Marine Compounds and Age-Related Diseases: The Path from Pre-Clinical Research to Approved Drugs for the Treatment of Cardiovascular Diseases and Diabetes
Abstract
:1. Introduction
2. Marine Compounds and Cardiovascular Disease
2.1. Pre-Clinical In Vivo Studies on Marine Compounds for CVDs Treatment
Marine Compound | Source | CVD Model | Effects | Mechanisms | Positive Control | Ref. |
---|---|---|---|---|---|---|
Astaxanthin | Microalgae, crustaceans | Rat, high fat diet; Mice, ldlr−/− and Apoe−/−; Rabbits, Watanabe heritable hyperlipidemic | Anti-atherosclerotic, hypolipidemic, atherosclerotic plaque stabilization | Decrease macrophage infiltration decrease apoptosis, antioxidant | Atorvastatin | [27,29] |
Manzamine A | Sea sponge Acanthostrongylophora ingens | Mice, Apoe−/− | Anti-atherosclerotic, hypolipidemic | Inhibition of ACAT cholesterol esters decrease (macrophages), foam cell formation decrease | Absent | [37] |
Saponins | Sea cucumber | Mice, Apoe−/− | Anti-atherosclerotic, hypolipidemic | Regulation of hepatic cholesterol efflux, change in microbiota, anti-inflammatory | Simvastatin | [33,34] |
Saringosterol | Brown algae Sargassum fusiforme | Mice, Apoe−/− | Anti-atherosclerotic, hypolipidemic | LXRβ inhibition, cholesterol efflux increase, foam cell formation decrease, choloesterol catabolism increase | T0901317 (LXR agonist) | [42] |
Xyloketal B | Marine fungus Xylaria sp. | Mice, Apoe−/− | Anti-atherosclerotic, endothelial function improvement | Regulation of the Akt/eNOS pathway, decrease vascular oxidative stress | Simvastatin | [45] |
Mycoepoxydien | Marine fungus Diaporhte sp. | Mice, Apoe−/− | Anti-atherosclerotic | Foam cell formation decrease, NF-κB pathway inhibition, anti-inflammatory | Absent | [44] |
Asperlin | Marine fungus Aspergillus versicolor | Mice, Apoe−/− | Anti-atherosclerotic | Cholesterol efflux increase (macrophages), foam cell formation decrease, anti-inflammatory | Simvastatin | [43] |
Fascaplysin | Sponge Fascaplysinopsis | Mice, photochemically-induced thrombosis | Antithrombotic, antiplatelet | Inhibition of PI3K signalling and glycoprotein IIb/IIIa | Heparin | [54] |
Frondoside A | Sea cucumber Cucumaria frondosa | Mice, photochemically-induced thrombosis | Antithrombotic | Inhibition of PI3K/Akt signalling and glycoprotein IIb/IIIa | Clopidogrel | [53] |
Tachyplesin I | Crab Tachypleus tridentatus | Antithrombotic, antiplatelet | Regulation of PI3K/Akt signalling | n.a. | [55] | |
R-/S-2-(2-Hydroxypropanamido) benzoic acid (R-/S-HPABA) | Marine fungus Penicillium chrysogenum | Mice, collagen-epinephrine induced thrombosis; Rats, carotid artery-induced thrombosis | Antithrombotic, antiplatelet | COX1 inhibition, TXB2 decrease | Aspirin | [58] |
Echinochrome A | Sea urchins | Rat, middle cerebral artery occlusion model; Rats, myocardial ischemia-reperfusion model; Mice, coronary artery ligation | Cerebral infarct volume reduction, cardioprotective (reduced infarct size, heart fibrosis, remodeling and dysfunction) | Regulation of Akt/ERK pathway and BDNF, regulation of apoptosis and ferroptosis, antioxidant, prevent reactive sulfur species catabolism | Absent | [64,65,66] |
Fucoidan | Brown algae e.g., Saccharina japonica, Undaria pinnatifida | Hyperlipidemic mice, P407-induced; Mice, Apoeshl (spontaneously hyperlipidemic); Mice, ldlr−/−; Mice, photochemically-induced thrombosis; Rats, l-NAME-induced hypertensive; Mice, Apoe−/− | Anti-atherosclerotic, hypolipidemic, hepatic steatosis reduction, endothelium-protective, anti-thrombotic, anticoagulative, anti-hypertensive | Regulation of hepatic SREBP-2, PPARa pathway activation, antioxidant (inhibition of eNOS, NOX-4, ICAM-1, VCAM-1), PI3K/Akt/eNOS pathway activation, FGF and VEGF pathways regulation, inhibition of vascular cells proliferation, anti-inflammatory | Atorvastatin, probucol, heparin | [20,21,22,23,49,50,78] |
Sulphated glycans | Sea urchin Lytechinus variegatus, Echinometra lucunter | Rats, tromboplastin-induced thrombosis | Anti-thrombotic, anticoagulative | Unidentified | Heparin | [51] |
Potassium alginate | Brown algae | Rats, DOCA salt-induced hypertensive; Rats, spontaneously hypertensive | anti-hypertensive | Increased potassium levels and sodium excretion, decreased angiotensin II and natriuretic peptide levels, modulation of gut microbiota | KCl, captopril | [79,82] |
Sodium alginate | Brown algae Saccharina japonica | Rats, spontaneously hypertensive; Rats, salt-induced; Rats, renovascular hypertensive (2K1C) | Anti-hypertensive, prevent kidney damage, reduced cardiac fibrosis | Decrease fractional sodium excretion, modulation of gut barrier | Absent | [80,81,83] |
Protease | Marine worm Sipunculus nudus | Rats, FeCl3-induced thrombosis | Antithrombosis, anticoagulant | Fibrinolytic and fibrinogenolytic activities | Urokinase | [60] |
Salmon protein hydrolysate | Fish (salmon) | Mice, Apoe−/− | Anti-atherosclerotic | Anti-inflammatory | Absent | [48] |
Peptides | Brown algae Undaria pinnatifida, Sea bream scale, Tuna dark muscle, Tunicate Styela clava, Sea cucumber Acaudina molpadioidea, Tuna frame, Red algae Gracilariopsis lemaneiformis | Rats, spontaneously hypertensive | Anti-hypertensive | ACE inhibition | Captopril, enalapril | [71,72,73,74,75,76,77] |
EPA | Fish | Rabbits, myocardial ischemia-reperfusion model | Cardioprotective (reduced infarct size) | Opening Ca-activated K channels | Absent | [84] |
DHA | Fish | Pigs, myocardial ischemia-reperfusion model | Cardioprotective (reduced infarct size, reduced mortality) | n.a. | Absent | [85] |
Omega-3 PUFA | Fish | Rats, myocardial ischemia-reperfusion model | Cardioprotective (reduced infarct size) | Activation of Akt pathway, reduced apoptosis | [86] | |
EPA or DHA | Fish | Rats, myocardial ischemia-reperfusion model | Cardioprotective (reduced infarct size) | Activation of Akt pathway, reduced caspase-3-activity, inhibition of mPTP channel opening | [87] | |
Omega-3 PUFA | Krill | Rats, myocardial ischemia induction | Cardioprotective (reduced left ventricle remodeling and hyperthrophy) | Anti-inflammatory | Absent | [62] |
Extract | Brown algae Eisenia bicyclis | Rats, arteriovenous (AV)-shunt model | Antithrombotic, antiplatelet | P2Y12 signaling inhibition, PI3K/Akt signalling inhibition, integrin αIIbβ3 signalling inhibition | Absent | [59] |
2.2. Marine Compounds under Clinical Trial for CVDs Treatment
2.3. Marine Compounds Approved for CVDs Prevention
3. Marine Compounds and Type 2 Diabetes Mellitus
3.1. Pre-Clinical Studies on Marine Compounds for T2DM Treatment
Marine Compound | Source | Diabetic Model | Effects | Mechanisms | Positive Control | Ref. |
---|---|---|---|---|---|---|
Extract | Brown algae Petalonia binghamiae | Mice, stz-induced | Hypoglicemic, glucose tolerance increase | Pparg, glut4 and irs upregulation (adipocytes) | Rosiglitazone | [107] |
Extract | Brown algae Padina arborescens | Mice, stz-induced | Hypoglicemic | A-glucosidase and α-amylase inhibition | Acarbose | [108] |
Methanolic extract | Brown algae Sargassum coreanum | Db/db mice | Hypoglicemic, insulin response increase, hypolipidemic | Regulation of hepatic glycogen metabolism (↑ gck, ↓ g6pase, ↓ pepck, ↑ glicogen) | Rosiglitazone | [112] |
Methanolic extract | Brown algae Sargassum yezoense | Db/db mice | Hypoglicemic, hypolipidemic | ↓ g6pase (liver), Pparg, ucp3 and adiponectin upregulation (white fat) | Rosiglitazone | [113] |
Water/ethanolic extracts | Brown algae Sargassum polycistum | Rats, stz-induced | Hypoglicemic, insulin response increase, hypolipidemic, liver, kidney and pancrease damage decrease | n.a. | Metformin | [114,115] |
Extract | Green algae Ulva rigida | Rats, stz-induced | Hypoglicemic, hypolipidemic | Antioxidant | [116] | |
Methanolic extract (polyphenols-rich) | Brown algae Ecklonia stolonifera | kk-a(y) mice | Hypoglicemic | A-glucosidase inhibition, radical scavenging | Absent | [117] |
