Novel Bioactive Natural Products from Marine-Derived Penicillium Fungi: A Review (2021–2023)
Abstract
:1. Introduction
2. New Bioactive Compounds from Marine-Derived Penicillium Fungi
2.1. Polyketides
2.1.1. Azaphilones
2.1.2. Isocoumarins
2.1.3. Chromones
2.1.4. Citrinins
2.1.5. β-Resorcylic Acid
2.1.6. Verrucosidin
2.1.7. Citreoviridins
2.1.8. Nitrogen-Containing Polyketides
2.1.9. Sorbicillinoids
2.1.10. Isochromans
2.1.11. α-Pyrone Polyketides
2.1.12. Hirsutellones
2.1.13. Xanthones and Benzophenones
2.1.14. Hydroxybenzenes
2.1.15. Lactones
2.1.16. Olefinic Acids and Their Derivatives
2.1.17. Other Polyketides
2.2. Alkaloids
2.2.1. Indoles
2.2.2. Pyridones
2.2.3. Quinolinones
2.2.4. Decahydrofluorene-Class Alkaloids
2.2.5. Piperazines
2.2.6. Tetramic-Acid-Based Alkaloids
2.2.7. Amines and Amides
2.2.8. Other Alkaloids
2.3. Terpenoids
2.3.1. Sesquiterpenes
2.3.2. Diterpenes
2.3.3. Meroterpenes
2.4. Steroids
2.5. Peptides
2.6. Others
3. Statistical Analysis of New Natural Products from Marine-Derived Penicillium
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Noman, E.; Al-Shaibani, M.M.; Bakhrebah, M.A.; Almoheer, R.; Al-Sahari, M.; Al-Gheethi, A.; Mohamed, R.M.S.R.; Almulaiky, Y.Q.; Abdulaal, W.H. Potential of anti-cancer activity of secondary metabolic products from marine fungi. J. Fungi 2021, 7, 436. [Google Scholar] [CrossRef]
- Shin, H.J. Natural products from marine fungi. Mar. Drugs 2020, 18, 230. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Yin, Q.Z.; Li, X.Y.; Liu, X.W.; Lei, H.X.; Wu, B. Structures and bioactivities of secondary metabolites from Penicillium genus since 2010. Fitoterapia 2022, 163, 105349. [Google Scholar] [CrossRef]
- Liu, S.; Su, M.Z.; Song, S.J.; Jung, J.H. Marine-derived Penicillium species as producers of cytotoxic metabolites. Mar. Drugs 2017, 15, 329. [Google Scholar] [CrossRef]
- Pang, K.L.; Overy, D.P.; Jones, E.B.G.; Calado, M.D.L.; Burgaud, G.; Walker, A.K.; Johnson, J.A.; Kerr, R.G.; Cha, H.J.; Bills, G.F. ‘Marine fungi’ and ‘marine-derived fungi’ in natural product chemistry research: Toward a new consensual definition. Fungal Biol. Rev. 2016, 30, 163–175. [Google Scholar] [CrossRef]
- Ma, H.G.; Liu, Q.; Zhu, G.L.; Liu, H.S.; Zhu, W.M. Marine natural products sourced from marine derived Penicillium fungi. J. Asian Nat. Prod. Res. 2016, 18, 92–115. [Google Scholar] [CrossRef]
- Yang, X.L.; Liu, J.P.; Mei, J.H.; Jiang, R.; Tu, S.Z.; Deng, H.F.; Liu, J.; Yang, S.M.; Li, J. Origins, structures, and bioactivities of secondary metabolites from marine-derived Penicillium Fungi. Mini-Rev. Med. Chem. 2021, 21, 2000–2019. [Google Scholar] [CrossRef]
- Zhang, P.; Wei, Q.; Yuan, X.L.; Xu, K. Newly reported alkaloids produced by marine-derived Penicillium species (covering 2014–2018). Bioorg. Chem. 2020, 99, 103840. [Google Scholar] [CrossRef]
- Hoang, T.P.T.; Roullier, C.; Evanno, L.; Kerzaon, I.; Gentil, E.; Pont, T.R.D.; Nazih, E.H.; Pouchus, Y.F.; Bertrand, S.; Poupon, E.; et al. Nature-inspired chemistry of complex alkaloids: Combining targeted molecular networking approach and semisynthetic strategy to access rare communesins in a marine-derived Penicillium expansum. Chem. Eur. J. 2023, 29, e202300103. [Google Scholar] [CrossRef]
- Fan, H.; Shi, Z.M.; Lei, Y.H.; Si-Tu, M.X.; Zhou, F.G.; Feng, C.; Wei, X.; Shao, X.H.; Chen, Y.; Zhang, C.X. Rare carbon-bridged citrinin dimers from the starfish-derived symbiotic fungus Penicillium sp. GGF16-1-2. Mar. Drugs 2022, 20, 443. [Google Scholar] [CrossRef]
- Shi, Z.M.; Zhang, M.Y.; Fan, H.; Chen, Y.J.; Dong, S.; Zhou, F.G.; Wang, B.; Liu, J.Y.; Jin, J.Q.; Luo, Y.; et al. The marine Penicillium sp. GGF16-1-2 metabolite dicitrinone G inhibits pancreatic angiogenesis by regulating the activation of NLRP3 inflammasome. J. Nat. Med. 2024, 78, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.L.; Yue, Y.T.; Xu, J.P.; Li, N.; Lin, T.; Ji, G.R.; Yang, X.W.; Xu, R. Penicopeptide A (PPA) from the deep-sea-derived fungus promotes osteoblast-mediated bone formation and alleviates ovariectomy-induced bone loss by activating the AKT/GSK-3β/β-catenin signaling pathway. Pharmacol. Res. 2023, 197, 106968. [Google Scholar] [CrossRef]
- Hao, B.C.; Zheng, Y.Y.; Li, Z.H.; Zheng, C.J.; Wang, C.Y.; Chen, M. Targeted isolation of prenylated indole alkaloids from the marine-derived fungus Penicillium janthinellum HK1-6 using molecular networking. Nat. Prod. Res. 2023. [Google Scholar] [CrossRef]
- Chen, T.; Yang, W.C.; Li, T.B.; Yin, Y.H.; Liu, Y.F.; Wang, B.; She, Z.G. Hemiacetalmeroterpenoids A–C and astellolide Q with antimicrobial activity from the marine-derived fungus Penicillium sp. N-5. Mar. Drugs 2022, 20, 514. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, W.H.; Xu, Z.F.; Bai, Q.Q.; Zhou, X.M.; Zheng, C.J.; Bai, M.; Chen, G.Y. Biological secondary metabolites from the Lumnitzera littorea-derived fungus Penicillium oxalicum HLLG-13. Mar. Drugs 2023, 21, 22. [Google Scholar] [CrossRef]
- Bai, M.; Gao, C.H.; Liu, K.; Zhao, L.Y.; Tang, Z.Z.; Liu, Y.H. Two new benzophenones isolated from a mangrove-derived fungus Penicillium sp. J. Antibiot. 2021, 74, 821–824. [Google Scholar] [CrossRef]
- Zeng, Y.B.; Wang, Z.; Chang, W.J.; Zhao, W.B.; Wang, H.; Chen, H.Q.; Dai, H.F.; Lv, F. New azaphilones from the marine-derived fungus Penicillium sclerotiorum E23Y-1A with their anti-inflammatory and antitumor activities. Mar. Drugs 2023, 21, 75. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, Y.B.; Zhao, W.B.; Dai, H.F.; Chang, W.J.; Lv, F. Structures and biological activities of brominated azaphilones produced by Penicillium sclerotiorum E23Y-1A. Phytochem. Lett. 2022, 52, 138–142. [Google Scholar] [CrossRef]
- Hu, X.Y.; Li, X.M.; Wang, B.G.; Meng, L.H. Uncommon polyketides from Penicillium steckii AS-324, a marine endozoic fungus isolated from deep-sea coral in the magellan seamount. Int. J. Mol. Sci. 2022, 23, 6332. [Google Scholar] [CrossRef]
- Chen, S.R.; Wang, S.W.; Chen, C.Y.; Ke, T.Y.; Lin, J.J.; Hwang, T.L.; Huang, Y.T.; Huang, Y.C.; Cheng, Y.B. Additional azaphilones from the marine algae-derived fungus Penicillium sclerotiorum with anti-angiogenic activity. Bull. Chem. Soc. Jpn. 2023, 96, 1–7. [Google Scholar] [CrossRef]
- Yao, F.H.; Liang, X.; Qi, S.H. Two new linear peptides from the marine-derived fungus Penicillium sp. SCSIO 41512. J. Asian Nat. Prod. Res. 2023, 25, 941–958. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zeng, Y.B.; Yin, J.J.; Chang, W.J.; Zhao, X.L.; Mao, Y. Two new azaphilones from the marine-derived fungus Penicillium sclerotiorum E23Y-1A. Phytochem. Lett. 2022, 47, 76–80. [Google Scholar] [CrossRef]
