Synthetic ShK-like Peptide from the Jellyfish Nemopilema nomurai Has Human Voltage-Gated Potassium-Channel-Blocking Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Genomic DNA and Transcript Sequences of NnK-1 Precursor Gene
2.2. Voltage-Gated Potassium Channel Blockade Function of NnK-1
2.3. Structural Similarity between Sea Anemone ShKs and Jellyfish NnK-1
3. Materials and Methods
3.1. In Silico Identification of ShK-Like Peptide Genes in N. nomurai
3.2. Peptide Synthesis
3.3. Cloning hKv cDNAs and Construction of hKv Expression Vectors
3.4. Preparation of hKv-Vector-Transformed HEK293 Cells
3.5. Current Recording
3.6. Cell Viability Assay
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jouiaei, M.; Yanagihara, A.A.; Madio, B.; Nevalainen, T.J.; Alewood, P.F.; Fry, B.G. Ancient Venom Systems: A Review on Cnidaria Toxins. Toxins 2015, 7, 2251–2271. [Google Scholar] [CrossRef]
- Brinkman, D.L.; Jia, X.; Potriquet, J.; Kumar, D.; Dash, D.; Kvaskoff, D.; Mulvenna, J. Transcriptome and venom proteome of the box jellyfish Chironex fleckeri. BMC Genom. 2015, 16, 407. [Google Scholar] [CrossRef]
- Choudhary, I.; Hwang, D.H.; Lee, H.; Yoon, W.D.; Chae, J.; Han, C.H.; Yum, S.; Kang, C.; Kim, E. Proteomic Analysis of Novel Components of Nemopilema nomurai Jellyfish Venom: Deciphering the Mode of Action. Toxins 2019, 11, 153. [Google Scholar] [CrossRef]
- Wang, C.; Wang, B.; Wang, B.; Wang, Q.; Liu, G.; Wang, T.; He, Q.; Zhang, L. Unique Diversity of Sting-Related Toxins Based on Transcriptomic and Proteomic Analysis of the Jellyfish Cyanea capillata and Nemopilema nomurai (Cnidaria: Scyphozoa). J. Proteome Res. 2019, 18, 436–448. [Google Scholar] [CrossRef] [PubMed]
- Liao, Q.; Gong, G.; Siu, S.W.I.; Wong, C.T.T.; Yu, H.; Tse, Y.C.; Radis-Baptista, G.; Lee, S.M. A Novel ShK-Like Toxic Peptide from the Transcriptome of the Cnidarian Palythoa caribaeorum Displays Neuroprotection and Cardioprotection in Zebrafish. Toxins 2018, 10, 238. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.M.; Weber, J.A.; Lee, N.; Park, S.G.; Cho, Y.S.; Bhak, Y.; Lee, N.; Jeon, Y.; Jeon, S.; Luria, V.; et al. The genome of the giant Nomura’s jellyfish sheds light on the early evolution of active predation. BMC Biol. 2019, 17, 28. [Google Scholar] [CrossRef]
- Lee, H.; Bae, S.K.; Kim, M.; Pyo, M.J.; Kim, M.; Yang, S.; Won, C.K.; Yoon, W.D.; Han, C.H.; Kang, C.; et al. Anticancer Effect of Nemopilema nomurai Jellyfish Venom on HepG2 Cells and a Tumor Xenograft Animal Model. Evid. Based Complement. Altern. Med. 2017, 2017, 2752716. [Google Scholar] [CrossRef]
- Choudhary, I.; Lee, H.; Pyo, M.J.; Heo, Y.; Chae, J.; Yum, S.S.; Kang, C.; Kim, E. Proteomic Investigation to Identify Anticancer Targets of Nemopilema nomurai Jellyfish Venom in Human Hepatocarcinoma HepG2 Cells. Toxins 2018, 10, 194. [Google Scholar] [CrossRef]
- Jan, L.Y.; Jan, Y.N. Voltage-gated potassium channels and the diversity of electrical signalling. J. Physiol. 2012, 590, 2591–2599. [Google Scholar] [CrossRef]