Powder | Brown algae Ecklonia cava | Mice, stz-induced | Hypoglicemic, insulinotrophic (β-cell preservation, insulin secretion increase), hypolipidemic, liver steatosis improvement | Absent | [118] | |
Methanolic extract | Brown algae Ecklonia cava | Rats, stz-induced | Hypoglicemic, insulin production increase | Ampk and akt signalling activation | Absent | [119] |
Dieckol-rich extract | Brown algae Ecklonia cava | db/db mice | Hypoglicemic, glucose tolerance increase, hypolipidemic | Regulation of hepatic glycogen metabolism (↑ gck, ↓ g6pase, ↓ pepck), antioxidant | Rosiglitazone | [109] |
Methanolic extract | Soft coral Sinularia erecta | Rats, stz-induced | Hypoglicemic | Metformin | [110] | |
Extract | Seagrass Posidonia oceanica | Rats, alloxan-induced | Hypoglicemic, vasoprotective | Absent | [111] | |
Dieckol | Brown algae Ecklonia cava | Mice, stz-induced; zebrafish, alloxan-induced; db/db mice | Hypoglicemic | A-glucosidase and α-amylase inhibition, regulation of hepatic glycogen metabolism (↓ g6pase, ↓ pepck), ampk and akt signalling activation, antioxidant | Acarbose, metformin | [122,123,124] |
Diphlorethohydroxycarmalol (DPHC) | Brown algae Ishige okamurae | Mice, Stz-induced | Hypoglicemic | A-glucosidase and α-amylase inhibition | Acarbose | [125] |
Fucoxanthin | Brown algae Undaria pinnatifida Laminaria japonica | Mice, high fat diet-induced obese; kk-a(y) mice; db/db mice | Hypoglicemic, hypolipidemic, hypoglicemic, hyperinsulinemia suppression, hypolipidemic, insulin resistance improvement, pancreas damage decrease | Akt and ampk signalling activation, IR signalling activation, glut4 increase, adipocytokine reduction, regulation of glycogen metabolism (↑ gck, ↓ pepck, ↓ gsk3β, ↑ gsy) | Metformin | [127,128,129,130] |
Fucoidan | Brown algae spp. | Db/db mice; gk rats; mice, stz-induced | Hypoglicemic, serum insulin decrease, pancreas damage decrease, glycosilated hb decrease | Camp pathway activation, sirt-1 activation, ampk/gapdh/pdx-1 signaling activation, α-glucosidase and α-amylase inhibition, NF-κb signaling inhibition, microbiota changes | Metformin, acarbose | [131,132,133,134,135,136,137,138,139] |
Polysaccharides | Brown algae Laminaria japonica | Mice, alloxan-induced | Hypoglicemic, increased insulin levels, hypolipidemic | Glibenclamide | [140,141] | |
Brown algae Undaria pinnatifida | Rats | Hypoglicemic, glucose tolerance increase, insulin sensitivity increase, liver and kidney damage decrease | Microbiota changes, AKT signalling activation, regulation of glycogen metabolism (↓ G6Pase, ↓ PEPCK) | [142] | ||
Red algae Gracilaria lemaneiformis | Mice, alloxan-induced | Hypoglicemic, kidney damage repair | Antioxidant | Acarbose | [143] | |
Green algae Enteromorpha prolifera | Rats, stz-induced | Hypoglicemic, insulin sensitivity increase, pancreatic β-cells increase | ↑GCK ↑ IR (liver), ↑ GLUT4 and adiponectin (adipose tissue) | Metformin | [144] | |
Sulfated polysaccharides | Brown algae Undaria pinnatifida | Mice, stz-induced | Hypoglicemic, glucose tolerance increase, insulin sensitivity increase, pancreatic islet preservation, liver steatosis decrease | Acarbose | [145] | |
Sulphated galactofucan | Brown algae Undaria pinnatifida | Mice, stz-induced | Slight hypoglicemic, slight hypolipidemic | Microbiota changes | Absent | [146] |
Butyl-isobutyl-phthalate | Brown algae Laminaria japonica | Rats, stz-induced | Hypoglicemic | α-glucosidase inhibition | [147] | |
Octaphlorethol A | Brown algae Ishige foliacea | db/db mice | Hypoglicemic, improve glucose tolerance | AMPK and Akt signalling activation, ↑ GLUT4, regulation of glycogen metabolism (↓ G6Pase, ↓ PEPCK) | Absent | [148] |
Bromophenol derivatives | Red algae Rhodomela confervoides | Rats, stz-induced | Hypoglicemic | Ptp1b inhibition | Absent | [149] |
HPN (synthetic bromophenol derivative) | Red algae Rhodomela confervoides | db/db mice | Hypoglicemic, hypolipidemic | PTP1B inhibition | Rosiglitazone | [150] |
Fucosterol | Brown algae Pelvetia siliquosa | Rats, stz-induced | Hypoglicemic | Aldose reductase and PTP1B inhibition | Metformin | [151,152] |
Oligopeptides | Salmon skin Oncorhynchus kern | Rats, stz-induced | Hypoglicemic, Β-cell apoptosis decrease | Anti-inflammatory Antioxidant | Absent | [153] |
Protein hydrolysate | Octopus muscle Octopus vulgaris | Rat, alloxan-induced | Hypoglicemic, insulin production increase, pancreas and liver damage decrease, hypolipidemic | A-amylase inhibition | Acarbose | [154] |
Collagen peptides | Fish bone Harpadon nehereus | Mice, stz-induced | Hypoglicemic, insulin secretion increase, pancreas and liver damage decrease | Regulation of hepatic glycogen metabolism (↑ gck, ↑ gsk3β,↓ pepck, ↓ g6pase, ↑ glycogen) | Metformin | [155] |
S-8300 | Shark liver Squalus mitsukurii | Mice, stz-induced | Hypoglicemic, pancreatic islet damage decrease, hypolipidemic | Antioxidant | Glibenclamide | [156] |
APSL (active peptide from shark liver) | Shark liver Chiloscyllium plagiosum | Mice, stz-induced | Hypoglicemic, insulin secretion and sensitivity increase, pancreatic islet preservation, hypolipidemic, liver steatosis decrease, pancreas, liver and kidney damage decrease | Anti-inflammatory | Metformin | [157] |
3.2. Marine Compounds under Clinical Trial for T2DM Treatment
4. Discussion
5. Material and Methods
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Campisi, J.; Kapahi, P.; Lithgow, G.J.; Melov, S.; Newman, J.C.; Verdin, E. From Discoveries in Ageing Research to Therapeutics for Healthy Ageing. Nature 2019, 571, 183–192. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Decade of Healthy Ageing: Baseline Report; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Mayer, A.M.S.; Pierce, M.L.; Howe, K.; Rodríguez, A.D.; Taglialatela-Scafati, O.; Nakamura, F.; Fusetani, N. Marine Pharmacology in 2018: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Pharmacol. Res. 2022, 183, 106391. [Google Scholar] [CrossRef] [PubMed]
- Cappello, E.; Nieri, P. From Life in the Sea to the Clinic: The Marine Drugs Approved and under Clinical Trial. Life 2021, 11, 1390. [Google Scholar] [CrossRef] [PubMed]
- Einarson, T.R.; Acs, A.; Ludwig, C.; Panton, U.H. Prevalence of Cardiovascular Disease in Type 2 Diabetes: A Systematic Literature Review of Scientific Evidence from across the World in 2007–2017. Cardiovasc. Diabetol. 2018, 17, 83. [Google Scholar] [CrossRef] [PubMed]
- North, B.J.; Sinclair, D.A. The Intersection between Aging and Cardiovascular Disease. Circ. Res. 2012, 110, 1097–1108. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Available online: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates (accessed on 29 February 2024).
- Engbers, M.J.; van Hylckama Vlieg, A.; Rosendaal, F.R. Venous Thrombosis in the Elderly: Incidence, Risk Factors and Risk Groups. J. Thromb. Haemost. 2010, 8, 2105–2112. [Google Scholar] [CrossRef] [PubMed]
- Fadah, K.; Hechanova, A.; Mukherjee, D. Epidemiology, Pathophysiology, and Management of Coronary Artery Disease in the Elderly. Int. J. Angiol. 2022, 31, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Qu, C.; Liao, S.; Zhang, J.; Cao, H.; Zhang, H.; Zhang, N.; Yan, L.; Cui, G.; Luo, P.; Zhang, Q.; et al. Burden of Cardiovascular Disease among Elderly: Based on the Global Burden of Disease Study 2019. Eur. Hear. J.-Qual. Care Clin. Outcomes 2024, 10, 143–153. [Google Scholar] [CrossRef]
- Buford, T.W. Hypertension and Aging. Ageing Res. Rev. 2016, 26, 96–111. [Google Scholar] [CrossRef]
- Santos, A.L.; Sinha, S. Obesity and Aging: Molecular Mechanisms and Therapeutic Approaches. Ageing Res. Rev. 2021, 67, 101268. [Google Scholar] [CrossRef] [PubMed]
- Polonia, J.; Marques, J.; Lobo, M.; Vaz, I.; Oliveira, B. Frequency and Impact of Adverse Drug Reactions Induced by Cardiovascular Drugs and Affecting Cardiovascular System: A National 10 years of Surveillance. J. Hypertens. 2021, 39, e158. [Google Scholar] [CrossRef]