- Wang, H.C.; Ke, T.Y.; Ko, Y.C.; Lin, J.J.; Chang, J.S.; Cheng, Y.B. Anti-inflammatory azaphilones from the edible alga-derived fungus Penicillium sclerotiorum. Mar. Drugs 2021, 19, 529. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, M.; Wang, X.B.; Li, Y.Q.; Ding, J.L.; Lan, M.X.; Gao, X.; Zhao, D.L.; Zhang, C.S.; Wu, G.X. Phytotoxic azaphilones from the mangrove-derived fungus Penicillium sclerotiorum HY5. Front. Microbiol. 2022, 13, 880874. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, Y.C.; Liu, Z.M.; Li, S.N.; Zhong, J.Q.; Guo, B.H.; Liu, H.X.; Zhang, W.M. Azaphilones and isocoumarin derivatives from Penicillum chermesinum FS625 isolated from the South China Sea. Tetrahedron Lett. 2021, 73, 153117. [Google Scholar] [CrossRef]
- Zhang, H.; Lei, X.X.; Shao, S.R.; Zhou, X.F.; Li, Y.Q.; Yang, B. Azaphilones and meroterpenoids from the soft coral-derived fungus Penicillium glabrum glmu003. Chem. Biodivers. 2021, 18, e2100663. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Ye, G.T.; Tang, J.; Li, J.L.; Liu, W.B.; Wu, L.; Long, Y.H. New polyketides from mangrove endophytic fungus Penicillium sp. BJR-P2 and their anti-inflammatory activity. Mar. Drugs 2022, 20, 583. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.M.; Xia, J.L.; Zhao, L.Y.; Liu, K.; Tang, Z.Z.; Huang, B.Y.; Liu, Y.H.; Gao, C.H.; Bai, M. Two new isocoumarins isolated from a mangrove-derived Penicillium sp. Phytochem. Lett. 2022, 50, 21–24. [Google Scholar] [CrossRef]
- Chu, Y.C.; Chang, C.H.; Liao, H.R.; Cheng, M.J.; Wu, M.D.; Fu, S.L.; Chen, J.J. Rare chromone derivatives from the marine-derived Penicillium citrinum with anti-cancer and anti-inflammatory activities. Mar. Drugs 2021, 19, 25. [Google Scholar] [CrossRef]
- Chu, Y.C.; Chang, C.H.; Liao, H.R.; Fu, S.L.; Chen, J.J. Anti-cancer and anti-inflammatory activities of three new chromone derivatives from the marine-derived Penicillium citrinum. Mar. Drugs 2021, 19, 408. [Google Scholar] [CrossRef]
- Han, S.Y.; Liu, Y.; Liu, W.; Yang, F.; Zhang, J.; Liu, R.F.; Zhao, F.Q.; Xu, W.; Cheng, Z.B. Chromone derivatives with α-glucosidase inhibitory activity from the marine fungus Penicillium thomii Maire. Molecules 2021, 26, 5273. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Liu, Y.; Zhang, X.Q.; Liu, W.; Qiao, Y.; Xu, W.; Li, Q.; Cheng, Z.B. Three new chromone derivatives from the deep-sea-derived fungus Penicillium thomii. Rec. Nat. Prod. 2023, 17, 174–178. [Google Scholar]
- Lai, C.R.; Tian, D.M.; Zheng, M.X.; Li, B.L.; Jia, J.; Wei, J.H.; Wu, B.; Bi, H.K.; Tang, J.S. Novel citrinin derivatives from fungus Penicillium sp. TW131-64 and their antimicrobial activities. Appl. Microbiol. Biot. 2023, 107, 6607–6619. [Google Scholar] [CrossRef] [PubMed]
- He, Z.H.; Xie, C.L.; Wu, T.Z.; Zhang, Y.; Zou, Z.B.; Xie, M.M.; Xu, L.; Capon, R.J.; Xu, R.; Yang, X.W. Neotricitrinols A-C, unprecedented citrinin trimers with anti-osteoporosis activity from the deep-sea-derived Penicillium citrinum W23. Bioorg. Chem. 2023, 139, 106756. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.J.; Tian, D.M.; Wei, J.H.; Li, C.; Ma, Y.H.; Gou, X.S.; Shen, Y.R.; Chen, M.; Zhang, S.H.; Li, J.; et al. Citrinin derivatives from Penicillium citrinum Y34 that inhibit α-glucosidase and ATP-citrate lyase. Front. Mar. Sci. 2022, 9, 961356. [Google Scholar] [CrossRef]
- Han, W.R.; Song, M.M.; Hu, Y.W.; Pang, X.Y.; Liao, S.R.; Yang, B.; Zhou, X.F.; Liu, Y.H.; Liu, Q.C.; Wang, J.F. Citrinin and α-pyrone derivatives with pancreatic lipase inhibitory activities from Penicillium sp. SCSIO 41302. J. Asian Nat. Prod. Res. 2022, 24, 810–819. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.T.; Song, M.M.; Han, W.R.; Zhu, J.H.; Liu, Q.C.; Wang, J.F. New N-methyl-4-quinolone alkaloid and citrinin dimer derivatives from the sponge-derived fungus Penicillium sp. SCSIO 41303. Phytochem. Lett. 2021, 46, 29–35. [Google Scholar] [CrossRef]
- Leshchenko, E.V.; Antonov, A.S.; Borkunov, G.V.; Hauschild, J.; Zhuravleva, O.I.; Khudyakova, Y.V.; Menshov, A.S.; Popov, R.S.; Kim, N.Y.; Graefen, M.; et al. New bioactive β-resorcylic acid derivatives from the alga-derived fungus Penicillium antarcticum KMM 4685. Mar. Drugs 2023, 21, 178. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Li, X.M.; Li, X.; Yang, S.Q.; Wang, B.G.; Li, H.L. Verrucosidin derivatives from the deep sea cold-seep-derived fungus Penicillium polonicum CS-252. Int. J. Mol. Sci. 2022, 23, 5567. [Google Scholar] [CrossRef]
- Li, Y.H.; Mándi, A.; Li, H.L.; Li, X.M.; Li, X.; Meng, L.H.; Yang, S.Q.; Shi, X.S.; Kurtán, T.; Wang, B.G. Isolation and characterization of three pairs of verrucosidin epimers from the marine sediment-derived fungus Penicillium cyclopium and configuration revision of penicyrone A and related analogues. Mar. Life Sci. Technol. 2023, 5, 223–231. [Google Scholar] [CrossRef]
- Li, Y.H.; Yang, S.Q.; Li, X.M.; Li, X.; Wang, B.G.; Li, H.L. Five new verrucosidin derivatives from Penicillium polonicum, a deep-sea cold-seep sediment isolated fungus. Fitoterapia 2023, 165, 105387. [Google Scholar] [CrossRef]
- Xing, C.P.; Chen, D.; Xie, C.L.; Liu, Q.M.; Zhong, T.H.; Shao, Z.Z.; Liu, G.M.; Luo, L.Z.; Yang, X.W. Anti-food allergic compounds from Penicillium griseofulvum MCCC 3A00225, a deep-sea-derived fungus. Mar. Drugs 2021, 19, 224. [Google Scholar] [CrossRef]
- Zou, Z.B.; Zhang, G.; Zhou, Y.Q.; Xie, C.L.; Xie, M.M.; Xu, L.; Hao, Y.J.; Luo, L.Z.; Zhang, X.K.; Yang, X.W.; et al. Chemical constituents of the deep-sea-derived Penicillium citreonigrum MCCC 3A00169 and their antiproliferative effects. Mar. Drugs 2022, 20, 736. [Google Scholar] [CrossRef]
- Li, H.C.; Zhang, W.; Zhang, X.; Tang, S.; Men, P.; Xiong, M.Y.; Li, Z.M.; Zhang, Y.Y.; Huang, X.N.; Lu, X.F. Identification of PKS-NRPS hybrid metabolites in marine-derived Penicillium oxalicum. Mar. Drugs 2022, 20, 523. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Z.; He, F.M.; Bin, Y.L.; Li, C.F.; Xie, B.Y.; Tang, X.X.; Qiu, Y.K. Bioactive compounds derived from the marine-derived fungus MCCC3A00951 and their influenza neuraminidase inhibition activity in vitro and in silico. Nat. Prod. Res. 2021, 35, 5621–5628. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.Y.; She, J.L.; Chen, W.H.; Wang, J.M.; Tan, Y.H.; Pang, X.Y.; Zhou, X.F.; Wang, J.F.; Liu, Y.H. New fusarin derivatives from the marine algicolous fungus Penicillium steckii SCSIO41040. Mar. Drugs 2023, 21, 532. [Google Scholar] [CrossRef]
- Pang, X.Y.; Wang, P.; Liao, S.R.; Zhou, X.F.; Lin, X.P.; Yang, B.; Tian, X.P.; Wang, J.F.; Liu, Y.H. Three unusual hybrid sorbicillinoids with anti-inflammatory activities from the deep-sea derived fungus Penicillium sp. SCSIO06868. Phytochemistry 2022, 202, 113311. [Google Scholar] [CrossRef]
- Pang, X.Y.; Zhou, X.F.; Lin, X.P.; Yang, B.; Tian, X.P.; Wang, J.F.; Xu, S.H.; Liu, Y.H. Structurally various sorbicillinoids from the deep-sea sediment derived fungus Penicillium sp. SCSIO06871. Bioorg. Chem. 2021, 107, 104600. [Google Scholar] [CrossRef]