- Finol-Urdaneta, R.K.; Belovanovic, A.; Micic-Vicovac, M.; Kinsella, G.K.; McArthur, J.R.; Al-Sabi, A. Marine Toxins Targeting Kv1 Channels: Pharmacological Tools and Therapeutic Scaffolds. Mar. Drugs 2020, 18, 173. [Google Scholar] [CrossRef]
- Wulff, H.; Knaus, H.G.; Pennington, M.; Chandy, K.G. K+ channel expression during B cell differentiation: Implications for immunomodulation and autoimmunity. J. Immunol. 2004, 173, 776–786. [Google Scholar] [CrossRef]
- Beeton, C.; Wulff, H.; Standifer, N.E.; Azam, P.; Mullen, K.M.; Pennington, M.W.; Kolski-Andreaco, A.; Wei, E.; Grino, A.; Counts, D.R.; et al. Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc. Natl. Acad. Sci. USA 2006, 103, 17414–17419. [Google Scholar] [CrossRef]
- Chandy, K.G.; Sanches, K.; Norton, R.S. Structure of the voltage-gated potassium channel K(V)1.3: Insights into the inactivated conformation and binding to therapeutic leads. Channels 2023, 17, 2253104. [Google Scholar] [CrossRef]
- Chhabra, S.; Chang, S.C.; Nguyen, H.M.; Huq, R.; Tanner, M.R.; Londono, L.M.; Estrada, R.; Dhawan, V.; Chauhan, S.; Upadhyay, S.K.; et al. Kv1.3 channel-blocking immunomodulatory peptides from parasitic worms: Implications for autoimmune diseases. FASEB J. 2014, 28, 3952–3964. [Google Scholar] [CrossRef]
- Chandy, K.G.; Norton, R.S. Peptide blockers of K(v)1.3 channels in T cells as therapeutics for autoimmune disease. Curr. Opin. Chem. Biol. 2017, 38, 97–107. [Google Scholar] [CrossRef]
- Perez-Verdaguer, M.; Capera, J.; Serrano-Novillo, C.; Estadella, I.; Sastre, D.; Felipe, A. The voltage-gated potassium channel Kv1.3 is a promising multitherapeutic target against human pathologies. Expert. Opin. Ther. Targets 2016, 20, 577–591. [Google Scholar] [CrossRef]
- Shen, B.; Cao, Z.; Li, W.; Sabatier, J.M.; Wu, Y. Treating autoimmune disorders with venom-derived peptides. Expert. Opin. Biol. Ther. 2017, 17, 1065–1075. [Google Scholar] [CrossRef]
- Tarcha, E.J.; Olsen, C.M.; Probst, P.; Peckham, D.; Munoz-Elias, E.J.; Kruger, J.G.; Iadonato, S.P. Safety and pharmacodynamics of dalazatide, a Kv1.3 channel inhibitor, in the treatment of plaque psoriasis: A randomized phase 1b trial. PLoS ONE 2017, 12, e0180762. [Google Scholar] [CrossRef]
- Castaneda, O.; Sotolongo, V.; Amor, A.M.; Stocklin, R.; Anderson, A.J.; Harvey, A.L.; Engstrom, A.; Wernstedt, C.; Karlsson, E. Characterization of a potassium channel toxin from the Caribbean Sea anemone Stichodactyla helianthus. Toxicon 1995, 33, 603–613. [Google Scholar] [CrossRef]
- Tudor, J.E.; Pallaghy, P.K.; Pennington, M.W.; Norton, R.S. Solution structure of ShK toxin, a novel potassium channel inhibitor from a sea anemone. Nat. Struct. Biol. 1996, 3, 317–320. [Google Scholar] [CrossRef]
- Gendeh, G.S.; Young, L.C.; de Medeiros, C.L.; Jeyaseelan, K.; Harvey, A.L.; Chung, M.C. A new potassium channel toxin from the sea anemone Heteractis magnifica: Isolation, cDNA cloning, and functional expression. Biochemistry 1997, 36, 11461–11471. [Google Scholar] [CrossRef]
- Cotton, J.; Crest, M.; Bouet, F.; Alessandri, N.; Gola, M.; Forest, E.; Karlsson, E.; Castaneda, O.; Harvey, A.L.; Vita, C.; et al. A potassium-channel toxin from the sea anemone Bunodosoma granulifera, an inhibitor for Kv1 channels. Revision of the amino acid sequence, disulfide-bridge assignment, chemical synthesis, and biological activity. Eur. J. Biochem. 1997, 244, 192–202. [Google Scholar] [CrossRef]