- Dwivedi, R.; Pomin, V.H. Marine Antithrombotics. Mar. Drugs 2020, 18, 514. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Cai, X.-Y.; Gu, N. Marine Natural Products and Coronary Artery Disease. Front. Cardiovasc. Med. 2021, 8, 739932. [Google Scholar] [CrossRef] [PubMed]
- Akram, W.; Rihan, M.; Ahmed, S.; Arora, S.; Ahmad, S.; Vashishth, R. Marine-Derived Compounds Applied in Cardiovascular Diseases: Submerged Medicinal Industry. Mar. Drugs 2023, 21, 193. [Google Scholar] [CrossRef]
- Patil, N.P.; Le, V.; Sligar, A.D.; Mei, L.; Chavarria, D.; Yang, E.Y.; Baker, A.B. Algal Polysaccharides as Therapeutic Agents for Atherosclerosis. Front. Cardiovasc. Med. 2018, 5, 153. [Google Scholar] [CrossRef]
- Cao, Q.; Zhao, J.; Xing, M.; Xiao, H.; Zhang, Q.; Liang, H.; Ji, A.; Song, S. Current Research Landscape of Marine-Derived Anti-Atherosclerotic Substances. Mar. Drugs 2020, 18, 440. [Google Scholar] [CrossRef]
- Park, J.; Yeom, M.; Hahm, D.-H. Fucoidan Improves Serum Lipid Levels and Atherosclerosis through Hepatic SREBP-2-Mediated Regulation. J. Pharmacol. Sci. 2016, 131, 84–92. [Google Scholar] [CrossRef]
- Yokota, T.; Nomura, K.; Nagashima, M.; Kamimura, N. Fucoidan Alleviates High-Fat Diet-Induced Dyslipidemia and Atherosclerosis in ApoEShl Mice Deficient in Apolipoprotein E Expression. J. Nutr. Biochem. 2016, 32, 46–54. [Google Scholar] [CrossRef]
- Wang, X.; Pei, L.; Liu, H.; Qv, K.; Xian, W.; Liu, J.; Zhang, G. Fucoidan Attenuates Atherosclerosis in LDLR−/− Mice through Inhibition of Inflammation and Oxidative Stress. Int. J. Clin. Exp. Pathol. 2016, 9, 6896–6904. [Google Scholar]
- Xu, Y.; Zhu, W.; Wang, T.; Jin, L.; Liu, T.; Li, X.; Guan, Z.; Jiang, Z.; Meng, X.; Wang, J.; et al. Low Molecule Weight Fucoidan Mitigates Atherosclerosis in ApoE (−/−) Mouse Model through Activating Multiple Signal Pathway. Carbohydr. Polym. 2019, 206, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Gao, L.; Zhou, H.; Ai, C.; Huang, X.; Wang, M.; Zhang, Y.; Zhao, C. Opportunities and Challenges of Algal Fucoidan for Diabetes Management. Trends Food Sci. Technol. 2021, 111, 628–641. [Google Scholar] [CrossRef]
- Elwakil, B.H.; Hamed, M.T.; Paudel, K.R. Recent insights of fucoidan probiotic and its effect on gut microbiota. Excli. J. 2023, 22, 556–558. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Hu, B.; Xiao, H.; Yang, Q.; Cao, Q.; Li, X.; Zhang, Q.; Ji, A.; Song, S. Fucoidan Reduces Lipid Accumulation by Promoting Foam Cell Autophagy via TFEB. Carbohydr. Polym. 2021, 268, 118247. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Salwe, K.J.; Kumarappan, M. Evaluation of Antioxidant, Hypolipidemic, and Antiatherogenic Property of Lycopene and Astaxanthin in Atherosclerosis-Induced Rats. Pharmacogn. Res. 2017, 9, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.K.; King, T.J.; Fujioka, K.; Pattison, J.; Pashkow, F.J.; Tsimikas, S. Effect of an Oral Astaxanthin Prodrug (CDX-085) on Lipoprotein Levels and Progression of Atherosclerosis in LDLR−/− and ApoE−/− Mice. Atherosclerosis 2012, 222, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Hellsten, A.; Jacobsson, L.S.; Blomqvist, H.M.; Olsson, A.G.; Yuan, X.-M. Alpha-Tocopherol and Astaxanthin Decrease Macrophage Infiltration, Apoptosis and Vulnerability in Atheroma of Hyperlipidaemic Rabbits. J. Mol. Cell. Cardiol. 2004, 37, 969–978. [Google Scholar] [CrossRef] [PubMed]
- Goto, S.; Kogure, K.; Abe, K.; Kimata, Y.; Kitahama, K.; Yamashita, E.; Terada, H. Efficient Radical Trapping at the Surface and inside the Phospholipid Membrane Is Responsible for Highly Potent Antiperoxidative Activity of the Carotenoid Astaxanthin. Biochim. Biophys. Acta-Biomembr. 2001, 1512, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Nishida, Y.; Nawaz, A.; Hecht, K.; Tobe, K. Astaxanthin as a Novel Mitochondrial Regulator: A New Aspect of Carotenoids, beyond Antioxidants. Nutrients 2022, 14, 107. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Baker, J.S.; Davison, G.W.; Xu, S.; Zhou, Y.; Bao, X. Astaxanthin Promotes Mitochondrial Biogenesis and Antioxidant Capacity in Chronic High-Intensity Interval Training. Eur. J. Nutr. 2023, 62, 1453–1466. [Google Scholar] [CrossRef]
- Ding, L.; Zhang, T.-T.; Che, H.-X.; Zhang, L.-Y.; Xue, C.-H.; Chang, Y.-G.; Wang, Y.-M. Saponins of Sea Cucumber Attenuate Atherosclerosis in ApoE−/− Mice via Lipid-Lowering and Anti-Inflammatory Properties. J. Funct. Foods 2018, 48, 490–497. [Google Scholar] [CrossRef]
- Han, Q.-A.; Jia, S.; Li, K.; Sui, Y.; Hong, H.; Dong, X.; Luo, Y.; Zhu, B. Thelenota Ananas Saponin Extracts Attenuate the Atherosclerosis in ApoE−/− Mice by Modulating Lipid Metabolism. J. Funct. Foods 2019, 58, 238–247. [Google Scholar] [CrossRef]
- Mugford, S.T.; Osbourn, A. Saponin Synthesis and Function; Springer: New York, NY, USA, 2013; ISBN 9781461440635. [Google Scholar]
- Jia, Y.; Li, Z.-Y.; Zhang, H.-G.; Li, H.-B.; Liu, Y.; Li, X.-H. Panax Notoginseng Saponins Decrease Cholesterol Ester via Up-Regulating ATP-Binding Cassette Transporter A1 in Foam Cells. J. Ethnopharmacol. 2010, 132, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Eguchi, K.; Fujiwara, Y.; Hayashida, A.; Horlad, H.; Kato, H.; Rotinsulu, H.; Losung, F.; Mangindaan, R.E.P.; De Voogd, N.J.; Takeya, M.; et al. Manzamine A, a Marine-Derived Alkaloid, Inhibits Accumulation of Cholesterol Ester in Macrophages and Suppresses Hyperlipidemia and Atherosclerosis in Vivo. Bioorganic Med. Chem. 2013, 21, 3831–3838. [Google Scholar] [CrossRef] [PubMed]
- Kubota, T.; Kurimoto, S.-I.; Kobayashi, J. The Manzamine Alkaloids. Alkaloids Chem. Biol. 2020, 84. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.-C.; Kuo, T.-T.; Chang, H.-Y.; Liu, W.-S.; Hsia, S.-M.; Huang, T.-C. Manzamine a Exerts Anticancer Activity against Human Colorectal Cancer Cells. Mar. Drugs 2018, 16, 252. [Google Scholar] [CrossRef] [PubMed]
- Mirra, S.; Marfany, G. From Beach to the Bedside: Harnessing Mitochondrial Function in Human Diseases Using New Marine-Derived Strategies. Int. J. Mol. Sci. 2024, 25, 834. [Google Scholar] [CrossRef] [PubMed]
- Budzyński, J.; Wiśniewska, J.; Ciecierski, M.; Kedzia, A. Association between Bacterial Infection and Peripheral Vascular Disease: A Review. Int. J. Angiol. 2015, 25, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Niu, Z.; Wang, B.; Zhao, S.; Sun, C.; Wu, Y.; Li, Y.; Ying, H.; Liu, H. Saringosterol from Sargassum fusiforme Modulates Cholesterol Metabolism and Alleviates Atherosclerosis in ApoE-Deficient Mice. Mar. Drugs 2021, 19, 485. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, R.; Liu, D.; Wu, C.; Guo, P.; Lin, W. Asperlin Inhibits LPS-Evoked Foam Cell Formation and Prevents Atherosclerosis in ApoE−/− Mice. Mar. Drugs 2017, 15, 358. [Google Scholar] [CrossRef]
- Xia, X.; Li, Y.; Su, Q.; Huang, Z.; Shen, Y.; Li, W.; Yu, C. Inhibitory Effects of Mycoepoxydiene on Macrophage Foam Cell Formation and Atherosclerosis in ApoE-Deficient Mice. Cell Biosci. 2015, 5, 23. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.-Y.; Li, J.; Yuan, F.; Li, M.; Zhang, Q.; Huang, Y.-Y.; Pang, J.-Y.; Zhang, B.; Sun, F.-Y.; Sun, H.-S.; et al. Xyloketal B Attenuates Atherosclerotic Plaque Formation and Endothelial Dysfunction in Apolipoprotein E Deficient Mice. Mar. Drugs 2015, 13, 2306–2326. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-L.; Qian, Y.; Meng, W.-F.; Pang, J.-Y.; Lin, Y.-C.; Guan, Y.-Y.; Chen, S.-P.; Liu, J.; Pei, Z.; Wang, G.-L. A Novel Marine Compound Xyloketal B Protects against Oxidized LDL-Induced Cell Injury in Vitro. Biochem. Pharmacol. 2009, 78, 941–950. [Google Scholar] [CrossRef] [PubMed]