- Xie, C.L.; Zhang, D.; Lin, T.; He, Z.H.; Yan, Q.X.; Cai, Q.; Zhang, X.K.; Yang, X.W.; Chen, H.F. Antiproliferative sorbicillinoids from the deep-sea-derived Penicillium allii-sativi. Front. Microbiol. 2021, 11, 636948. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.J.; Wang, F.F.; Li, Q.W.; Xue, Y.X.; Dong, Z.T.; Tian, D.M.; Chen, M.; Zhang, Y.W.; Hong, K.; Tang, J.S. Isolation and characterization of anti-inflammatory sorbicillinoids from the mangrove-derived fungus Penicillium sp. DM815. Chem. Biodivers. 2021, 18, e2100229. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.Z.; Huang, W.J.; Liu, W.; Mándi, A.; Zhang, Q.B.; Zhang, L.P.; Zhang, W.J.; Kurtán, T.; Yuan, C.S.; Zhang, C.S. Penicisteckins A-F, isochroman-derived atropisomeric dimers from Penicillium steckii HNNU-5B18. J. Nat. Prod. 2021, 84, 2953–2960. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Shi, Y.Q.; Che, Q.; Zhu, T.J.; Zhang, G.J.; Zhang, X.K.; Li, M.Y.; Li, D.H. Penipyrols C-G and methyl-penipyrol A, α-pyrone polyketides from the mangrove derived fungus Penicillium sp. HDN-11-131. Bioorg. Chem. 2021, 113, 104975. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Jiang, Y.; Xu, S.J.; Xin, X.J.; An, F.L. Perpyrrospirone A, an unprecedented hirsutellone peroxide from the marine-derived Penicillium citrinum. Chin. Chem. Lett. 2023, 34, 107562. [Google Scholar] [CrossRef]
- Hao, Y.J.; Zou, Z.B.; Xie, M.M.; Zhang, Y.; Xu, L.; Yu, H.Y.; Ma, H.B.; Yang, X.W. Ferroptosis inhibitory compounds from fungus Penicillium sp. MCCC 3A00126. Mar. Drugs 2023, 21, 234. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.P.; Xia, J.L.; Zhao, L.Y.; Tang, Z.Z.; Lin, X.; Liu, Y.H.; Gao, C.H.; Liu, K.; Bai, M. Penicixanthene E, a new xanthene isolated from a mangrove-derived fungus Penicillium sp. J. Antibiot. 2022, 75, 526–529. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.F.; Lu, Y.; Zhao, J.Y.; Chen, Q. Polyketides and alkaloids from the fungus Penicillium sp. Rec. Nat. Prod. 2023, 17, 367–371. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, C.L.; Wang, Y.; He, X.W.; Xie, M.M.; Li, Y.; Zhang, K.; Zou, Z.B.; Yang, L.H.; Xu, R.; et al. Penidihydrocitrinins A-C: New polyketides from the deep-sea-derived Penicillium citrinum W17 and their anti-inflammatory and anti-osteoporotic bioactivities. Mar. Drugs 2023, 21, 538. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.Y.; Liu, B.; Jiang, Z.X. A new cytotoxic phenalenone derivative from Penicillium oxalicum. Nat. Prod. Res. 2023, 37, 1397–1400. [Google Scholar] [CrossRef] [PubMed]
- Huo, R.Y.; Zhang, J.X.; Niu, S.B.; Liu, L. New prenylated indole diketopiperazine alkaloids and polyketides from the mangrovederived fungus Penicillium sp. Front. Mar. Sci. 2022, 9, 1097594. [Google Scholar] [CrossRef]
- Gou, X.S.; Tian, D.M.; Wei, J.H.; Ma, Y.H.; Zhang, Y.X.; Chen, M.; Ding, W.J.; Wu, B.; Tang, J.S. New drimane sesquiterpenes and polyketides from marine-derived fungus Penicillium sp. TW58-16 and their anti-inflammatory and α-glucosidase inhibitory effects. Mar. Drugs 2021, 19, 416. [Google Scholar] [CrossRef]
- Pang, X.Y.; Chen, W.H.; Wang, X.; Zhou, X.F.; Yang, B.; Tian, X.P.; Wang, J.F.; Xu, S.H.; Liu, Y.H. New tetramic acid derivatives from the deep-sea-derived fungus Penicillium sp. SCSIO06868 with SARS-CoV-2 Mpro inhibitory activity evaluation. Front. Microbiol. 2021, 12, 730807. [Google Scholar] [CrossRef] [PubMed]
- Tiana, D.M.; Goua, X.S.; Jia, J.; Wei, J.H.; Zheng, M.X.; Ding, W.J.; Bib, H.K.; Wu, B.; Tang, J.S. New diketopiperazine alkaloid and polyketides from marine-derived fungus Penicillium sp. TW58-16 with antibacterial activity against Helicobacter pylori. Fitoterapia 2022, 156, 105095. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.Y.; Tan, Y.H.; She, J.L.; Chen, C.M.; Wang, J.M.; Hu, Y.W.; Pang, X.Y.; Wang, J.F.; Liu, Y.H. Tanzawaic acid derivatives from the marine-derived Penicillium steckii as inhibitors of RANKL-induced osteoclastogenesis. J. Nat. Prod. 2023, 86, 1171–1178. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.Y.; Li, X.M.; Wang, B.G.; Meng, L.H. Tanzawaic acid derivatives: Fungal polyketides from the deep-Sea coral-derived endozoic Penicillium steckii AS-324. J. Nat. Prod. 2022, 85, 1398–1406. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.M.; Chen, W.H.; Tao, H.M.; Yang, B.; Zhou, X.F.; Luo, X.W.; Liu, Y.H. Diversified polyketides and nitrogenous compounds from the mangrove endophytic fungus Penicillium steckii SCSIO 41025. Chin. J. Chem. 2021, 39, 2132–2140. [Google Scholar] [CrossRef]
- Yu, G.H.; Sun, P.; Aierken, R.; Sun, C.X.; Zhang, Z.Z.; Che, Q.; Zhang, G.J.; Zhu, T.J.; Gu, Q.Q.; Li, M.Y.; et al. Linear polyketides produced by co-culture of Penicillium crustosum and Penicillium fellutanum. Mar. Life Sci. Technol. 2021, 4, 237–244. [Google Scholar] [CrossRef]
- Ying, Z.; Li, X.M.; Yang, S.Q.; Wang, B.G.; Li, H.L.; Meng, L.H. New polyketide and sesquiterpenoid derivatives from the magellan seamount-derived fungus Penicillium rubens AS-130. Chem. Biodivers. 2023, 20, e202300229. [Google Scholar] [CrossRef] [PubMed]
- Weng, W.Y.; Li, R.D.; Zhang, Y.X.; Pan, X.F.; Jiang, S.C.; Sun, C.C.; Zhang, C.; Lu, X.M. Polyketides isolated from an endophyte Penicillium oxalicum 2021CDF-3 inhibit pancreatic tumor growth. Front. Microbiol. 2022, 13, 1033823. [Google Scholar] [CrossRef] [PubMed]
- He, Z.H.; Wu, J.; Xu, L.; Hu, M.Y.; Xie, M.M.; Hao, Y.J.; Li, S.J.; Shao, Z.Z.; Yang, X.W. Chemical constituents of the deep-sea-derived Penicillium solitum. Mar. Drugs 2021, 19, 580. [Google Scholar] [CrossRef]
- Dyshlovoy, S.A.; Zhuravleva, O.I.; Hauschild, J.; Busenbender, T.; Pelageev, D.N.; Yurchenko, A.N.; Khudyakova, Y.V.; Antonov, A.S.; Graefen, M.; Bokemeyer, C.; et al. New Marine fungal deoxy-14,15-dehydroisoaustamide resensitizes prostate cancer cells to enzalutamide. Mar. Drugs 2023, 21, 54. [Google Scholar] [CrossRef]
- Zhuravleva, O.I.; Antonov, A.S.; Trang, V.T.D.; Pivkin, M.V.; Khudyakova, Y.V.; Denisenko, V.A.; Popov, R.S.; Kim, N.Y.; Yurchenko, E.A.; Gerasimenko, A.V.; et al. New deoxyisoaustamide derivatives from the coral-derived fungus Penicillium dimorphosporum KMM 4689. Mar. Drugs 2021, 19, 32. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.W.; Chen, W.H.; Song, M.M.; Pang, X.Y.; Tian, X.P.; Wang, F.Z.; Liu, Y.H.; Wang, J.F. Indole diketopiperazine alkaloids and aromatic polyketides from the Antarctic fungus Penicillium sp. SCSIO 05705. Nat. Prod. Res. 2023, 37, 389–396. [Google Scholar] [CrossRef]
- Zhang, J.X.; Zhang, B.D.; Shi, Y.; Zhai, Y.N.; Ren, J.W.; Cai, L.; Sun, L.Y.; Liu, L. Penindolacid A, a new indole alkaloid from the marine derived fungus Penicillium sp. Magn. Reson. Chem. 2023, 61, 554–559. [Google Scholar] [CrossRef]
