Effects of Silver Nanoparticles on the Red Microalga Porphyridium purpureum CNMN-AR-02, Cultivated on Two Nutrient Media
Abstract
:1. Introduction
2. Results
2.1. Quantity of P. purpureum CNMN-AR-02 Biomass Produced under Culture Conditions with Various AgNPs Concentrations
2.2. Composition of P. purpureum CNMN-AR- 02 Biomass Produced in the Presence of Various AgNPs Concentrations
2.3. MDA in P. purpureum CNMN-AR-02 Biomass Grown in the Presence of Silver Nanoparticles
2.4. Antioxidant Activity P. purpureum CNMN-AR-02 Grown in the Presence of Silver Nanoparticles
3. Discussion
4. Materials and Methods
4.1. The Strain of Red Microalga Porphyridium purpureum, Mineral Media, and Cultivation Conditions
4.2. Silver Nanoparticles
4.3. Collection and Standardization of Microalgal Biomass
4.4. Determination of Biomass Amount
4.5. Determination of the Biochemical Composition of Microalgal Biomass
4.5.1. Protein Content
4.5.2. Carbohydrates Content
4.5.3. Phycobiliproteins Content
4.5.4. Chlorophyll and Carotenoid Content
4.5.5. Lipid Content
4.6. Determination of the Content of Lipid Peroxidation Products—MDA Test
4.7. Evaluation of Antioxidant Activity
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Liberti, D.; Imbimbo, P.; Giustino, E.; D’Elia, L.; Silva, M.; Barreira, L.; Monti, D.M. Shedding Light on the Hidden Benefit of Porphyridium cruentum Culture. Antioxidants 2023, 12, 337. [Google Scholar] [CrossRef] [PubMed]
- Tsvetanova, F.; Yankov, D. Bioactive Compounds from Red Microalgae with Therapeutic and Nutritional Value. Microorganisms 2022, 10, 2290. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.C.; Sui, J.K.; Han, T.L.; Liu, T.Z.; Wang, H. Integration bioprocess of B-phycoerythrin and exopolysaccharides production from photosynthetic microalga Porphyridium cruentum. Front. Mar. Sci. 2022, 8, 836370. [Google Scholar] [CrossRef]
- Casas-Arrojo, V.; Decara, J.; de los Ángeles Arrojo-Agudo, M.; Pérez-Manríquez, C.; Abdala-Díaz, R.T. Immunomodulatory, antioxidant activity and cytotoxic effect of sulfated polysaccharides from Porphyridium cruentum. (S.F. Gray) Nägeli. Biomolecules 2021, 11, 488. [Google Scholar] [CrossRef] [PubMed]
- Kiran, B.R.; Venkata Mohan, S. Microalgal Cell Biofactory—Therapeutic, Nutraceutical and Functional Food Applications. Plants 2021, 10, 836. [Google Scholar] [CrossRef]
- Mehariya, S.; Goswami, R.K.; Karthikeysan, O.P.; Verma, P. Microalgae for high-value products: A way towards green nutraceutical and pharmaceutical compounds. Chemosphere 2021, 280, 130553. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Xu, J.; Wu, H.; Jiang, P.; Chen, Z.; Xiang, W. Growth and Biochemical Composition of Porphyridium purpureum SCS-02 under Different Nitrogen Concentrations. Mar. Drugs 2019, 17, 124. [Google Scholar] [CrossRef]
- Cepoi, L.; Rudi, L.; Chiriac, T.; Valuta, A.; Zinicovscaia, I.; Miscu, V.; Rudic, V. Silver Nanoparticles as Stimulators in Biotechnology of Porphyridium cruentum. In Proceedings of the 5th International Conference on Nanotechnologies and Biomedical Engineering. Proceedings of ICNBME-2021, Chisinau, Moldova, 3–5 November 2021; Springer Nature: Cham, Switzerland, 2022; Volume 87, pp. 530–536. [Google Scholar] [CrossRef]
- Huang, Y.; Gao, M.; Wang, W.; Liu, Z.; Qian, W.; Chun Chen, C.; Zhu, X.; Cai, Z. Effects of manufactured nanomaterials on algae: Implications and applications. Front. Environ. Sci. Eng. 2022, 16, 122. [Google Scholar] [CrossRef]