- Vitale, R.M.; D’aniello, E.; Gorbi, S.; Martella, A.; Silvestri, C.; Giuliani, M.E.; Fellous, T.; Gentile, A.; Carbone, M.; Cutignano, A.; et al. Fishing for Targets of Alien Metabolites: A Novel Peroxisome Proliferator-Activated Receptor (PPAR) Agonist from a Marine Pest. Mar. Drugs 2018, 16, 431. [Google Scholar] [CrossRef] [PubMed]
- Parolini, C.; Vik, R.; Busnelli, M.; Bjørndal, B.; Holm, S.; Brattelid, T.; Manzini, S.; Ganzetti, G.S.; Dellera, F.; Halvorsen, B.; et al. A Salmon Protein Hydrolysate Exerts Lipid-Independent Anti-Atherosclerotic Activity in ApoE-Deficient Mice. PLoS ONE 2014, 9, e97598. [Google Scholar] [CrossRef] [PubMed]
- Thorlacius, H.; Vollmar, B.; Seyfert, U.T.; Vestweber, D.; Menger, M.D. The Polysaccharide Fucoidan Inhibits Microvascular Thrombus Formation Independently from P- and L-Selectin Function in Vivo. Eur. J. Clin. Investig. 2000, 30, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Nambu, M.; Ishizuka, T.; Hattori, H.; Kanatani, Y.; Takase, B.; Kishimoto, S.; Amano, Y.; Aoki, H.; Kiyosawa, T.; et al. Effect of Controlled Release of Fibroblast Growth Factor-2 from Chitosan/Fucoidan Micro Complex-Hydrogel on in Vitro and in Vivo Vascularization. J. Biomed. Mater. Res. Part A 2008, 85, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, A.A.; Sucupira, I.D.; Guedes, A.L.; Queiroz, I.N.; Frattani, F.S.; Fonseca, R.J.; Pomin, V.H. Anticoagulant and Antithrombotic Properties of Three Structurally Correlated Sea Urchin Sulfated Glycans and Their Low-Molecular-Weight Derivatives. Mar. Drugs 2018, 16, 304. [Google Scholar] [CrossRef] [PubMed]
- Farias, W.R.L.; Valente, A.-P.; Pereira, M.S.; Mourão, P.A.S. Structure and Anticoagulant Activity of Sulfated Galactans. Isolation of a Unique Sulfated Galactan from the Red Algae Botryocladia Occidentalis and Comparison of Its Anticoagulant Action with That of Sulfated Galactans from Invertebrates. J. Biol. Chem. 2000, 275, 29299–29307. [Google Scholar] [CrossRef]
- Ampofo, E.; Später, T.; Nalbach, L.; Menger, M.D.; Laschke, M.W. The Marine-Derived Triterpenoid Frondoside A Inhibits Thrombus Formation. Mar. Drugs 2020, 18, 111. [Google Scholar] [CrossRef]
- Ampofo, E.; Später, T.; Müller, I.; Eichler, H.; Menger, M.D.; Laschke, M.W. The Marine-Derived Kinase Inhibitor Fascaplysin Exerts Anti-Thrombotic Activity. Mar. Drugs 2015, 13, 6774–6791. [Google Scholar] [CrossRef]
- Li, H.; Liu, B.; Wu, J.; Yu, H.; Huang, H.; Chen, X.; Chen, B.; Wu, S.; Ma, J.; Liu, W.; et al. The Inhibitory Effect of Tachyplesin I on Thrombosis and Its Mechanisms. Chem. Biol. Drug Des. 2019, 94, 1672–1679. [Google Scholar] [CrossRef] [PubMed]
- Aminin, D.L.; Agafonova, I.G.; Kalinin, V.I.; Silchenko, A.S.; Avilov, S.A.; Stonik, V.A.; Collin, P.D.; Woodward, C. Immunomodulatory Properties of Frondoside A, a Major Triterpene Glycoside from the North Atlantic Commercially Harvested Sea Cucumber Cucumaria Frondosa. J. Med. Food 2008, 11, 443–453. [Google Scholar] [CrossRef]
- Beristain-Covarrubias, N.; Perez-Toledo, M.; Thomas, M.R.; Henderson, I.R.; Watson, S.P.; Cunningham, A.F. Understanding Infection-Induced Thrombosis: Lessons Learned from Animal Models. Front. Immunol. 2019, 10, 473478. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, D.; Zhang, M.; Zhao, Y.; Yu, Z. Studies on New Activities of Enantiomers of 2-(2-Hydroxypropanamido) Benzoic Acid: Antiplatelet Aggregation and Antithrombosis. PLoS ONE 2017, 12, e0170334. [Google Scholar] [CrossRef] [PubMed]
- Irfan, M.; Kwon, T.-H.; Yun, B.-S.; Park, N.-H.; Rhee, M.H. Eisenia bicyclis (Brown Alga) Modulates Platelet Function and Inhibits Thrombus Formation via Impaired P2Y12 Receptor Signaling Pathway. Phytomedicine 2018, 40, 79–87. [Google Scholar] [CrossRef]
- Ge, Y.-H.; Chen, Y.-Y.; Zhou, G.-S.; Liu, X.; Tang, Y.-P.; Liu, R.; Liu, P.; Li, N.; Yang, J.; Wang, J.; et al. A Novel Antithrombotic Protease from Marine Worm Sipunculus Nudus. Int. J. Mol. Sci. 2018, 19, 3023. [Google Scholar] [CrossRef] [PubMed]
- Desnoyers, M.; Gilbert, K.; Rousseau, G. Cardioprotective Effects of Omega-3 Polyunsaturated Fatty Acids: Dichotomy between Experimental and Clinical Studies. Mar. Drugs 2018, 16, 234. [Google Scholar] [CrossRef]
- Fosshaug, L.E.; Berge, R.K.; Beitnes, J.O.; Berge, K.; Vik, H.; Aukrust, P.; Gullestad, L.; Vinge, L.E.; Oie, E. Krill Oil Attenuates Left Ventricular Dilatation after Myocardial Infarction in Rats. Lipids Health Dis. 2011, 10, 245. [Google Scholar] [CrossRef]
- Mason, R.P.; Libby, P.; Bhatt, D.L. Emerging Mechanisms of Cardiovascular Protection for the Omega-3 Fatty Acid Eicosapentaenoic Acid. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 1135–1147. [Google Scholar] [CrossRef]
- Tang, X.; Nishimura, A.; Ariyoshi, K.; Nishiyama, K.; Kato, Y.; Vasileva, E.A.; Mishchenko, N.P.; Fedoreyev, S.A.; Stonik, V.A.; Kim, H.-K.; et al. Echinochrome Prevents Sulfide Catabolism-Associated Chronic Heart Failure after Myocardial Infarction in Mice. Mar. Drugs 2023, 21, 52. [Google Scholar] [CrossRef]
- Kim, R.; Hur, D.; Kim, H.K.; Han, J.; Mishchenko, N.P.; Fedoreyev, S.A.; Stonik, V.A.; Chang, W. Echinochrome A Attenuates Cerebral Ischemic Injury through Regulation of Cell Survival after Middle Cerebral Artery Occlusion in Rat. Mar. Drugs 2019, 17, 501. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.-W.; Park, J.-H.; Park, B.-W.; Kim, H.; Kim, J.-J.; Sim, W.-S.; Mishchenko, N.P.; Fedoreyev, S.A.; Vasileva, E.A.; Ban, K.; et al. Histochrome Attenuates Myocardial Ischemia-Reperfusion Injury by Inhibiting Ferroptosis-Induced Cardiomyocyte Death. Antioxidants 2021, 10, 1624. [Google Scholar] [CrossRef] [PubMed]
- Song, B.-W.; Kim, S.; Kim, R.; Jeong, S.; Moon, H.; Kim, H.; Vasileva, E.A.; Mishchenko, N.P.; Fedoreyev, S.A.; Stonik, V.A.; et al. Regulation of Inflammation-Mediated Endothelial to Mesenchymal Transition with Echinochrome a for Improving Myocardial Dysfunction. Mar. Drugs 2022, 20, 756. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.H.; Kim, H.K.; Song, I.-S.; Noh, S.J.; Marquez, J.; Ko, K.S.; Rhee, B.D.; Kim, N.; Mishchenko, N.P.; Fedoreyev, S.A.; et al. Echinochrome a Increases Mitochondrial Mass and Function by Modulating Mitochondrial Biogenesis Regulatory Genes. Mar. Drugs 2014, 12, 4602–4615. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.H.; Kim, H.K.; Song, I.-S.; Lee, S.J.; Ko, K.S.; Rhee, B.D.; Kim, N.; Mishchenko, N.P.; Fedoryev, S.A.; Stonik, V.A.; et al. Echinochrome a Protects Mitochondrial Function in Cardiomyocytes against Cardiotoxic Drugs. Mar. Drugs 2014, 12, 2922–2936. [Google Scholar] [CrossRef] [PubMed]
- Wijesekara, I.; Kim, S.-K. Angiotensin-I-Converting Enzyme (ACE) Inhibitors from Marine Resources: Prospects in the Pharmaceutical Industry. Mar. Drugs 2010, 8, 1080–1093. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.-J.; Je, J.-Y.; Kim, S.-K. Antihypertensive Effect of Angiotensin I Converting Enzyme-Inhibitory Peptide from Hydrolysates of Bigeye Tuna Dark Muscle, Thunnus Obesus. J. Agric. Food Chem. 2007, 55, 8398–8403. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; Qian, Z.-J.; Kim, S.-K. A Novel Angiotensin I Converting Enzyme Inhibitory Peptide from Tuna Frame Protein Hydrolysate and Its Antihypertensive Effect in Spontaneously Hypertensive Rats. Food Chem. 2010, 118, 96–102. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, B.; Dong, S.; Liu, Z.; Zhao, X.; Wang, J.; Zeng, M. A Novel ACE Inhibitory Peptide Isolated from Acaudina molpadioidea Hydrolysate. Peptides 2009, 30, 1028–1033. [Google Scholar] [CrossRef]
- Deng, Z.; Liu, Y.; Wang, J.; Wu, S.; Geng, L.; Sui, Z.; Zhang, Q. Antihypertensive Effects of Two Novel Angiotensin I-Converting Enzyme (Ace) Inhibitory Peptides from Gracilariopsis lemaneiformis (Rhodophyta) in Spontaneously Hypertensive Rats (SHRs). Mar. Drugs 2018, 16, 299. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Hosokawa, T.; Yamaguchi, T.; Nakano, T.; Muramoto, K.; Kahara, T.; Funayama, K.; Kobayashi, A.; Nakano, T. Angiotensin I-Converting Enzyme Inhibitory Peptides Derived from Wakame (Undaria pinnatifida) and Their Antihypertensive Effect in Spontaneously Hypertensive Rats. J. Agric. Food Chem. 2002, 50, 6245–6252. [Google Scholar] [CrossRef] [PubMed]