- Yong, K.; Kaleem, S.; Ma, M.Z.; Lian, X.Y.; Zhang, Z.Z. Antiglioma natural products from the marine-associated fungus Penicillium sp. ZZ1750. Molecules 2022, 27, 7099. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.Z.; Li, G.; Zhang, Y.H.; Yuan, S.Z.; Dong, K.M.; Lou, H.X.; Peng, X.P. Interconvertible pyridone alkaloids from the marine-derived fungus Penicillium oxalicum QDU1. J. Nat. Prod. 2023, 86, 739–750. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.Q.; Chen, W.H.; Ye, Y.X.; Qi, X.; Zhao, K.; Long, J.Y.; Pang, X.Y.; Liu, Y.H.; Wang, J.F. A new quinolone and acetylcholinesterase inhibitors from a sponge-associated fungus Penicillium sp. SCSIO41033. Nat. Prod. Res. 2023, 37, 2871–2877. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Xue, X.Y.; Zhou, L.J.; Yang, W.C.; She, Z.G.; Liao, Q.N.; Feng, Y.K.; Chen, X.K.; Zhang, Y. Quinolinones alkaloids with AChE inhibitory activity from mangrove endophytic fungus Penicillium citrinum YX-002. Chem. Biodivers. 2023, 20, e202300735. [Google Scholar] [CrossRef]
- Chen, C.M.; Chen, W.H.; Pang, X.Y.; Liao, S.R.; Wang, J.F.; Lin, X.P.; Yang, B.; Zhou, X.F.; Luo, X.W.; Liu, Y.H. Pyrrolyl 4-quinolone alkaloids from the mangrove endophytic fungus Penicillium steckii SCSIO 41025: Chiral resolution, configurational assignment, and enzyme inhibitory activities. Phytochemistry 2021, 186, 112730. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.H.; Liang, X.; Lu, X.H.; Cheng, X.; Luo, L.X.; Qi, S.H. Pyrrospirones K-Q, decahydrofluorene-class alkaloids from the marine-derived fungus Penicillium sp. SCSIO 41512. J. Nat. Prod. 2022, 85, 2071–2208. [Google Scholar] [CrossRef]
- Cai, J.; Wang, X.N.; Yang, Z.Z.; Tan, Y.H.; Peng, B.; Liu, Y.H.; Zhou, X.F. Thiodiketopiperazines and alkane derivatives produced by the mangrove sediment-derived fungus Penicillium ludwigii SCSIO 41408. Front. Microbiol. 2022, 13, 857041. [Google Scholar] [CrossRef]
- Jiang, G.D.; Zhang, P.L.; Ratnayake, R.; Yang, G.; Zhang, Y.; Zuo, R.; Powell, M.; Huguet-Tapia, J.C.; Abboud, K.A.; Dang, L.H.; et al. Fungal epithiodiketopiperazines carrying α, β-polysulfide bridges from Penicillium steckii YE, and their chemical interconversion. ChemBioChem 2021, 21, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.X.; Liang, J.Q.; She, J.L.; Lin, X.P.; Wang, J.F.; Liu, Y.H.; Yang, D.H.; Tan, Y.H.; Luo, X.W.; Zhou, X.F. Two new alkaloids and a new butenolide derivative from the beibu gulf sponge-derived fungus Penicillium sp. SCSIO 41413. Mar. Drugs 2023, 21, 27. [Google Scholar] [CrossRef] [PubMed]
- Li, H.M.; Long, J.Y.; Wang, X.N.; She, J.L.; Liu, Y.H.; Li, Y.Q.; Yang, B. Bioactive secondary metabolites isolated from the soft coral derived Penicillium sp. SCSIO 41038. Nat. Prod. Res. 2023. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.Y.; Li, Y.; Zhang, M.; Zou, Z.B.; Hao, Y.J.; Xie, M.M.; Li, L.S.; Meng, D.L.; Yang, X.W. Chemical Constituents of the deep-sea gammarid shrimp-derived fungus Penicillium citrinum XIA-16. Chem. Biodivers. 2023, 20, e202301507. [Google Scholar] [CrossRef]
- Jiang, J.Y.; Jiang, H.M.; Shen, D.N.; Chen, Y.C.; Shi, H.J.; He, F. Citrinadin C, a new cytotoxic pentacyclic alkaloid from marine-derived fungus Penicillium citrinum. J. Antibiot. 2022, 75, 301–303. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.Z.; Zhu, Y.Q.; Lu, H.; Li, X.B.; Liu, K.C.; Li, P.H.; Wang, L.Z.; Zhang, X.M.; Chen, H.; Lin, H.W.; et al. Secondary metabolites from the marine-derived fungus Penicillium chrysogenum Y20-2, and their pro-angiogenic activity. Z. Naturforschung C 2023, 78, 345–352. [Google Scholar] [CrossRef]
- Chen, J.; Huo, L.N.; Gao, Y.; Zhang, Y.L.; Che, Y. Two new N-acetyl-D-glucosamine derivatives from the medical algae-derived endophytic fungus Penicillium chrysogenum. Nat. Prod. Res. 2022, 36, 3988–3991. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Z.; He, X.Q.; Zhang, X.M.; Li, D.H.; Wu, G.W.; Liu, Z.Z.; Niu, C.; Yang, L.P.; Song, W.T.; Li, Z.L.; et al. Production of multiple talaroenamines from Penicillium malacosphaerulum via one-pot/two-stage precursor-directed biosynthesis. J. Nat. Prod. 2022, 85, 2168–2176. [Google Scholar] [CrossRef]
- Li, S.H.; Ma, Y.H.; Wang, L.X.; Lan, D.H.; Fu, L.L.; Wu, B. Two new alkaloids from the marine-derived fungus Penicillium sp. LSH-3-1. Chem. Biodivers. 2022, 19, e202200310. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Qi, J.F.; He, Y.J.; Lu, Y.Y.; Wang, Y. Genomic and chemical profiling of B9, a unique Penicillium fungus derived from sponge. J. Fungi 2022, 8, 686. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.F.; Song, Y.X.; Zhou, Z.B.; Huang, Y.; Wang, S.T.; Yuan, J.; Wong, N.K.; Yan, Y.; Ju, J.H. Sulfoxanthicillin from the deep-sea derived Penicillium sp. SCSIO sof101: An antimicrobial compound against gram-positive and -negative pathogens. J. Antibiot. 2023, 76, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.P.; Liu, D.; Fan, A.L.; Huang, J.; Lin, W.H. Eremophilane-type sesquiterpenes from a marine-derived fungus Penicillium copticola with antitumor and neuroprotective activities. Mar. Drugs 2022, 20, 712. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.R.; Wang, Y.H.; Chi, X.Y.; Liu, C.; Zhang, J.L. A new drimane sesquiterpene ester from the marine-derived fungus Penicillium chrysogenum LD-201810. Chem. Nat. Compd. 2022, 58, 1042–1044. [Google Scholar] [CrossRef]
- Kaleem, S.; Ge, H.J.; Yi, W.W.; Zhang, Z.Z.; Wu, B. Isolation, structural elucidation, and antimicrobial evaluation of the metabolites from a marine-derived fungus Penicillium sp. ZZ1283. Nat. Prod. Res. 2021, 35, 2498–2506. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.F.; Meng, Q.Y.; Wu, J.S.; Cheng, W.; Liu, D.; Huang, J.; Fan, A.L.; Xu, J.; Lin, W.H. Acorane sesquiterpenes from the deep-sea derived Penicillium bilaiae fungus with anti-neuroinflammatory effects. Front. Chem. 2022, 10, 1036212. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Chang, Y.M.; Che, Q.; Li, D.H.; Zhang, G.J.; Zhu, T.J. Citreobenzofuran D-F and phomenone A-B: Five novel sesquiterpenoids from the mangrove-derived fungus Penicillium sp. HDN13-494. Mar. Drugs 2022, 20, 137. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Ge, Y.C.; Ma, Y.H.; Wang, S.B.; Li, S.H.; Yin, Q.Z.; Liu, X.W.; Wie, J.H.; Wu, X.D.; Wu, B. New cytotoxic secondary metabolites from two deep-sea-derived fungi and the co-culture impact on the secondary metabolic patterns. Chem. Biodivers. 2022, 19, e202200055. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Tang, W.L.; Huang, Q.R.; Wei, M.L.; Li, Y.Z.; Jiang, L.L.; Li, C.L.; Yu, X.; Zhu, H.W.; Chen, G.Z.; et al. New enantiomers of a nor-bisabolane derivative and two new phthalides produced by the marine-derived fungus Penicillium chrysogenum LD-201810. Front. Microbiol. 2021, 12, 727670. [Google Scholar] [CrossRef] [PubMed]
- Pang, S.; Guo, Z.G.; Wang, L.; Guo, Q.F.; Cao, F. Anti-IAV indole-diterpenoids from the marine derived fungus Penicillium citrinum. Nat. Prod. Res. 2023, 37, 586–591. [Google Scholar] [CrossRef]