- Minagawa, S.; Ishida, M.; Nagashima, Y.; Shiomi, K. Primary structure of a potassium channel toxin from the sea anemone Actinia equina. FEBS Lett. 1998, 427, 149–151. [Google Scholar] [CrossRef]
- Krishnarjuna, B.; Villegas-Moreno, J.; Mitchell, M.L.; Csoti, A.; Peigneur, S.; Amero, C.; Pennington, M.W.; Tytgat, J.; Panyi, G.; Norton, R.S. Synthesis, folding, structure and activity of a predicted peptide from the sea anemone Oulactis sp. with an ShKT fold. Toxicon 2018, 150, 50–59. [Google Scholar] [CrossRef]
- Sunanda, P.; Krishnarjuna, B.; Peigneur, S.; Mitchell, M.L.; Estrada, R.; Villegas-Moreno, J.; Pennington, M.W.; Tytgat, J.; Norton, R.S. Identification, chemical synthesis, structure, and function of a new Kv1 channel blocking peptide from Oulactis sp. Peptide Sci. 2018, 110, e24073. [Google Scholar] [CrossRef]
- Mason, B.; Cooke, I.; Moya, A.; Augustin, R.; Lin, M.F.; Satoh, N.; Bosch, T.C.G.; Bourne, D.G.; Hayward, D.C.; Andrade, N.; et al. AmAMP1 from Acropora millepora and damicornin define a family of coral-specific antimicrobial peptides related to the Shk toxins of sea anemones. Dev. Comp. Immunol. 2021, 114, 103866. [Google Scholar] [CrossRef]
- Li, R.; Yu, H.; Xue, W.; Yue, Y.; Liu, S.; Xing, R.; Li, P. Jellyfish venomics and venom gland transcriptomics analysis of Stomolophus meleagris to reveal the toxins associated with sting. J. Proteomics 2014, 106, 17–29. [Google Scholar] [CrossRef]
- Ponce, D.; Brinkman, D.L.; Potriquet, J.; Mulvenna, J. Tentacle Transcriptome and Venom Proteome of the Pacific Sea Nettle, Chrysaora fuscescens (Cnidaria: Scyphozoa). Toxins 2016, 8, 102. [Google Scholar] [CrossRef]
- Schwartz, T.W. Cellular peptide processing after a single arginyl residue. Studies on the common precursor for pancreatic polypeptide and pancreatic icosapeptide. J. Biol. Chem. 1987, 262, 5093–5099. [Google Scholar] [CrossRef]
- Mitchell, M.L.; Tonkin-Hill, G.Q.; Morales, R.A.V.; Purcell, A.W.; Papenfuss, A.T.; Norton, R.S. Tentacle Transcriptomes of the Speckled Anemone (Actiniaria: Actiniidae: Oulactis sp.): Venom-Related Components and Their Domain Structure. Mar. Biotechnol. 2020, 22, 207–219. [Google Scholar] [CrossRef]
- Rohaim, A.; Vermeulen, B.J.A.; Li, J.; Kummerer, F.; Napoli, F.; Blachowicz, L.; Medeiros-Silva, J.; Roux, B.; Weingarth, M. A distinct mechanism of C-type inactivation in the Kv-like KcsA mutant E71V. Nat. Commun. 2022, 13, 1574. [Google Scholar] [CrossRef]
- Cahalan, M.D.; Chandy, K.G. The functional network of ion channels in T lymphocytes. Immunol. Rev. 2009, 231, 59–87. [Google Scholar] [CrossRef]
- Rasband, M.N.; Park, E.W.; Vanderah, T.W.; Lai, J.; Porreca, F.; Trimmer, J.S. Distinct potassium channels on pain-sensing neurons. Proc. Natl. Acad. Sci. USA 2001, 98, 13373–13378. [Google Scholar] [CrossRef]
- O’Donovan, B.; Adeluyi, A.; Anderson, E.L.; Cole, R.D.; Turner, J.R.; Ortinski, P.I. Altered gating of K(v)1.4 in the nucleus accumbens suppresses motivation for reward. Elife 2019, 8, e47870. [Google Scholar] [CrossRef]