- Fahmi, A.; Morimura, S.; Guo, H.C.; Shigematsu, T.; Kida, K.; Uemura, Y. Production of Angiotensin I Converting Enzyme Inhibitory Peptides from Sea Bream Scales. Process Biochem. 2004, 39, 1195–1200. [Google Scholar] [CrossRef]
- Ko, S.-C.; Kim, D.G.; Han, C.-H.; Lee, Y.J.; Lee, J.-K.; Byun, H.-G.; Lee, S.-C.; Park, S.-J.; Lee, D.-H.; Jeon, Y.-J. Nitric Oxide-Mediated Vasorelaxation Effects of Anti-Angiotensin I-Converting Enzyme (ACE) Peptide from Styela Clava Flesh Tissue and Its Anti-Hypertensive Effect in Spontaneously Hypertensive Rats. Food Chem. 2012, 134, 1141–1145. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, J.; Li, Z.; Sang, Y.; Niu, Y.; Zhang, Q.; Ding, H.; Yin, S. Fucoidan from: Undaria pinnatifida Prevents Vascular Dysfunction through PI3K/Akt/ENOS-Dependent Mechanisms in the l-NAME-Induced Hypertensive Rat Model. Food Funct. 2016, 7, 2398–2408. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-Y.; Ji, W.; Du, J.-R.; Yu, D.-K.; He, Y.; Yu, C.-X.; Li, D.-S.; Zhao, C.-Y.; Qiao, K.-Y. Preventive Effects of Low Molecular Mass Potassium Alginate Extracted from Brown Algae on DOCA Salt-Induced Hypertension in Rats. Biomed. Pharmacother. 2010, 64, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Ueno, M.; Tamura, Y.; Toda, N.; Yoshinaga, M.; Terakado, S.; Otsuka, K.; Numabe, A.; Kawabata, Y.; Murota, I.; Sato, N.; et al. Sodium Alginate Oligosaccharides Attenuate Hypertension in Spontaneously Hypertensive Rats Fed a Low-Salt Diet. Clin. Exp. Hypertens. 2012, 34, 305–310. [Google Scholar] [CrossRef]
- Terakado, S.; Ueno, M.; Tamura, Y.; Toda, N.; Yoshinaga, M.; Otsuka, K.; Numabe, A.; Kawabata, Y.; Murota, I.; Sato, N.; et al. Sodium Alginate Oligosaccharides Attenuate Hypertension and Associated Kidney Damage in Dahl Salt-Sensitive Rats Fed a High-Salt Diet. Clin. Exp. Hypertens. 2012, 34, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.-L.; Chen, M.; Fu, X.-D.; Yang, M.; Hrmova, M.; Zhao, Y.-H.; Mou, H.-J. Potassium Alginate Oligosaccharides Alter Gut Microbiota, and Have Potential to Prevent the Development of Hypertension and Heart Failure in Spontaneously Hypertensive Rats. Int. J. Mol. Sci. 2021, 22, 9823. [Google Scholar] [CrossRef]
- Maruyama, S.; Segawa, Y.; Harui, A.; Yamamoto, K.; Hashimoto, H.; Osera, T.; Kurihara, N. Influence of Intestinal Barrier on Alleviating an Increase in Blood Pressure by Sodium Alginate Intake in 2-Kidney, 1-Clip Renovascular Hypertensive Rats. Mar. Drugs 2023, 21, 324. [Google Scholar] [CrossRef]
- Ogita, H.; Node, K.; Asanuma, H.; Sanada, S.; Takashima, S.; Minamino, T.; Soma, M.; Kim, J.; Hori, M.; Kitakaze, M. Eicosapentaenoic Acid Reduces Myocardial Injury Induced by Ischemia and Reperfusion in Rabbit Hearts. J. Cardiovasc. Pharmacol. 2003, 41, 964–969. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.-F.; Sigg, D.C.; Ujhelyi, M.R.; Wilhelm, J.J.; Richardson, E.S.; Iaizzo, P.A. Pericardial Delivery of Omega-3 Fatty Acid: A Novel Approach to Reducing Myocardial Infarct Sizes and Arrhythmias. Am. J. Physiol.-Heart Circ. Physiol. 2008, 294, H2212–H2218. [Google Scholar] [CrossRef]
- Rondeau, I.; Picard, S.; Bah, T.M.; Roy, L.; Godbout, R.; Rousseau, G. Effects of Different Dietary Omega-6/3 Polyunsaturated Fatty Acids Ratios on Infarct Size and the Limbic System after Myocardial Infarction. Can. J. Physiol. Pharmacol. 2011, 89, 169–176. [Google Scholar] [CrossRef]
- Madingou, N.; Gilbert, K.; Tomaro, L.; Prud’homme Touchette, C.; Trudeau, F.; Fortin, S.; Rousseau, G. Comparison of the Effects of EPA and DHA Alone or in Combination in a Murine Model of Myocardial Infarction. Prostaglandins Leukot. Essent. Fat. Acids 2016, 111, 11–16. [Google Scholar] [CrossRef]
- Sherratt, S.C.R.; Mason, R.P.; Libby, P.; Steg, P.G.; Bhatt, D.L. Do Patients Benefit from Omega-3 Fatty Acids? Cardiovasc. Res. 2023, 119, 2884–2901. [Google Scholar] [CrossRef] [PubMed]
- Liberski, A.; Latif, N.; Raynaud, C.; Bollensdorff, C.; Yacoub, M. Alginate for Cardiac Regeneration: From Seaweed to Clinical Trials. Glob. Cardiol. Sci. Pract. 2016, 2016, e201604. [Google Scholar] [CrossRef] [PubMed]
- Cattelan, G.; Guerrero Gerbolés, A.; Foresti, R.; Pramstaller, P.P.; Rossini, A.; Miragoli, M.; Caffarra Malvezzi, C. Alginate Formulations: Current Developments in the Race for Hydrogel-Based Cardiac Regeneration. Front. Bioeng. Biotechnol. 2020, 8, 414. [Google Scholar] [CrossRef]
- Frey, N.; Linke, A.; Süselbeck, T.; Müller-Ehmsen, J.; Vermeersch, P.; Schoors, D.; Rosenberg, M.; Bea, F.; Tuvia, S.; Leor, J. Intracoronary Delivery of Injectable Bioabsorbable Scaffold (IK-5001) to Treat Left Ventricular Remodeling after ST-Elevation Myocardial Infarction: A First-in-Man Study. Circ. Cardiovasc. Interv. 2014, 7, 806–812. [Google Scholar] [CrossRef]
- Rao, S.V.; Zeymer, U.; Douglas, P.S.; Al-Khalidi, H.; White, J.A.; Liu, J.; Levy, H.; Guetta, V.; Gibson, C.M.; Tanguay, J.-F.; et al. Bioabsorbable Intracoronary Matrix for Prevention of Ventricular Remodeling after Myocardial Infarction. J. Am. Coll. Cardiol. 2016, 68, 715–723. [Google Scholar] [CrossRef]
- Mann, D.L.; Lee, R.J.; Coats, A.J.S.; Neagoe, G.; Dragomir, D.; Pusineri, E.; Piredda, M.; Bettari, L.; Kirwan, B.-A.; Dowling, R.; et al. One-Year Follow-up Results from AUGMENT-HF: A Multicentre Randomized Controlled Clinical Trial of the Efficacy of Left Ventricular Augmentation with Algisyl in the Treatment of Heart Failure. Eur. J. Heart Fail. 2016, 18, 314–325. [Google Scholar] [CrossRef]
- Martínez-Sámano, J.; De Oca, A.T.-M.; O-Bocardo, O.I.L.; Torres-Durán, P.V.; Juárez-Oropeza, M.A. Spirulina Maxima Decreases Endothelial Damage and Oxidative Stress Indicators in Patients with Systemic Arterial Hypertension: Results from Exploratory Controlled Clinical Trial. Mar. Drugs 2018, 16, 496. [Google Scholar] [CrossRef]
- Ferrari, R.; Censi, S.; Cimaglia, P. The Journey of Omega-3 Fatty Acids in Cardiovascular Medicine. Eur. Heart J. Suppl. 2020, 22, J49–J53. [Google Scholar] [CrossRef]
- Rayapu, L.; Chakraborty, K.; Valluru, L. Marine Algae as a Potential Source for Anti-Diabetic Compounds—A Brief Review. Curr. Pharm. Des. 2021, 27, 789–801. [Google Scholar] [CrossRef]
- Guo, J.; Huang, X.; Dou, L.; Yan, M.; Shen, T. Aging and Aging-Related Diseases: From Molecular Mechanisms to Interventions and Treatments. Signal Transduct. Target. Ther. 2022, 7, 391. [Google Scholar] [CrossRef]
- Narasimhan, A.; Flores, R.R.; Robbins, P.D.; Niedernhofer, L.J. Role of Cellular Senescence in Type II Diabetes. Endocrinology 2021, 162, bqab136. [Google Scholar] [CrossRef]
- Sinclair, A.; Saeedi, P.; Kaundal, A.; Karuranga, S.; Malanda, B.; Williams, R. Diabetes and Global Ageing among 65–99-Year-Old Adults: Findings from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Res. Clin. Pract. 2020, 162, 108078. [Google Scholar] [CrossRef]
- Dandona, P.; Aljada, A.; Bandyopadhyay, A. Inflammation: The Link between Insulin Resistance, Obesity and Diabetes. Trends Immunol. 2004, 25, 4–7. [Google Scholar] [CrossRef]
- Fryer, L.G.D.; Parbu-Patel, A.; Carling, D. The anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J. Biol. Chem. 2002, 277, 25226–25232. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, N.; Dhakrey, P.; Pathak, S. A Comprehensive Review on the Research Progress of PTP1B Inhibitors as Antidiabetics. Chem. Biol. Drug Des. 2023, 102, 921–938. [Google Scholar] [CrossRef]
- Magwaza, S.N.; Islam, M.S. Roles of Marine Macroalgae or Seaweeds and Their Bioactive Compounds in Combating Overweight, Obesity and Diabetes: A Comprehensive Review. Mar. Drugs 2023, 21, 258. [Google Scholar] [CrossRef]