- Cao, F.; Liu, X.M.; Wang, X.; Zhang, Y.H.; Yang, J.; Li, W.; Luo, D.Q.; Liu, Y.F. Structural diversity and biological activities of indole-diterpenoids from Penicillium janthinellum by co-culture with Paecilomyces formosus. Bioorg. Chem. 2023, 141, 106863. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Li, L.; Li, Y.Q.; Luo, J.H.; Li, W.; Li, L.F.; Zheng, C.J.; Cao, F. Oxalierpenes A and B, unusual indole-diterpenoid derivatives with antiviral activity from a marine-derived strain of the fungus Penicillium oxalicum. J. Nat. Prod. 2022, 85, 1880–1885. [Google Scholar] [CrossRef]
- Yurchenko, A.N.; Zhuravleva, O.I.; Khmel, O.O.; Oleynikova, G.K.; Antonov, A.S.; Kirichuk, N.N.; Chausova, V.E.; Kalinovsky, A.I.; Berdyshev, D.V.; Kim, N.Y.; et al. New cyclopiane diterpenes and polyketide derivatives from marine sediment-derived fungus Penicillium antarcticum KMM 4670 and their biological activities. Mar. Drugs 2023, 21, 584. [Google Scholar] [CrossRef]
- Wang, X.X.; Chen, Z.L.; Zhang, J.S.; Liu, H.S.; Ma, R.P.; Liu, X.P.; Li, M.Y.; Ge, D.; Bao, J.; Zhang, H. Indole diterpenes from mangrove sediment-derived fungus Penicillium sp. UJNMF0740 protect PC12 cells against 6-OHDA-induced neurotoxicity via regulating the PI3K/Akt pathway. Mar. Drugs 2023, 21, 593. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.T.; Yang, L.; Kong, F.D.; Ma, Q.Y.; Xie, Q.Y.; Dai, H.F.; Yu, Z.F.; Zhao, Y.X. Cytotoxic Indole-diterpenoids from the marine-derived fungus Penicillium sp. KFD28. Mar. Drugs 2021, 19, 613. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.Y.; Xie, Q.Y.; Kong, F.D.; Ma, Q.Y.; Zhou, L.M.; Yuan, J.Z.; Dai, H.F.; Wu, Y.G.; Zhao, Y.X. Two new indole-diterpenoids from the marine-derived fungus Penicillium sp. KFD28. J. Asian Nat. Prod. Res. 2021, 23, 1030–1036. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhao, M.; Chen, J.; Pan, W.C.; Tan, S.L.; Cui, H.; Zhao, Z.X. Seven new meroterpenoids from the fungus Penicillium sclerotiorum GZU-XW03–2. Fitoterapia 2023, 165, 105428. [Google Scholar] [CrossRef] [PubMed]
- Eze, P.M.; Liu, Y.; Simons, V.E.; Ebada, S.S.; Kurt’an, T.; Kir’aly, S.B.; Esimone, C.O.; Okoye, F.B.C.; Proksch, P.; Kalscheuer, R. Two new metabolites from a marine-derived fungus Penicillium ochrochloron. Phytochem. Lett. 2023, 55, 101–104. [Google Scholar] [CrossRef]
- Hu, X.Y.; Li, X.M.; Liu, H.; Wang, B.G.; Meng, L.H. Mining new meroterpenoids from the marine red alga-derived endophytic Penicillium chermesinum EN-480 by comparative transcriptome analysis. Bioorg. Chem. 2022, 128, 106021. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, X.C.; Pan, W.C.; Liu, X.; Tan, S.L.; Cui, H. Meroterpenoids from the fungus Penicillium sclerotiorum GZU-XW03-2 and their anti-inflammatory activity. Phytochemistry 2022, 202, 113307. [Google Scholar] [CrossRef]
- Xie, C.L.; Zhang, D.; Guo, K.Q.; Yan, Q.X.; Zou, Z.B.; He, Z.H.; Wu, Z.; Zhang, X.K.; Chen, H.F.; Yang, X.W. Meroterpenthiazole A, a unique meroterpenoid from the deep-sea-derived Penicillium allii-sativi, significantly inhibited retinoid X receptor (RXR)-α transcriptional effect. Chin. Chem. Lett. 2022, 33, 2057–2059. [Google Scholar] [CrossRef]
- Xie, C.L.; Liu, Q.M.; He, Z.H.; Gai, Y.B.; Zou, Z.B.; Shao, Z.Z.; Liu, G.M.; Chen, H.F.; Yang, X.W. Discovery of andrastones from the deep-sea-derived Penicillium allii-sativi MCCC 3A00580 by OSMAC strategy. Bioorg. Chem. 2021, 108, 104671. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.W.; Huo, R.Y.; Liu, G.R.; Liu, L. New andrastin-type meroterpenoids from the marine-derived fungus Penicillium sp. Mar. Drugs 2021, 19, 189. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Zheng, C.J.; Chen, G.Y. Austins-type meroterpenoids from a mangrove-derived Penicillium sp. J. Nat. Prod. 2021, 84, 2104–2110. [Google Scholar] [CrossRef] [PubMed]
- Ying, Z.; Li, X.M.; Wang, B.G.; Li, H.L.; Meng, L.H. Rubensteroid A, a new steroid with antibacterial activity from Penicillium rubens AS-130. J. Antibiot. 2023, 76, 563–566. [Google Scholar] [CrossRef] [PubMed]
- He, Z.H.; Xie, C.L.; Hao, Y.J.; Xu, L.; Wang, C.F.; Hu, M.Y.; Li, S.J.; Zhong, T.H.; Yang, X.W. Solitumergosterol A, a unique 6/6/6/6/5 steroid from the deep-sea-derived Penicillium solitum MCCC 3A00215. Org. Biomol. Chem. 2021, 19, 9369–9372. [Google Scholar] [CrossRef] [PubMed]
- Youssef, D.T.A.; Shaala, L.A.; Almohammadi, A.; Elhady, S.S.; Alzughaibi, T.A.; Alshali, K.Z. Characterization of bioactive compounds from the Red Sea tunicate-derived fungus Penicillium commune DY004. Lett. Org. Chem. 2022, 19, 144–149. [Google Scholar] [CrossRef]
- Liu, X.Y.; Dong, Y.F.; Zhang, X.W.; Zhang, X.J.; Chen, C.X.; Song, F.H.; Xu, X.L. Two new trienoic acid derivatives from marine-derived fungus Penicillium oxalicum BTBU20213011. Rec. Nat. Prod. 2023, 17, 958–962. [Google Scholar]
- Yang, J.P.; Zhang, X.W.; Xu, W.; Xu, X.L.; Song, F.H. A new phenyl 6,7-dihydroxygeranyl ether derivative from a marine-derived fungus strain of Penicillium arabicum ZH3-9. Nat. Prod. Res. 2023. [Google Scholar] [CrossRef]
- Yang, S.Q.; Li, X.M.; Chen, X.D.; Li, X.; Wang, B.G. Three new α-pyrone derivatives from the soil-derived fungus Penicillium herquei MA-370. Nat. Prod. Res. 2023. [Google Scholar] [CrossRef]
- Newaz, A.W.; Yong, K.; Yi, W.W.; Wu, B.; Zhang, Z.Z. Antimicrobial metabolites from the indonesian mangrove sediment-derived fungus Penicillium chrysogenum sp. ZZ1151. Nat. Prod. Res. 2023, 37, 1702–1708. [Google Scholar] [CrossRef]
- Hsi, H.Y.; Wang, S.W.; Cheng, C.H.; Pang, K.L.; Leu, J.Y.; Chang, S.H.; Lee, Y.T.; Kuo, Y.H.; Huang, C.Y.; Lee, T.H. Chemical constituents and anti-angiogenic principles from a marine algicolous Penicillium sumatraense SC29. Molecules 2022, 27, 8940. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Z.; Tang, X.X.; He, F.M.; Jia, J.X.; Hu, H.; Xie, B.Y.; Li, M.Y.; Qiu, Y.K. Two new compounds from a mangrove sediment-derived fungus Penicillium polonicum H175. Nat. Prod. Res. 2022, 36, 2370–2378. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.H.; Zhang, J.W.; Qi, X.; Zhao, K.; Pang, X.Y.; Lin, X.P.; Liao, S.R.; Yang, B.; Zhou, X.F.; Liu, S.W.; et al. p-terphenyls as anti-HSV-1/2 agents from a deep-sea-derived Penicillium sp. J. Nat. Prod. 2021, 84, 2822–2831. [Google Scholar] [CrossRef] [PubMed]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2023, 40, 275. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.L.; Ding, Y.F.; Zhang, W.; Lin, H.W. Chemical and biological diversity of new natural products from marine sponges: A review (2009–2018). Mar. Life Sci. Technol. 2022, 4, 356–372. [Google Scholar] [CrossRef]
- Kozlovskii, A.G.; Zhelifonova, V.P.; Antipova, T.V. Fungi of the genus Penicillium as producers of physiologically active compounds (review). Appl. Biochem. Microbiol. 2013, 49, 1–10. [Google Scholar] [CrossRef]
No. | Compounds | Fungal Species/Strain No. | Source of Fungi | Bioactivities | Ref. |
---|---|---|---|---|---|
Azaphilones | |||||
1 | Penicilazaphilone Ia | P. sclerotiorum E23Y-1A | Sponge | Cytotoxic activity Anti-inflammatory | [17] |
2 | Penicilazaphilone J | ||||
