TEA/tBOC-ESCM | |
---|---|---|---|
Median pore size (25th percentile, 75th percentile) (μm) | 11.4 (4.7, 41.7) | 12.2 (4.9, 42.5) | 15.1 (6.6, 44.1) |
Total pore volume (mm3/g) | 0.1 ± 0.2 a | 32.4 ± 47.1 b | 461.0 ± 96.6 c |
Water contact angle (degree) | 96.2 ± 2.4 a | 76.0 ± 10.8 b | 87.4 ± 9.0 b |
Endotoxin (EU/mL) | <0.1 | <0.1 | <0.1 |
Ash (wt%) & | <0.5% a | 1.9 ± 0.5% b | <0.5% a |
Group | TEA/tBOC-ESCM | Na2CO3-ESCM | CM-Film | Control |
---|---|---|---|---|
Cell culture insert | NIH 3T3 cells on the TEA/ tBOC-ESCM (Fbr-TtB) | NIH 3T3 cells on the Na2CO3 -ESCM (Fbr-NaC) | NIH 3T3 cells on the CM-film (Fbr-CMf) | No membrane, NIH 3T3 cells only (Fbr-trw) |
Well plate bottom | MC 3T3 (Ost-TtB) | MC 3T3 (Ost-NaC) | MC 3T3 (Ost-CMf) | MC 3T3 (Ost-trw) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, H.; Fujiwara, T.; Skalli, O.; Selders, G.S.; Li, T.; Mao, L.; Bumgardner, J.D. Porous Nano-Fiber Structure of Modified Electrospun Chitosan GBR Membranes Improve Osteoblast Calcium Phosphate Deposition in Osteoblast-Fibroblast Co-Cultures. Mar. Drugs 2024, 22, 160. https://doi.org/10.3390/md22040160
Su H, Fujiwara T, Skalli O, Selders GS, Li T, Mao L, Bumgardner JD. Porous Nano-Fiber Structure of Modified Electrospun Chitosan GBR Membranes Improve Osteoblast Calcium Phosphate Deposition in Osteoblast-Fibroblast Co-Cultures. Marine Drugs. 2024; 22(4):160. https://doi.org/10.3390/md22040160
Chicago/Turabian StyleSu, Hengjie, Tomoko Fujiwara, Omar Skalli, Gretchen Schreyack Selders, Ting Li, Linna Mao, and Joel D. Bumgardner. 2024. "Porous Nano-Fiber Structure of Modified Electrospun Chitosan GBR Membranes Improve Osteoblast Calcium Phosphate Deposition in Osteoblast-Fibroblast Co-Cultures" Marine Drugs 22, no. 4: 160. https://doi.org/10.3390/md22040160
APA StyleSu, H., Fujiwara, T., Skalli, O., Selders, G. S., Li, T., Mao, L., & Bumgardner, J. D. (2024). Porous Nano-Fiber Structure of Modified Electrospun Chitosan GBR Membranes Improve Osteoblast Calcium Phosphate Deposition in Osteoblast-Fibroblast Co-Cultures. Marine Drugs, 22(4), 160. https://doi.org/10.3390/md22040160