- Kim, Y.R.; Park, M.J.; Park, S.-Y.; Kim, J.Y. Brown Seaweed Consumption as a Promising Strategy for Blood Glucose Management: A Comprehensive Meta-Analysis. Nutrients 2023, 15, 4987. [Google Scholar] [CrossRef]
- Casertano, M.; Vito, A.; Aiello, A.; Imperatore, C.; Menna, M. Natural Bioactive Compounds from Marine Invertebrates That Modulate Key Targets Implicated in the Onset of Type 2 Diabetes Mellitus (T2DM) and Its Complications. Pharmaceutics 2023, 15, 2321. [Google Scholar] [CrossRef] [PubMed]
- Xia, E.-Q.; Zhu, S.-S.; He, M.-J.; Luo, F.; Fu, C.-Z.; Zou, T.-B. Marine Peptides as Potential Agents for the Management of Type 2 Diabetes Mellitus-A Prospect. Mar. Drugs 2017, 15, 88. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.-I.; Jin, Y.-J.; Ko, H.-C.; Choi, S.-Y.; Hwang, J.-H.; Whang, I.; Kim, M.-H.; Shin, H.-S.; Jeong, H.-B.; Kim, S.-J. Petalonia Improves Glucose Homeostasis in Streptozotocin-Induced Diabetic Mice. Biochem. Biophys. Res. Commun. 2008, 373, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Park, M.H.; Han, J.S. Hypoglycemic Effect of Padina Arborescens Extract in Streptozotocin-Induced Diabetic Mice. Prev. Nutr. Food Sci. 2012, 17, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; Min, K.-H.; Han, J.-S.; Lee, D.-H.; Park, D.-B.; Jung, W.-K.; Park, P.-J.; Jeon, B.-T.; Kim, S.-K.; Jeon, Y.-J. Effects of Brown Alga, Ecklonia Cava on Glucose and Lipid Metabolism in C57BL/KsJ-Db/Db Mice, a Model of Type 2 Diabetes Mellitus. Food Chem. Toxicol. 2012, 50, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Tamrakar, A.K.; Tiwari, P.; Ahmad, R.; Kumar, R.; Lakshmi, V.; Srivastava, M.N.; Srivastava, A.K. Antihyperglycaemic Activity of Sinularia Firma and Sinularia Erecta in Streptozotocin-Induced Diabetic Rats. Med. Chem. Res. 2008, 17, 62–73. [Google Scholar] [CrossRef]
- Gokce, G.; Haznedaroglu, M.Z. Evaluation of Antidiabetic, Antioxidant and Vasoprotective Effects of Posidonia Oceanica Extract. J. Ethnopharmacol. 2008, 115, 122–130. [Google Scholar] [CrossRef]
- Park, M.H.; Nam, Y.H.; Han, J.-S. Sargassum Coreanum Extract Alleviates Hyperglycemia and Improves Insulin Resistance in Db/Db Diabetic Mice. Nutr. Res. Pract. 2015, 9, 472–479. [Google Scholar] [CrossRef]
- Kim, S.-N.; Lee, W.; Bae, G.-U.; Kim, Y.K. Anti-Diabetic and Hypolipidemic Effects of Sargassum Yezoense in Db/Db Mice. Biochem. Biophys. Res. Commun. 2012, 424, 675–680. [Google Scholar] [CrossRef]
- Motshakeri, M.; Ebrahimi, M.; Goh, Y.M.; Matanjun, P.; Mohamed, S. Sargassum Polycystum Reduces Hyperglycaemia, Dyslipidaemia and Oxidative Stress via Increasing Insulin Sensitivity in a Rat Model of Type 2 Diabetes. J. Sci. Food Agric. 2013, 93, 1772–1778. [Google Scholar] [CrossRef] [PubMed]
- Motshakeri, M.; Ebrahimi, M.; Goh, Y.M.; Othman, H.H.; Hair-Bejo, M.; Mohamed, S. Effects of Brown Seaweed (Sargassum polycystum) Extracts on Kidney, Liver, and Pancreas of Type 2 Diabetic Rat Model. Evid.-Based Complement. Altern. Med. 2014, 2014, 379407. [Google Scholar] [CrossRef] [PubMed]
- Tas, S.; Celikler, S.; Ziyanok-Ayvalik, S.; Sarandol, E.; Dirican, M. Ulva Rigida Improves Carbohydrate Metabolism, Hyperlipidemia and Oxidative Stress in Streptozotocin-Induced Diabetic Rats. Cell Biochem. Funct. 2011, 29, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Iwai, K. Antidiabetic and Antioxidant Effects of Polyphenols in Brown Alga Ecklonia Stolonifera in Genetically Diabetic KK-Ay Mice. Plant Foods Hum. Nutr. 2008, 63, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-J.; Kim, H.K. Insulinotrophic and Hypolipidemic Effects of Ecklonia Cava in Streptozotocin-Induced Diabetic Mice. Asian Pac. J. Trop. Med. 2012, 5, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.; Jin, Y.B.; Lee, H.; Cha, M.; Sohn, E.-T.; Moon, J.; Park, C.; Chun, S.; Jung, E.-S.; Hong, J.-S.; et al. Brown Alga Ecklonia Cava Attenuates Type 1 Diabetes by Activating AMPK and Akt Signaling Pathways. Food Chem. Toxicol. 2010, 48, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Nasab, S.B.; Homaei, A.; Pletschke, B.I.; Salinas-Salazar, C.; Castillo-Zacarias, C.; Parra-Saldívar, R. Marine Resources Effective in Controlling and Treating Diabetes and Its Associated Complications. Process Biochem. 2020, 92, 313–342. [Google Scholar] [CrossRef]
- Rajan, D.K.; Mohan, K.; Zhang, S.; Ganesan, A.R. Dieckol: A Brown Algal Phlorotannin with Biological Potential. Biomed. Pharmacother. 2021, 142, 111988. [Google Scholar] [CrossRef]
- Kim, E.-A.; Lee, S.-H.; Lee, J.-H.; Kang, N.; Oh, J.-Y.; Heui, S.; Ahn, G.; Ko, S.C.; Fernando, S.P.; Kim, S.-Y.; et al. A Marine Algal Polyphenol, Dieckol, Attenuates Blood Glucose Levels by Akt Pathway in Alloxan Induced Hyperglycemia Zebrafish Model. RSC Adv. 2016, 6, 78570–78575. [Google Scholar] [CrossRef]
- Kang, M.-C.; Wijesinghe, W.A.J.P.; Lee, S.-H.; Kang, S.-M.; Ko, S.-C.; Yang, X.; Kang, N.; Jeon, B.-T.; Kim, J.; Lee, D.-H.; et al. Dieckol Isolated from Brown Seaweed Ecklonia Cava Attenuates Type II Diabetes in Db/Db Mouse Model. Food Chem. Toxicol. 2013, 53, 294–298. [Google Scholar] [CrossRef]
- Lee, S.-H.; Park, M.-H.; Heo, S.-J.; Kang, S.-M.; Ko, S.-C.; Han, J.-S.; Jeon, Y.-J. Dieckol Isolated from Ecklonia Cava Inhibits α-Glucosidase and α-Amylase in Vitro and Alleviates Postprandial Hyperglycemia in Streptozotocin-Induced Diabetic Mice. Food Chem. Toxicol. 2010, 48, 2633–2637. [Google Scholar] [CrossRef] [PubMed]
- Heo, S.-J.; Hwang, J.-Y.; Choi, J.-I.; Han, J.-S.; Kim, H.-J.; Jeon, Y.-J. Diphlorethohydroxycarmalol Isolated from Ishige Okamurae, a Brown Algae, a Potent α-Glucosidase and α-Amylase Inhibitor, Alleviates Postprandial Hyperglycemia in Diabetic Mice. Eur. J. Pharmacol. 2009, 615, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Strong, R.; Miller, R.A.; Cheng, C.J.; Nelson, J.F.; Gelfond, J.; Allani, S.K.; Diaz, V.; Dorigatti, A.O.; Dorigatti, J.; Fernandez, E.; et al. Lifespan Benefits for the Combination of Rapamycin plus Acarbose and for Captopril in Genetically Heterogeneous Mice. Aging Cell 2022, 21, 13724. [Google Scholar] [CrossRef]
- Maeda, H.; Hosokawa, M.; Sashima, T.; Murakami-Funayama, K.; Miyashita, K. Anti-Obesity and Anti-Diabetic Effects of Fucoxanthin on Diet-Induced Obesity Conditions in a Murine Model. Mol. Med. Rep. 2009, 2, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, S.; Hosokawa, M.; Miyashita, K. Fucoxanthin Promotes Translocation and Induction of Glucose Transporter 4 in Skeletal Muscles of Diabetic/Obese KK-Ay Mice. Phytomedicine 2012, 19, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Hosokawa, M.; Miyashita, T.; Nishikawa, S.; Emi, S.; Tsukui, T.; Beppu, F.; Okada, T.; Miyashita, K. Fucoxanthin Regulates Adipocytokine MRNA Expression in White Adipose Tissue of Diabetic/Obese KK-Ay Mice. Arch. Biochem. Biophys. 2010, 504, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, W.; Huang, X.; Zhao, Y.; Ren, Q.; Hong, Z.; Huang, M.; Xing, X. Fucoxanthin Ameliorates Hyperglycemia, Hyperlipidemia and Insulin Resistance in Diabetic Mice Partially through IRS-1/PI3K/Akt and AMPK Pathways. J. Funct. Foods 2018, 48, 515–524. [Google Scholar] [CrossRef]
- Kim, K.-J.; Yoon, K.-Y.; Lee, B.-Y. Fucoidan Regulate Blood Glucose Homeostasis in C57BL/KSJ M+/+db and C57BL/KSJ Db/Db Mice. Fitoterapia 2012, 83, 1105–1109. [Google Scholar] [CrossRef]
- Jiang, X.; Yu, J.; Ma, Z.; Zhang, H.; Xie, F. Effects of Fucoidan on Insulin Stimulation and Pancreatic Protection via the CAMP Signaling Pathway in Vivo and in Vitro. Mol. Med. Rep. 2015, 12, 4501–4507. [Google Scholar] [CrossRef] [PubMed]
- Shan, X.; Liu, X.; Hao, J.; Cai, C.; Fan, F.; Dun, Y.; Zhao, X.; Liu, X.; Li, C.; Yu, G. In Vitro and in Vivo Hypoglycemic Effects of Brown Algal Fucoidans. Int. J. Biol. Macromol. 2016, 82, 249–255. [Google Scholar] [CrossRef]