- Hasnain, M.; Munir, N.; Abideen, Z.; Dias, D.A.; Aslam, F.; Mancinelli, R. Applying silver nanoparticles to enhance metabolite accumulation and biodiesel production in new algal resources. Agriculture 2023, 13, 73. [Google Scholar] [CrossRef]
- Rana, A.; Parmar, A.S. Re-exploring silver nanoparticles and its potential applications. Nanotechnol. Environ. Eng. 2023, 8, 789–804. [Google Scholar] [CrossRef]
- Dev Sarkar, R.; Singh, H.B.; Chandra Kalita, M. Enhanced lipid accumulation in microalgae through nanoparticle-mediated approach, for biodiesel production: A mini-review. Heliyon 2021, 7, e08057. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Wang, F.; Zhou, B.; Chen, H.; Yuan, R.; Ma, S.; Geng, H.; Xing, B. Mechanisms of photoinduced toxicity of AgNPs to the microalgae Chlorella pyrenoidosa in the presence of hematite nanoparticles: Insights from transcriptomics, metabolomics and the photochemical index. Environ. Sci. Nano 2020, 9, 3525–3537. [Google Scholar] [CrossRef]
- Yap, J.K.; Sankaran, R.; Chew, K.W.; Halimatul Munawaroh, H.S.; Ho, S.H.; Rajesh Banu, J.; Show, P.L. Advancement of green technologies: A comprehensive review on the potential application of microalgae biomass. Chemosphere 2021, 281, 130886. [Google Scholar] [CrossRef]
- Pham, L. Effect of Silver Nanoparticles on Tropical Freshwater and Marine Microalgae. J. Chem. 2019, 2019, 9658386. [Google Scholar] [CrossRef]
- Komazec, B.; Cvjetko, P.; Balen, B.; Letofsky-Papst, I.; Lyons, D.M.; Peharec Štefanić, P. The Occurrence of Oxidative Stress Induced by Silver Nanoparticles in Chlorella vulgaris Depends on the Surface-Stabilizing Agent. Nanomaterials 2023, 13, 1967. [Google Scholar] [CrossRef] [PubMed]
- Nie, P.; Yu, Z.; Xu, H. Synthesis, applications, toxicity and toxicity mechanisms of silver nanoparticles: A review. Ecotoxicol. Environ. Saf. 2023, 253, 114636. [Google Scholar] [CrossRef]
- Rudi, L.; Cepoi, L.; Chiriac, T.; Miscu, V.; Valuta, A.; Djur, S. Effects of citrate-stabilized gold and silver nanoparticles on some safety parameters of Porphyridium cruentum biomass. Front. Bioeng. Biotechnol. 2023, 11, 1224945. [Google Scholar] [CrossRef]
- Dawadi, S.; Katuwal, S.; Gupta, A.; Lamichhane, U.; Thapa, R.; Jaisi, S.; Lamichhane, G.; Bhattarai, D.; Parajuli, N. Current Research on Silver Nanoparticles: Synthesis, Characterization, and Applications. J. Nanomater. 2021, 2021, 6687290. [Google Scholar] [CrossRef]
- Wang, F.; Liu, T.; Guan, W.; Xu, L.; Huo, S.; Ma, A.; Zhuang, G.; Terry, N. Development of a Strategy for Enhancing the Biomass Growth and Lipid Accumulation of Chlorella sp. UJ-3 Using Magnetic Fe3O4 Nanoparticles. Nanomaterials 2021, 11, 2802. [Google Scholar] [CrossRef]
- Decamp, A.; Martineau, E.; Grizeau, D.; Pruvost, J.; Gonçalves, O. Effects of the salinity on the biosynthesis of the polysaccharides of the marine microalgae Porphyridium cruentum. Algal Res. 2023, 71, 103089. [Google Scholar] [CrossRef]
- Vargas-Estrada, L.; Torres-Arellano, S.; Longoria, A.; Arias, D.M.; Okoye, P.U.; Sebastian, P.J. Role of nanoparticles on microalgal cultivation: A review. Fuel 2020, 280, 118598. [Google Scholar] [CrossRef]
- Sun, X.M.; Ren, L.J.; Zhao, Q.Y.; Ji, X.Y.; Huang, H. Microalgae for the production of lipid and carotenoids: A review with focus on stress regulation and adaptation. Biotechnol. Biofuels 2018, 11, 272. [Google Scholar] [CrossRef] [PubMed]
- Fazelian, N.; Movafeghi, A.; Yousefzadi, M.; Rahimzadeh, M.; Zarei, M. Impact of silver nanoparticles on the growth, fatty acid profile, and antioxidative response of Nannochloropsis oculata. Acta Physiol. Plant. 2020, 42, 126. [Google Scholar] [CrossRef]