3 | epi-geumsanol D | ||||
4–5 | Penidioxolanes C–D | ||||
6–9 | Penicilazaphilone K–N | ||||
10–11 | Penicilazaphilones F–G | P. sclerotiorum E23Y-1A | Sponge | Anti-inflammatory | [22] |
12 | 5-bromoisorotiorin | P. sclerotiorum E23Y-1A | Sponge | Antibacterial activity Enzyme inhibitory | [18] |
13 | Penicilazaphilone Ha | ||||
14 | Penicilazaphilone Hb | P. sclerotiorum | Algae | Anti-angiogenesis | [20] |
13 | Penicilazaphilone Ib | ||||
16 | 11-epi-geumsanol F | ||||
17 | 11-epi-geumsanol B | ||||
18 | 8a-epi-hypocrellone A | P. sclerotiorum | Sediment | Cytotoxic activity Anti-inflammatory | [23] |
19 | 8a-epi-eupenicilazaphilone C | ||||
20a/b | Isochromophilone H (a/b) (isomers) | P. sclerotiorum HY5 | Mangrove | Phytotoxicity | [24] |
21 | Sclerotiorin A | ||||
22 | Sclerotiorin B | ||||
23 | Ochlephilone | ||||
24 | Isochromophilone IV | ||||
25a/b | Isochromophilone J (a/b) (isomers) | ||||
26–29 | Chermesinones D–G | P. chermesinum FS625 | Seawater | Anti-inflammatory | [25] |
30–31 | Daldinins G–H | P. glabrum glmu 003 | Soft coral | Antibacterial activity Enzyme inhibitory | [26] |
Isocoumarins | |||||
32–33 | Peniciisocoumarins I–J | Penicillium sp. GXIMD 03001 | Mangrove | Cytotoxic activity | [27] |
34–35 | Penicillols A–B | Penicillium sp. BJR-P2 | Mangrove | Anti-inflammatory | [28] |
Chromones | |||||
36–38 | Epiremisporines C–E | P. citrinum BCRC 09F458 | Waste water | Cytotoxic activity Anti-inflammatory | [29] |
39–41 | Epiremisporines F–H | P. citrinum BCRC 09F458 | Waste water | Cytotoxic activity Anti-inflammatory | [30] |
42–49 | Penithochromones M–T | P. thomii Maire YPGA3 | Sediment | Enzyme inhibitory Antioxidant activity | [31] |
50–52 | Penithochromones U–W | P. thomii YPGA3 | Sediment | Enzyme inhibitory | [32] |
Citrinins | |||||
53 | (5R)-and (5S)-isoquinocitrinin B | Penicillium sp. TW131-64 | Sediment | Antibacterial activity | [33] |
54 | (5R)-and (5S)-isoquinocitrinin C | ||||
55 | (5R)-and (5S)-isoquinocitrinin D | ||||
56 | (3R,4S)-8-hydroxy-6-methoxy-3,4,5-trimethylisochromane-7-carboxylatemethyl | ||||
57 | (3R,4S)-6-hydroxy-8-methoxy-3,4,5-trimethylisochromane-7-carboxylatemethyl | ||||
58 | Penicitrinone J | ||||
59–62 | Dicitrinone G–J | Penicillium sp. GGF16-1-2 | Starfish | Antifungal and cytotoxic activities | [10] |
63–65 | Neotricitrinols A–C | P. citrinum W23 | Sediment | Anti-osteoporosis activity | [34] |
66–67 | Xerucitrinins B–C | P. citrinum Y34 | Sediment | Enzyme inhibitory | [35] |
68 | Penicitrinol P | Penicillium sp. SCSIO 41302 | Sponge | Antibacterial activity Enzyme inhibitory | [36] |
69 | Dicitrinol D | Penicillium sp. SCSIO 41303 | Sponge | Antibacterial, cytotoxic, antiviral activities, and enzyme inhibitory | [37] |
β-resorcylic acids | |||||
70 | 14-hydroxyasperentin B | P. antarcticum KMM 4685 | Brown alga | Cytotoxic activity | [38] |
71–73 | β-resoantarctines A–C | ||||
74 | 8-dehydro-β-resoantarctine A | ||||
Verrucosidins | |||||
75–76 | 9-O-ethylpenicyrones A–B | P. cyclopium SD-413 | Sediment | Antibacterial activity | [40] |
77–82 | Poloncosidins A–F | P. polonicum CS-252 | Sediment | Antibacterial activity | [39] |
83–87 | Poloncosidins G–K | P. polonicum CS-252 | Sediment | Antibacterial activity | [41] |
88–89 | Verrucosidinol A–B | P. griseofulvum MCCC 3A00225 | Sediment | Anti-food allergy | [42] |
Citreoviridins | |||||
90–91 | Citreoviridins H–I | Penicillium sp. BJR-P2 | Mangrove | Anti-inflammatory | [27] |
92–97 | Citreoviridins J–O | P. citreonigrum MCCC 3A00169 | Sediment | Cytotoxic activity Anti-inflammatory | [43] |
Nitrogen-containing polyketides | |||||
98–99 | Oxopyrrolidines A–B | P. oxalicumMEFC104 | Sediment | Antibacterial activity | [44] |
100 | 7-hydroxy-3,10-dehydrocyclopeptine | P. polonicum MCCC3A00951 | Sediment | Antiviral activity | [45] |
101–105 | Steckfusarins A–E | P. steckii SCSIO41040 | Green algae | Antibacterial, antifungal, cytotoxic and antiviral activities Enzyme inhibitory Antioxidant Anti-inflammatory | [46] |
Sorbicillinoids | |||||
106–108 | Bisorbicillchaetones A–C | Penicillium sp. SCSIO06868 | Sediment | Anti-inflammatory | [47] |
109 | 10-Methylsorbiterrin A | Penicillium sp. SCSIO06871 | Sediment | Antibacterial and antifungal activities Enzyme inhibitory | [48] |
110 | Epitetrahydrotrichodimer ether | ||||
111 | Demethyldihydrotrichodimerol | ||||
112 | Bisorbicillpyrone A | ||||
113 | Dihydrotrichodermolidic acid | ||||
114 | 5-hydroxy-dihydrodemethy lsorbicillin | ||||
115 | Sorbicillpyrone A | ||||
116 | 5,6-dihydrovertinolide | ||||
117–118 | Sorbicatechols C–D | P. allii-sativi MCCC3A00580 | Seawater | Cytotoxic activity | [49] |
119 | (4E)-1-(4,6-Dihydroxy-5-methylpyridin-3-yl)hex-4-en-1-one | Penicillium sp. DM815 | Mangrove | Anti-inflammatory | [50] |
Isochromans | |||||
120–125 | Penicisteckins A–F | P. steckii HNNU-5B18 | Beach mud | Antibacterial activity Cytotoxic activity | [51] |
α-pyrone polyketides | |||||
126–130 | Penipyrols C-G | Penicillium sp. HDN-11-131 | Mangrove | Cytotoxic activity | [52] |
131 | Methyl-penipyrol A | ||||
Hirsutellones | |||||
132 | Perpyrrospirone A | P. citrinum | Seawater | Cytotoxic activity | [53] |
Xanthones and benzophenones | |||||
133 134 | 11-O-acetylaspergillusone B | Penicillium sp. MCCC 3A00126 | Sediment | Cytotoxic activity Ferroptosis inhibitory | [54] |
7-dehydroxyhuperxanthone A | |||||
135 | Penicixanthene E | Penicillium sp. GXIMD 03101 | Mangrove | Cytotoxic activity | [55] |
136 | Penibenzophenone C | Penicillium sp. | Mangrove | Antibacterial and insecticidal activities | [16] |
Hydroxybenzenes | |||||
137 | Peniketide A | Penicillium sp. SCZ-1 | Sediment | Enzyme inhibition | [56] |
138 | Methyl ester of penipyrol A | ||||
139–141 | Penidihydrocitrinins A–C | P. citrinum W17 | Sediment | Anti-inflammatory Anti-osteoporosis | [57] |
142 | Peniciphenalenin G | P. oxalicum | Seawater | Cytotoxic activity | [58] |
143 | Penicinone C | Penicillium sp. LA032 | Mangrove | ---- | [59] |
144 | 5-((R,1Z,3E)-6-hydroxy-1,3-heptadien-1-yl)-1,3-benzenediol | Penicillium sp. TW58-16 | Sediment | Anti-inflammatory Enzyme inhibition | [60] |
145 | 4-carboxy-5-((R,1Z,3E)-6-hydroxy-1,3-heptadien-1-yl)-1,3-benzenediol | ||||
146 | 4-carboxy-5-((1Z,3E)-1,3-heptadien-1-yl)-1,3-benzenediol | ||||
147 | 5-((1Z,3E)-4-carboxy-1,3-butadienyl-1-yl)-1,3-benzenediol | ||||
148 | (2E)-3-[(3R)-3,4-dihydro-6,8-dihydroxy-1-oxo-1H-2-benzopyran-3-yl]-2-propenoic acid | ||||
149 | 3-[(3S)-3,4-dihydro-6,8-dihydroxy-1-oxo-1H-2-benzopyran-3-yl]-propanoic acid | ||||
150 | Coniochaetone N | Penicillium sp. SCSIO06868 | Sediment | Antibacterial activity | [61] |
Lactones | |||||
151–152 | Penicinones A–B | Penicillium sp. LA032 | Mangrove | Cytotoxic activity | [59] |
153 | Walterolactone E | Penicillium sp. TW58-16 | Sediment | Antibacterial activity | [62] |
Olefinic acids and their derivatives | |||||