- Yu, W.-C.; Chen, Y.-L.; Hwang, P.-A.; Chen, T.-H.; Chou, T.-C. Fucoidan Ameliorates Pancreatic β-Cell Death and Impaired Insulin Synthesis in Streptozotocin-Treated β Cells and Mice via a Sirt-1-Dependent Manner. Mol. Nutr. Food Res. 2017, 61, 1700136. [Google Scholar] [CrossRef]
- Lakshmanasenthil, S.; Vinothkumar, T.; Geetharamani, D.; Marudhupandi, T.; Suja, G.; Sindhu, N.S. Fucoidan-a Novel α-Amylase Inhibitor from Turbinaria Ornata with Relevance to NIDDM Therapy. Biocatal. Agric. Biotechnol. 2014, 3, 66–70. [Google Scholar] [CrossRef]
- Vinoth Kumar, T.; Lakshmanasenthil, S.; Geetharamani, D.; Marudhupandi, T.; Suja, G.; Suganya, P. Fucoidan—A α-d-Glucosidase Inhibitor from Sargassum wightii with Relevance to Type 2 Diabetes Mellitus Therapy. Int. J. Biol. Macromol. 2015, 72, 1044–1047. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Nie, M.; Lu, Y.; Wang, R.; Li, J.; Yang, B.; Xia, M.; Zhang, H.; Li, X. Fucoidan Exerts Protective Effects against Diabetic Nephropathy Related to Spontaneous Diabetes through the NF-ΚB Signaling Pathway in Vivo and in Vitro. Int. J. Mol. Med. 2015, 35, 1067–1073. [Google Scholar] [CrossRef]
- Cheng, Y.; Sibusiso, L.; Hou, L.; Jiang, H.; Chen, P.; Zhang, X.; Wu, M.; Tong, H. Sargassum fusiforme Fucoidan Modifies the Gut Microbiota during Alleviation of Streptozotocin-Induced Hyperglycemia in Mice. Int. J. Biol. Macromol. 2019, 131, 1162–1170. [Google Scholar] [CrossRef]
- Yang, C.-F.; Lai, S.-S.; Chen, Y.-H.; Liu, D.; Liu, B.; Ai, C.; Wan, X.-Z.; Gao, L.-Y.; Chen, X.-H.; Zhao, C. Anti-Diabetic Effect of Oligosaccharides from Seaweed Sargassum Confusum via JNK-IRS1/PI3K Signalling Pathways and Regulation of Gut Microbiota. Food Chem. Toxicol. 2019, 131, 110562. [Google Scholar] [CrossRef]
- Li, X.; Yu, Z.; Long, S.; Guo, Y.; Duan, D. Hypoglycemic Effect of Laminaria japonica Polysaccharide in a Type 2 Diabetes Mellitus Mouse Model. ISRN Endocrinol. 2012, 2012, 507462. [Google Scholar] [CrossRef]
- Jia, X.; Yang, J.; Wang, Z.; Liu, R.; Xie, R. Polysaccharides from Laminaria japonica Show Hypoglycemic and Hypolipidemic Activities in Mice with Experimentally Induced Diabetes. Exp. Biol. Med. 2014, 239, 1663–1670. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-R.; Jia, R.-B.; Luo, D.; Lin, L.; Zheng, Q.; Zhao, M. The Positive Effects and Underlying Mechanisms of: Undaria pinnatifida Polysaccharides on Type 2 Diabetes Mellitus in Rats. Food Funct. 2021, 12, 11898–11912. [Google Scholar] [CrossRef]
- Liao, X.; Yang, L.; Chen, M.; Yu, J.; Zhang, S.; Ju, Y. The Hypoglycemic Effect of a Polysaccharide (GLP) from Gracilaria lemaneiformis and Its Degradation Products in Diabetic Mice. Food Funct. 2015, 6, 2542–2549. [Google Scholar] [CrossRef]
- Lin, W.; Wang, W.; Liao, D.; Chen, D.; Zhu, P.; Cai, G.; Kiyoshi, A. Polysaccharides from Enteromorpha prolifera Improve Glucose Metabolism in Diabetic Rats. J. Diabetes Res. 2015, 2015, 675201. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q.-W.; Zhou, T.-S.; Qiu, W.-H.; Wang, Y.-K.; Xu, Q.-L.; Ke, S.-Z.; Wang, S.-J.; Jin, W.-H.; Chen, J.-W.; Zhang, H.-W.; et al. Characterization and Hypoglycemic Effects of Sulfated Polysaccharides Derived from Brown Seaweed Undaria pinnatifida. Food Chem. 2021, 341, 128148. [Google Scholar] [CrossRef] [PubMed]
- Ke, S.; Zhang, B.; Yu, Y.; Wang, S.; Jin, W.; Wu, J.; Chen, J.; Zhang, H.; Wei, B.; Wang, H. Structural Characterization of Sulfated Galactofucan from Undaria pinnatifida and Its Effect on Type 2 Diabetic Mice. J. Oceanol. Limnol. 2023, 41, 300–313. [Google Scholar] [CrossRef]
- Bu, T.; Liu, M.; Zheng, L.; Guo, Y.; Lin, X. α-Glucosidase Inhibition and the in Vivo Hypoglycemic Effect of Butyl-Isobutyl-Phthalate Derived from the Laminaria japonica Rhizoid. Phyther. Res. 2010, 24, 1588–1591. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; Ko, S.-C.; Kang, M.-C.; Lee, D.H.; Jeon, Y.-J. Octaphlorethol A, a Marine Algae Product, Exhibits Antidiabetic Effects in Type 2 Diabetic Mice by Activating AMP-Activated Protein Kinase and Upregulating the Expression of Glucose Transporter 4. Food Chem. Toxicol. 2016, 91, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Xu, F.; He, J.; Li, J.; Fan, X.; Han, L. Inhibition of Bromophenols against PTP1B and Anti-Hyperglycemic Effect of Rhodomela Confervoides Extract in Diabetic Rats. Chin. Sci. Bull. 2008, 53, 2476–2479. [Google Scholar] [CrossRef]
- Shi, D.; Guo, S.; Jiang, B.; Guo, C.; Wang, T.; Zhang, L.; Li, J. HPN, a Synthetic Analogue of Bromophenol from Red Alga Rhodomela Confervoides: Synthesis and Anti-Diabetic Effects in C57BL/KsJ-Db/Db Mice. Mar. Drugs 2013, 11, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Shin, K.H.; Kim, B.-K.; Lee, S. Anti-Diabetic Activities of Fucosterol from Pelvetia siliquosa. Arch. Pharm. Res. 2004, 27, 1120–1122. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.A.; Islam, M.N.; Lee, C.M.; Oh, S.H.; Lee, S.; Jung, J.H.; Choi, J.S. Kinetics and Molecular Docking Studies of an Anti-Diabetic Complication Inhibitor Fucosterol from Edible Brown Algae Eisenia bicyclis and Ecklonia stolonifera. Chem. Biol. Interact. 2013, 206, 55–62. [Google Scholar] [CrossRef]
- Zhu, C.-F.; Peng, H.-B.; Liu, G.-Q.; Zhang, F.; Li, Y. Beneficial Effects of Oligopeptides from Marine Salmon Skin in a Rat Model of Type 2 Diabetes. Nutrition 2010, 26, 1014–1020. [Google Scholar] [CrossRef]
- Ben Slama-Ben Salem, R.; Ktari, N.; Bkhairia, I.; Nasri, R.; Mora, L.; Kallel, R.; Hamdi, S.; Jamoussi, K.; Boudaouara, T.; El-Feki, A.; et al. In Vitro and in Vivo Anti-Diabetic and Anti-Hyperlipidemic Effects of Protein Hydrolysates from Octopus vulgaris in Alloxanic Rats. Food Res. Int. 2018, 106, 952–963. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Guo, Y.; Li, J.; He, S.; Chen, Y.; Jin, H. Antidiabetic Effect of Collagen Peptides from Harpadon nehereus Bones in Streptozotocin-Induced Diabetes Mice by Regulating Oxidative Stress and Glucose Metabolism. Mar. Drugs 2023, 21, 518. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Wu, W. Antidiabetic Effect of a New Peptide from Squalus mitsukurii Liver (S-8300) in Streptozocin-Induced Diabetic Mice. J. Pharm. Pharmacol. 2005, 57, 1575–1580. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gao, Z.; Guo, Q.; Wang, T.; Lu, C.; Chen, Y.; Sheng, Q.; Chen, J.; Nie, Z.; Zhang, Y.; et al. Anti-Diabetic Effects of CTB-APSL Fusion Protein in Type 2 Diabetic Mice. Mar. Drugs 2014, 12, 1512–1529. [Google Scholar] [CrossRef] [PubMed]
- Maeda, H. Nutraceutical Effects of Fucoxanthin for Obesity and Diabetes Therapy: A Review. J. Oleo Sci. 2015, 64, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Woo, M.-N.; Jeon, S.-M.; Shin, Y.C.; Lee, M.-K.; Kang, M.A.; Choi, M.-S. Anti-Obese Property of Fucoxanthin Is Partly Mediated by Altering Lipid-Regulating Enzymes and Uncoupling Proteins of Visceral Adipose Tissue in Mice. Mol. Nutr. Food Res. 2009, 53, 1603–1611. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, W.; Qiu, L.; Lin, X. Synthesis of Butyl-Isobutyl-Phthalate and Its Interaction with α-Glucosidase in Vitro. J. Biochem. 2011, 149, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Xu, Q.; Jiang, B.; Zhang, R.; Jia, X.; Li, X.; Wang, L.; Guo, C.; Wu, N.; Shi, D. Selectivity, Cell Permeability and Oral Availability Studies of Novel Bromophenol Derivative HPN as Protein Tyrosine Phosphatase 1B Inhibitor. Br. J. Pharmacol. 2018, 175, 140–153. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Zheng, Y.; Wang, J.; Zhang, Q.; Ren, S.; Liu, T.; Wang, Z.; Luo, D. Low Molecular Weight Fucoidan Ameliorates Streptozotocin-Induced Hyper-Responsiveness of Aortic Smooth Muscles in Type 1 Diabetes Rats. J. Ethnopharmacol. 2016, 191, 341–349. [Google Scholar] [CrossRef]
- Gao, H.; Zhou, Y.; Yu, C.; Wang, G.; Song, W.; Zhang, Z.; Lu, L.; Xue, M.; Liang, H. Fucoidan Alleviated Autoimmune Diabetes in NOD Mice by Regulating Pancreatic Autophagy through the AMPK/MTOR1/TFEB Pathway. Iran. J. Basic Med. Sci. 2024, 27, 31–38. [Google Scholar] [CrossRef]