- He, M.; Yan, Y.; Pei, F.; Wu, M.; Gebreluel, T.; Zou, S.; Wang, C. Improvement on lipid production by Scenedesmus obliquus triggered by low dose exposure to nanoparticles. Sci. Rep. 2021, 7, 15526. [Google Scholar] [CrossRef]
- Luo, S.W.; Alimujiang, A.; Cui, J.; Chen, T.T.; Balamurugan, S.; Zheng, J.W.; Wang, X.; Yang, W.D.; Li, H.Y. Molybdenum disulfide nanoparticles concurrently stimulated biomass and β-carotene accumulation in Dunaliella salina. Bioresour. Technol. 2021, 320, 124391. [Google Scholar] [CrossRef] [PubMed]
- Rana, M.S.; Bhushan, S.; Sudhakar, D.R.; Prajapati, S.K. Effect of iron oxide nanoparticles on growth and biofuel potential of Chlorella spp. Algal Res. 2020, 49, 101942. [Google Scholar] [CrossRef]
- Yuan, X.; Gao, X.; Liu, C.; Liang, W.; Xue, H.; Li, Z.; Jin, H. Application of Nanomaterials in the Production of Biomolecules in Microalgae: A Review. Mar. Drugs 2023, 21, 594. [Google Scholar] [CrossRef] [PubMed]
- Dey, N.; Vickram, S.; Thanigaivel, S.; Manikandan, S.; Subbaiya, R.; Karmegam, N.; Kim, W.; Govarthanan, M. Aftermath of nanomaterials on lipid profile of microalgae as a radical fuel supplement—A review. Fuel 2023, 333, 126444. [Google Scholar] [CrossRef]
- Tzanakis, N.; Aravantinou, A.F.; Manariotis, I.D. Short-Term Toxicity of ZnO Nanoparticles on Microalgae at Different Initial Nutrient Concentrations. Sustainability 2023, 15, 7853. [Google Scholar] [CrossRef]
- Johari, S.A.; Sarkheil, M.; Tayemeh, M.B.; Veisi, S. Influence of salinity on the toxicity of silver nanoparticles (AgNPs) and silver nitrate (AgNO3) in halophilic microalgae, Dunaliella salina. Chemosphere 2018, 209, 156–162. [Google Scholar] [CrossRef]
- Huang, Z.; Zhong, C.; Dai, J.; Li, S.; Zheng, M.; He, Y.; Wang, M.; Chen, B. Simultaneous enhancement on renewable bioactive compounds from Porphyridium cruentum via a novel two-stage cultivation. Algal Res. 2021, 55, 102270. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
Macroelements Composition, g/L | ||
---|---|---|
MM1 | MM2 | |
KCl | 16.04 | 7.5 |
NaCl | 12.52 | 7.0 |
KNO3 | 1.24 | - |
NaNO3 | - | 5.0 |
MgSO4·7H2O | 2.5 | 1.8 |
CaCl2 | 0.118 | - |
Ca(NO3)2·4H2O | - | 0.15 |
K2HPO4·3H2O | 0.5 | 0.2 |
KI | 0.05 | 0.05 |
KBr | 0.05 | 0.05 |
Total salts | 33.018 | 21.65 |
Cl | 15.19 | 7.82 |
N | 0.17 | 0.8 |
P | 0.16 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudi, L.; Cepoi, L.; Chiriac, T.; Djur, S.; Valuta, A.; Miscu, V. Effects of Silver Nanoparticles on the Red Microalga Porphyridium purpureum CNMN-AR-02, Cultivated on Two Nutrient Media. Mar. Drugs 2024, 22, 208. https://doi.org/10.3390/md22050208
Rudi L, Cepoi L, Chiriac T, Djur S, Valuta A, Miscu V. Effects of Silver Nanoparticles on the Red Microalga Porphyridium purpureum CNMN-AR-02, Cultivated on Two Nutrient Media. Marine Drugs. 2024; 22(5):208. https://doi.org/10.3390/md22050208
Chicago/Turabian StyleRudi, Ludmila, Liliana Cepoi, Tatiana Chiriac, Svetlana Djur, Ana Valuta, and Vera Miscu. 2024. "Effects of Silver Nanoparticles on the Red Microalga Porphyridium purpureum CNMN-AR-02, Cultivated on Two Nutrient Media" Marine Drugs 22, no. 5: 208. https://doi.org/10.3390/md22050208
APA StyleRudi, L., Cepoi, L., Chiriac, T., Djur, S., Valuta, A., & Miscu, V. (2024). Effects of Silver Nanoparticles on the Red Microalga Porphyridium purpureum CNMN-AR-02, Cultivated on Two Nutrient Media. Marine Drugs, 22(5), 208. https://doi.org/10.3390/md22050208