154–157 | Steckwaic acid A-D | P. steckii AS-324 | Coral | Antibacterial and antifungal activities | [64] |
158 | 11-ketotanzawaic acid D | ||||
159 | 6,15-dihydroxytanzawaic acid M | ||||
160 | 15R-methoxytanzawaic acid M | ||||
161 | 15S-methoxytanzawaic acid M | ||||
162 | 8-hydroxytanzawaic acid M | ||||
163 | 8-hydroxytanzawaic acid B | ||||
164–168 | Steckwaic acid Ea–Ia | P. steckii AS-324 | Coral | Antibacterial activity | [19] |
169 | 18-O-acetyltanzawaic acid R | ||||
170 | 10-hydroxytanzawaic acid U | ||||
171 | 13R-tanzawaic acid S | ||||
172–176 | Steckwaic acid Eb–Ib | P. steckii SCSIO 41040 | Green algae | Antibacterial, antifungal, cytotoxic, and antiviral activities | [63] |
177–178 | Steckwaic acid J–K | ||||
179–182 | Penicisteck acid A–D | P. steckii SCSIO 41025 | Mangrove | Antibacterial activity Enzyme inhibition | [65] |
183–186 | Penifellutins A–D | P. crustosum PRB-2 and P. fellutanum HDN14-323 | Seawater | Cytotoxic activity | [66] |
Other polyketides | |||||
187 | Rubenpolyketone A | P. rubens AS-130 | Coral | Antibacterial activity | [67] |
188 | Oxalichroman A | P. oxalicum 2021CDF-3 | Red algae | Cytotoxic activity | [68] |
189 | Oxalihexane A | ||||
190 | Leptosphaerone D | Penicillium sp. TW58-16 | Sediment | Antibacterial activity | [62] |
191 | 15-O-methyl ML-236A | P. solitum MCCC 3A00215 | Sediment | Cytotoxic activity Anti-food allergy | [69] |
Indole alkaloids | |||||
192–195 | Communesins M–P | P. expansum MMS42 | Sediment | Cytotoxic and neuroprotective activities | [9] |
196 | Deoxy-14,15-dehydroisoaustamide | P. dimorphosporum KMM 4689 | Soft coral | Cytotoxic activity | [70] |
197 | 16α-hydroxy-17β-methoxy-deoxydihydroisoaustamide | P. dimorphosporum KMM 4689 | Soft coral | Cytotoxic and neuroprotective activities | [71] |
198 | 16β-hydroxy-17α-methoxy-deoxydihydroisoaustamide | ||||
199 | 16β,17α-dihydroxy-deoxydihydroisoaustamide | ||||
200 | 16α-hydroxy-17α-methoxy-deoxydihydroisoaustamide | ||||
201 | 16α,17α-dihydroxy-deoxydihydroisoaustamide | ||||
202 | 16,17-dihydroxydeoxydihydroisoaustamide | ||||
203 | 3β-hydroxy-deoxyisoaustamide | ||||
204 | Penilline D | Penicillium sp. SCSIO 05705 | Soil | Antibacterial and cytotoxic activities Enzyme inhibition | [72] |
205 | Penindolacid A | Penicillium sp. LW92 | Sediment | Antioxidant activity Enzyme inhibitory | [73] |
206–207 | Penicamides A–B | Penicillium sp. LA032 | Soil | Cytotoxic activity | [59] |
208 | 11S-(−)-penilloid A | Penicillium sp. ZZ1750 | Marine mud | Cytotoxic activity | [74] |
209 | 11R,14E-(+)-penilloid A | ||||
Pyridones | |||||
210–220 | Penicipyridones A–K | P. oxalicum QDU1 | Leaves of plant | Anti-inflammatory | [75] |
Quinolinones | |||||
221 | Penicinolone | Penicillium sp. SCSIO 41033 | Sponge | Antibacterial and antifungal activities Enzyme inhibitory | [76] |
222 | Quinolactone A | P. citrinum YX-002 | Mangrove | Enzyme inhibitory | [77] |
223 | Quinolactacin C1 | ||||
224 | 3-epi-quinolactacin C1 | ||||
225a/b | Quinolactacin E (a racemic mixture) | Penicillium sp. SCSIO 41303 | Sponge | Cytotoxic and antiviral activities Enzyme inhibitory | [37] |
226 | Quinolactacin F1 | ||||
227 | Quinolactacin F2 | ||||
228a/b | Quinolactacin G (enantiomers) | ||||
229–232 | (±)-oxypenicinolines A–D | P. steckii SCSIO 41025 | Mangrove | Antibacterial, antifungal, and cytotoxic activities Enzyme inhibitory | [78] |
(racemic mixtures, respectively) | |||||
233–234 | Penicinoline F–G | ||||
Decahydrofluorene-class alkaloids | |||||
235–241 | Pyrrospirone K–Q | Penicillium sp. SCSIO 41512 | Soft coral | Antibacterial and cytotoxic activities Enzyme inhibitory | [79] |
Piperazines | |||||
242 | Adametizine C | P. ludwigii SCSIO 41408 | Sediment | Antibacterial, antifungal, and cytotoxic activities Anti-osteoporosis | [80] |
243 | (8S,9R,12R,18S)-12-hydroxy-fumitremorgin B | Penicillium sp. TW58-16 | Sediment | Antibacterial activity | [62] |
244–246 | Penigainamides A–C | P. steckii YE | Seawater | Cytotoxic activity | [81] |
Tetramic-acid-based alkaloids | |||||
247–249 | Tolypocladenols D–F | P. oxalicum QDU1 | Leaves of plant | Antifungal and cytotoxic activities Anti-inflammatory | [75] |
250–251 | Penicillenols G1–G2 | Penicillium sp. SCSIO06868 | Sediment | Antibacterial and antiviral activities | [61] |
252 | Penicillenol H | ||||
Amines and amides | |||||
253 | (Z)-4-(5-acetoxy-N-hydroxy-3-methylpent-2-enamido) butanoate | P. oxalicum HLLG-13 | Mangrove | Antibacterial and insecticidal activities | [15] |
254–255 | Polonimides D–E | Penicillium sp. SCSIO 41413 | Sponge | Antibacterial and cytotoxic activities Anti-inflammatory | [82] |
256 | Speradine I | Penicillium sp. SCSIO 41038 | Soft coral | Cytotoxic activity Enzyme inhibitory | [83] |
257 | (S)-2-acetamido-4-(2-(methylamino)phenyl)-4-oxobutanoic acid | P. citrinum XIA-16 | Shrimp | Ferroptosis inhibitory | [84] |
258 | Citrinadin C | P. citrinum | Sediment | Antibacterial and cytotoxic activities | [85] |
259 | (2S,2′R,3R,3′E,4E,8E)-N-2′-hydroxyhexadecanoyl-2-amino-9-methyl-4,8-octadecadiene-1,3-diol | P. chrysogenum Y20-2 | Seawater | Anti-angiogenesis | [86] |
260–261 | Penichryfurans A–B | P. chrysogenum | Red alga | Cytotoxic activity | [87] |
262–280 | Talaroenamines F1−F19 | P. malacosphaerulum HPU-J01 | Wetland | Cytotoxic activity | [88]. |
281 | Peniokaramine | Penicillium sp. LSH-3-1 | Sediment | Cytotoxic activity Anti-inflammatory | [89] |
282 | Penipyranopyridine | ||||
283–284 | Penicidihydropyridones A–B | Penicillium sp. B9 | Sponge | Cytotoxic activity | [90] |
285 | (+)-solitumidine D | P. solitum MCCC 3A00215 | Sediment | Cytotoxic activity Anti-food allergy | [69] |
286 | (±)-solitumidine E (a racemic mixture) | ||||
287 | Penicmariae-crucis C acid | P. steckii SCSIO 41025 | Mangrove | Antibacterial and antifungal activities Enzyme inhibitory | [65] |
288 | N-(6-hydroxy-2-oxoindolin-3-ylidene)-5′-methoxy-5′-oxobutyl-amine oxide | ||||
289 | Methyl-1′-(N-hydroxyacetamido)-butanoate | ||||
290 | Penigrisamide | P. griseofulvum MCCC 3A00225 | Sediment | Anti-food allergy | [42] |
291 | Aurantiomoate C | ||||
292 | N,N-pyroglutamylleucinmethylester | ||||
293 | Methyl 2S-hydroxy-3-methylbutanoyl-L-leucinate | ||||
294 | 6R,7-dihydroxy-3,7-dimethyloctanamide | ||||
Other alkaloids | |||||
295 | Sulfoxanthocillin | Penicillium sp. SCSIO sof101 | Seawater | Antibacterial activity Anti-inflammatory | [91] |
296 | Penipyridinone B | Penicillium sp. ZZ1750 | Sea mud | Cytotoxic activity | [74] |
Sesquiterpenes | |||||
297 | Chermesiterpenoid D | P. rubens AS-130 | Coral | Antibacterial activity | [67] |
298–307 | Copteremophilanes A–J | P. Copticola | Sponge | Cytotoxic activity Neuroprotection | [92] |
308 | Astellolide Q | Penicillium sp. N-5 | Soil | Antibacterial and antifungal activities | [14] |
309 | Chrysoride A | P. chrysogenum LD-201810 | Red alga | Cytotoxic activity | [93] |