- Zhu, C.-F.; Li, G.-Z.; Peng, H.-B.; Zhang, F.; Chen, Y.; Li, Y. Treatment with Marine Collagen Peptides Modulates Glucose and Lipid Metabolism in Chinese Patients with Type 2 Diabetes Mellitus. Appl. Physiol. Nutr. Metab. 2010, 35, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, W.; Cheng, D.; Wang, T.; Lu, C.; Chen, J.; Nie, Z.; Zhang, W.; Lv, Z.; Wu, W.; et al. A New Member of the TBC1D15 Family from Chiloscyllium plagiosum: Rab GTPase-Activating Protein Based on Rab7 as a Substrate. Mar. Drugs 2015, 13, 2955–2966. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Cheng, D.; Liu, L.; Lv, Z.; Liu, K. TBC1D15 Affects Glucose Uptake by Regulating GLUT4 Translocation. Gene 2019, 683, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.M.; Bezabhe, W.; Fitton, J.H.; Stringer, D.N.; Bereznicki, L.R.E.; Peterson, G.M. Effect of a Fucoidan Extract on Insulin Resistance and Cardiometabolic Markers in Obese, Nondiabetic Subjects: A Randomized, Controlled Trial. J. Altern. Complement. Med. 2019, 25, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Konic Ristic, A.; Ryan, S.; Attjioui, M.; O’Connell, S.; Gibney, E.R. Effects of an Extract of the Brown Seaweed Ascophylum Nodosum on Postprandial Glycaemic Control in Healthy Subjects: A Randomized Controlled Study. Mar. Drugs 2023, 21, 337. [Google Scholar] [CrossRef] [PubMed]
- Tay, A.; Jiang, Y.; Signal, N.; O’Brien, D.; Chen, J.; Murphy, R.; Lu, J. Combining Mussel with Fucoidan as a Supplement for Joint Pain and Prediabetes: Study Protocol for a Randomized, Double-Blinded, Placebo-Controlled Trial. Front. Nutr. 2022, 9, 1000510. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.; Dordevic, A.L.; Ryan, L.; Bonham, M.P. The Impact of a Single Dose of a Polyphenol-Rich Seaweed Extract on Postprandial Glycaemic Control in Healthy Adults: A Randomised Cross-over Trial. Nutrients 2018, 10, 270. [Google Scholar] [CrossRef] [PubMed]
- Tanemura, Y.; Yamanaka-Okumura, H.; Sakuma, M.; Nii, Y.; Taketani, Y.; Takeda, E. Effects of the Intake of Undaria pinnatifida (Wakame) and Its Sporophylls (Mekabu) on Postprandial Glucose and Insulin Metabolism. J. Med. Investig. 2014, 61, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.-C.; Jung, W.-K.; Lee, S.-H.; Lee, D.H.; Jeon, Y.-J. Antihypertensive Effect of an Enzymatic Hydrolysate from Styela clava Flesh Tissue in Type 2 Diabetic Patients with Hypertension. Nutr. Res. Pract. 2017, 11, 396–401. [Google Scholar] [CrossRef]
- Lee, S.-H.; Jeon, Y.-J. Efficacy and Safety of a Dieckol-Rich Extract (AG-Dieckol) of Brown Algae, Ecklonia Cava, in Pre-Diabetic Individuals: A Double-Blind, Randomized, Placebo-Controlled Clinical Trial. Food Funct. 2015, 6, 853–858. [Google Scholar] [CrossRef]
- Dharmalingam, M.; Yamasandhi, P.G. Nonalcoholic Fatty Liver Disease and Type 2 Diabetes Mellitus. Indian J. Endocrinol. Metab. 2018, 22, 421–428. [Google Scholar] [CrossRef]
- Ebrahimi-Mameghani, M.; Sadeghi, Z.; Abbasalizad Farhangi, M.; Vaghef-Mehrabany, E.; Aliashrafi, S. Glucose Homeostasis, Insulin Resistance and Inflammatory Biomarkers in Patients with Non-Alcoholic Fatty Liver Disease: Beneficial Effects of Supplementation with Microalgae Chlorella vulgaris: A Double-Blind Placebo-Controlled Randomized Clinical Trial. Clin. Nutr. 2017, 36, 1001–1006. [Google Scholar] [CrossRef] [PubMed]
- López-Ramos, A.; González-Ortiz, M.; Martínez-Abundis, E.; Pérez-Rubio, K.G. Effect of Fucoxanthin on Metabolic Syndrome, Insulin Sensitivity, and Insulin Secretion. J. Med. Food 2023, 26, 521–527. [Google Scholar] [CrossRef]
- Chen, C.; Yu, X.; Shao, S. Effects of Omega-3 Fatty Acid Supplementation on Glucose Control and Lipid Levels in Type 2 Diabetes: A Meta-Analysis. PLoS ONE 2015, 10, e0139565. [Google Scholar] [CrossRef]
- Laupsa-Borge, J.; Grytten, E.; Bohov, P.; Bjørndal, B.; Strand, E.; Skorve, J.; Nordrehaug, J.E.; Berge, R.K.; Rostrup, E.; Mellgren, G.; et al. Sex-Specific Responses in Glucose-Insulin Homeostasis and Lipoprotein-Lipid Components after High-Dose Supplementation with Marine n-3 PUFAs in Abdominal Obesity: A Randomized Double-Blind Crossover Study. Front. Nutr. 2023, 10, 1020678. [Google Scholar] [CrossRef] [PubMed]
- De Boer, I.H.; Zelnick, L.R.; Ruzinski, J.; Friedenberg, G.; Duszlak, J.; Bubes, V.Y.; Hoofnagle, A.N.; Thadhani, R.; Glynn, R.J.; Buring, J.E.; et al. Effect of Vitamin D and Omega-3 Fatty Acid Supplementation on Kidney Function in Patients with Type 2 Diabetes: A Randomized Clinical Trial. JAMA 2019, 322, 1899–1909. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Bonafè, M.; Valensin, S.; Olivieri, F.; De Luca, M.; Ottaviani, E.; De Benedictis, G. Inflamm-Aging. An Evolutionary Perspective on Immunosenescence. Ann. N. Y. Acad. Sci. 2000, 908, 244–254. [Google Scholar] [CrossRef]
- Cevenini, E.; Caruso, C.; Candore, G.; Capri, M.; Nuzzo, D.; Duro, G.; Rizzo, C.; Colonna-Romano, G.; Lio, D.; Di Carlo, D.; et al. Age-Related Inflammation: The Contribution of Different Organs, Tissues and Systems. How to Face It for Therapeutic Approaches. Curr. Pharm. Des. 2010, 16, 609–618. [Google Scholar] [CrossRef]
- Ghosh, T.S.; Shanahan, F.; O’Toole, P.W. The Gut Microbiome as a Modulator of Healthy Ageing. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 565–584. [Google Scholar] [CrossRef]
- Rong, R.; Zhang, R.-Z.; Wang, X.; Dan, Y.-H.; Zhao, Y.-L.; Yu, Z.-G. Synthesis, Pharmacological Evaluation and Molecular Docking of Novel R-/S-2-(2-Hydroxypropanamido)-5-Trifluoromethyl Benzoic Acid as Dual Anti-Inflammatory Anti-Platelet Aggregation Agents. Naunyn. Schmiedebergs. Arch. Pharmacol. 2020, 393, 967–978. [Google Scholar] [CrossRef]
- Lv, Z.; Ou, Y.; Li, Q.; Zhang, W.; Ye, B.; Wu, W. Expression, Purification and Bioactivities Analysis of Recombinant Active Peptide from Shark Liver. Mar. Drugs 2009, 7, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Marcozzi, S.; Bigossi, G.; Giuliani, M.E.; Giacconi, R.; Cardelli, M.; Piacenza, F.; Orlando, F.; Segala, A.; Valerio, A.; Nisoli, E.; et al. Comprehensive Longitudinal Non-Invasive Quantification of Healthspan and Frailty in a Large Cohort (n = 546) of Geriatric C57BL/6 J Mice. GeroScience 2023, 45, 2195–2211. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, M.E.; Barbi, V.; Bigossi, G.; Marcozzi, S.; Giacconi, R.; Cardelli, M.; Piacenza, F.; Orlando, F.; Ciaglia, E.; Cattaneo, M.; et al. Effects of Human LAV-BPIFB4 Gene Therapy on the Epigenetic Clock and Health of Aged Mice. Int. J. Mol. Sci. 2023, 24, 6464. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giuliani, M.E.; Bigossi, G.; Lai, G.; Marcozzi, S.; Brunetti, D.; Malavolta, M. Marine Compounds and Age-Related Diseases: The Path from Pre-Clinical Research to Approved Drugs for the Treatment of Cardiovascular Diseases and Diabetes. Mar. Drugs 2024, 22, 210. https://doi.org/10.3390/md22050210
Giuliani ME, Bigossi G, Lai G, Marcozzi S, Brunetti D, Malavolta M. Marine Compounds and Age-Related Diseases: The Path from Pre-Clinical Research to Approved Drugs for the Treatment of Cardiovascular Diseases and Diabetes. Marine Drugs. 2024; 22(5):210. https://doi.org/10.3390/md22050210
Chicago/Turabian StyleGiuliani, Maria Elisa, Giorgia Bigossi, Giovanni Lai, Serena Marcozzi, Dario Brunetti, and Marco Malavolta. 2024. "Marine Compounds and Age-Related Diseases: The Path from Pre-Clinical Research to Approved Drugs for the Treatment of Cardiovascular Diseases and Diabetes" Marine Drugs 22, no. 5: 210. https://doi.org/10.3390/md22050210
APA StyleGiuliani, M. E., Bigossi, G., Lai, G., Marcozzi, S., Brunetti, D., & Malavolta, M. (2024). Marine Compounds and Age-Related Diseases: The Path from Pre-Clinical Research to Approved Drugs for the Treatment of Cardiovascular Diseases and Diabetes. Marine Drugs, 22(5), 210. https://doi.org/10.3390/md22050210