- Ding, W.G.; Xie, Y.; Toyoda, F.; Matsuura, H. Improved functional expression of human cardiac kv1.5 channels and trafficking-defective mutants by low temperature treatment. PLoS ONE 2014, 9, e92923. [Google Scholar] [CrossRef]
- Nattel, S.; Maguy, A.; Le Bouter, S.; Yeh, Y.H. Arrhythmogenic ion-channel remodeling in the heart: Heart failure, myocardial infarction, and atrial fibrillation. Physiol. Rev. 2007, 87, 425–456. [Google Scholar] [CrossRef]
- Sachkova, M.Y.; Landau, M.; Surm, J.M.; Macrander, J.; Singer, S.A.; Reitzel, A.M.; Moran, Y. Toxin-like neuropeptides in the sea anemone Nematostella unravel recruitment from the nervous system to venom. Proc. Natl. Acad. Sci. USA 2020, 117, 27481–27492. [Google Scholar] [CrossRef]
Name | Sequence | Disulfide Bonds |
---|---|---|
NnK-1 | CKDHHTYGVYCKDWKSSGECKKNPKGMRHFCRKTCGFC | O |
NnK-1-mu | CKEHHTYGVYCKDWKSSGECKKNPRGMRHFCRKMCGFC | O |
NnK-1-w/o d | CKDHHTYGVYCKDWKSSGECKKNPKGMRHFCRKTCGFC | X |
Gene | Primer | Sequence |
---|---|---|
hKv1.3 | NheI-Kv1.3-F Sal1-Kv1.3-R | 5′-TTTGCTAGCGCCACCATGGACGAGCGC-3′ 5′-TTTGTCGACCTAAACATCGGTGAATATCTTTT-3′ |
hKv1.1 | NheI-Kv1.1-F Sal1-Kv1.1-R | 5′-AACCGTCAGATCCGCTAGCGCCACCATGACGGTGATGTCTGGG-3′ 5′-GAGGGGCGGTACCGTCGACTTAAACATCGGTCAGTAGC-3′ |
hKv1.4 | NheI-Kv1.4-F Sal1-Kv1.4-R | 5′-TGAACCGTCAGATCCGCTAGCGCCACCATGGAGGTTGCAATGGTG-3′ 5′-GAGAGGGGCGGTACCGTCGACTCACACATCAGTCTCCAC-3′ |
hKv1.5 | NheI-Kv1.5-F Sal1-Kv1.5-R | 5′-AACCGTCAGATCCGCTAGCGCCACCATGGAGATCGCCCTGGTG-3′ 5′-GAGGGGCGGTACCGTCGACTCACAAATCTGTTTCCCG-3′ |
hKv3.1 | NheI-Kv3.1-F Sal1-Kv3.1-R | 5′- AACCGTCAGATCCGCTAGCGCCACCATGGGCCAAGGGGACGAG-3′ 5′-GAGGGGCGGTACCGTCGACTCAAGTCACTCTCACAGC-3′ |
hKv11.1 | NheI-Kv11.1-F Sal1-Kv11.1-R | 5′-AGTGAACCGTCAGATCCGCTAGCGCCACCATGCCGGTGCGGAGGGGC-3′ 5′-GGGAGAGGGGCGGTACCGTCGACCTAACTGCCCGGGTCCGAG-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-J.; Jo, Y.; Lee, S.E.; Kim, J.; Choi, J.-P.; Lee, N.; Won, H.; Woo, D.H.; Yum, S. Synthetic ShK-like Peptide from the Jellyfish Nemopilema nomurai Has Human Voltage-Gated Potassium-Channel-Blocking Activity. Mar. Drugs 2024, 22, 217. https://doi.org/10.3390/md22050217
Kim Y-J, Jo Y, Lee SE, Kim J, Choi J-P, Lee N, Won H, Woo DH, Yum S. Synthetic ShK-like Peptide from the Jellyfish Nemopilema nomurai Has Human Voltage-Gated Potassium-Channel-Blocking Activity. Marine Drugs. 2024; 22(5):217. https://doi.org/10.3390/md22050217
Chicago/Turabian StyleKim, Ye-Ji, Yejin Jo, Seung Eun Lee, Jungeun Kim, Jae-Pil Choi, Nayoung Lee, Hyokyoung Won, Dong Ho Woo, and Seungshic Yum. 2024. "Synthetic ShK-like Peptide from the Jellyfish Nemopilema nomurai Has Human Voltage-Gated Potassium-Channel-Blocking Activity" Marine Drugs 22, no. 5: 217. https://doi.org/10.3390/md22050217
APA StyleKim, Y. -J., Jo, Y., Lee, S. E., Kim, J., Choi, J. -P., Lee, N., Won, H., Woo, D. H., & Yum, S. (2024). Synthetic ShK-like Peptide from the Jellyfish Nemopilema nomurai Has Human Voltage-Gated Potassium-Channel-Blocking Activity. Marine Drugs, 22(5), 217. https://doi.org/10.3390/md22050217