310 | Purpuride D | Penicillium sp. ZZ1283 | Sea mud | Antibacterial activity | [94] |
311–328 | Bilaiaeacorenols A–R | P. bilaiae F-28 | Sediment | Anti-inflammatory | [95] |
329–331 | Citreobenzofurans D–F | Penicillium sp. HDN13-494 | Soil | Antibacterial and cytotoxic activities | [96] |
332–333 | Phomenones A–B | ||||
334 | (2S,3S,5S,6S,7S,8R,11S,12R)-15-deacetyl-7,8-dihydroxycalonectrin | Penicillium sp. LXY140-R and Penicillium sp. LXY140-3 | Sediment | Cytotoxic activity | [97] |
335 | 1-Methyl-4-[3,4,5-trihydroxy-1,2,2-trimethylcyclopently]benzene | ||||
336a/b | (±)Methylsulfinyl-1-hydroxyboivinianin A (enantiomers) | P. chrysogenum LD-201810 | Red alga | Antifungal and cytotoxic activities | [98] |
337 | (4S,5R,9S,10R)-11,13-dihydroxy-drim-7-en-6-one | Penicillium sp. TW58-16 | Sediment | Anti-inflammatory Enzyme inhibition | [60] |
338 | (4S,5R,9S,10R)-11-hydroxy-13-carboxy-drim-7-en-6-one | ||||
Diterpenes | |||||
339 | Penijanthine E | P. citrinum ZSS-9 | Sediment | Antiviral activity | [99] |
340–348 | Janthinellumines A–I | P. janthinellum | Seawater | Antibacterial and antiviral activity Enzyme inhibition | [100] |
349–350 | Oxalierpenes A–B | P. oxalicum | Shrimp | Antiviral activity | [101] |
351 | 4-hydroxyleptosphin C | P. antarcticum KMM 4670 | Sediment | Antibacterial activity Enzyme inhibition | [102] |
352 | 13-epi-Conidiogenone F | ||||
353–355 | Shearinines R–T | Penicillium sp. UJNMF0740 | Sediment | Antibacterial activity Neuroprotection | [103] |
356 | 22-hydroxyshearinine I | ||||
357–358 | Conidiogenones J–K | P. oxalicum HLLG-13 | Mangrove | Antibacterial and insecticidal activities | [15] |
359–362 | Penerpenes K–N | Penicillium sp. KFD28 | Mollusk | Antibacterial and cytotoxic activities | [104] |
363 | Epipaxilline | Penicillium sp. KFD28 | Mollusk | Enzyme inhibition | [105] |
364 | Penerpene J | ||||
Meroterpenes | |||||
365–371 | Peniscmeroterpenoids H–N | P. sclerotiorum GZU-XW03-2 | Mollusk | Anti-inflammatory | [106] |
372 | Andrastin I | P. ochrochloron | Seawater | Antibacterial activity | [107] |
373–376 | Chermesin E–H | P. chermesinum EN-480 | Red alga | Antibacterial activity | [108] |
377–383 | Peniscmeroterpenoid A–G | P. sclerotiorum GZU-XW03-2 | Mollusk | Anti-inflammatory | [109] |
384 | Meroterpenthiazole A | P. allii-sativi MCCC 3A00580 | Seawater | Cytotoxic activity | [110] |
385 | Citrehybridonol B | P. allii-sativi MCCC 3A00580 | Seawater | Anti-allergic bioactivity | [111] |
386 | Andrastin G | ||||
387–393 | Andrastones B–H | ||||
394–396 | Hemiacetalmeroterpenoids A–C | Penicillium sp. N-5 | Soil | Antifungal activity | [14] |
397–399 | Penimeroterpenoids A–C | Penicillium sp. | Sediment | Cytotoxic activity | [112] |
400–402 | Penicianstinoids C–E | Penicillium sp. TGM112 | Mangrove | Antifungal and insecticidal activities | [113] |
Steroids | |||||
403 | Rubensteroid A | P. rubens AS-130 | Coral | Antibacterial activity | [114] |
404 | Andrastin H | P. oxalicum HLLG-13 | Mangrove | Insecticidal activity | [15] |
405 | Solitumergosterol A | P. solitum MCCC 3A00215 | Sediment | Cytotoxic activity | [115] |
Peptides | |||||
406–407 | Penicamides A–B | Penicillium sp. SCSIO 41512 | Soft coral | Antifungal activity | [21] |
408 | Penicillizine A | P. commune DY004 | Tunicate | Cytotoxic activity | [116] |
Others | |||||
409–410 | Penioxa acids A–B | P. oxalicum BTBU20213011 | Sediment | Antibacterial and antifungal activities | [117] |
411 | (Z)-5-acetoxy-3-methylpent-2-enoic acid | P. oxalicum HLLG-13 | Mangrove | Antibacterial and insecticidal activities | [15] |
412 | Antaketide A | P. antarcticum KMM 4670 | Sediment | Antibacterial activity | [102] |
413 | Ochrochloronic acid | P. ochrochloron | Sea sand | Antibacterial and cytotoxic activities | [107] |
414 | (Z)-4-((6,7-dihydroxy-3,7-dimethyloct-2-en-1-yl)oxy)benzoic acid | P. arabicum ZH3-9 | Sea mud | Antibacterial and antifungal activities | [118] |
415–417 | Annularin L–N | P. herquei MA-370 | Soil | Antibacterial activity | [119] |
418 | Peniprenylphenol A | P. chrysogenum ZZ1151 | Sediment | Antibacterial activity | [120] |
419 | 13-(11-hydroxy-8-(4-hydroxy-1,6-dimethoxybenzyl)-9-methoxy-12-methylphenyl) propan-15-one | P. steckii SCSIO 41040 | Green algae | Antibacterial, antifungal, cytotoxic and antiviral activities Anti-inflammatory | [63] |
420 | Speradine J | Penicillium sp. SCSIO 41038 | Soft coral | Cytotoxic activity Enzyme inhibitory | [83] |
421 | Eutypoid F | Penicillium sp. SCSIO 41413 | Sponge | Antibacterial activity | [82] |
422 | Penisterines A | P. sumatraense SC29 | Alga | Anti-angiogenesis | [121] |
423–425 | Penisterines C–E | ||||
426 | Penisterine A methyl ether | ||||
427 | 2-methyl-3-(5-oxohexyl) maleic acid | P. ludwigii SCSIO 41408 | Sediment | Antibacterial, antifungal, and cytotoxic activities Anti-osteoporosis | [80] |
428 | 2-(4-hydroxyhexyl)-3-methylmaleic acid | ||||
429 | 3-(ethoxycarbonyl)-2-methylenenonanoic acid | ||||
430 | 7-hydroxy-3-(methoxycarbonyl)-2-methylenenonanoic acid | ||||
431 | 2-(4-hydroxypentyl)-4-methyl-5-oxo-2,5-dihydrofuran-3-carboxylic acid | ||||
432 | 5,6-Dihydroxy-3-methoxyhex-2-enoic acid | Penicillium sp. LXY140-R and Penicillium sp. LXY140-3 | Sediment | Cytotoxic activity | [97] |
433 | 6-acetyl-4-methoxy-3,5-dimethyl-2H-pyran-2-one | P. polonicum H175 | Sediment | Hypoglycemic effect | [122] |
434 | (2E,4E)-5-((2S,3S,4R,5R)-3,4-dihydroxy-2,4,5-trimethyltetrahydrofuran-2-yl)-2,4-dimethylpenta-2,4-dienal | ||||
435 | 5-glycopenostatin F | P. Copticola | Sponge | ___ | [92] |
436 | 5-glucopenostatin I | ||||
437a/b | (±)-Tetraketide | Penicillium sp. SCSIO 41302 | Sponge | Antibacterial and cytotoxic activities Enzyme inhibitory | [36] |
438 | 8-hydroxyhelvafuranone | P. griseofulvum MCCC 3A00225 | Sediment | Anti-food allergy | [42] |
439 | Methyl-3,7,9-trihydroxydecanate | ||||
440 | 9-hydroxy-3,7-epoxydecanoic acid | ||||
441–442 | Chrysoalides A–B | P. chrysogenum LD-201810 | Red alga | Antifungal and cytotoxic activities | [98] |
443–445 | Peniterphenyls A–C | Penicillium sp. SCSIO41030 | Sediment | Antiviral activity Enzyme inhibitory | [123] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, F.; Zeng, Y. Novel Bioactive Natural Products from Marine-Derived Penicillium Fungi: A Review (2021–2023). Mar. Drugs 2024, 22, 191. https://doi.org/10.3390/md22050191
Lv F, Zeng Y. Novel Bioactive Natural Products from Marine-Derived Penicillium Fungi: A Review (2021–2023). Marine Drugs. 2024; 22(5):191. https://doi.org/10.3390/md22050191
Chicago/Turabian StyleLv, Fang, and Yanbo Zeng. 2024. "Novel Bioactive Natural Products from Marine-Derived Penicillium Fungi: A Review (2021–2023)" Marine Drugs 22, no. 5: 191. https://doi.org/10.3390/md22050191
APA StyleLv, F., & Zeng, Y. (2024). Novel Bioactive Natural Products from Marine-Derived Penicillium Fungi: A Review (2021–2023). Marine Drugs, 22(5), 191. https://doi.org/10.3390/md22050191