Optimizing Phycocyanin Extraction from Cyanobacterial Biomass: A Comparative Study of Freeze–Thaw Cycling with Various Solvents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Yield and Purity of Phycocyanin Extracted from Arthrospira platensis
2.2. Yield and Purity of Phycocyanin Extracted from Phormidium sp.
2.3. Yield and Purity of Phycocyanin Extracted from Chlorogloeopsis fritschii
2.4. Yield and Purity of Phycocyanin Extracted from Synechocystis sp.
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muthusamy, S.; Udhayabaskar, S.; Udayakumar, G.P.; Kirthikaa, G.B.; Sivarajasekar, N. Properties and Applications of Natural Pigments Produced from Different Biological Sources—A Concise Review. In Sustainable Development in Energy and Environment; Springer Proceedings in Energy; Springer: Singapore, 2020; pp. 105–119. [Google Scholar]
- Malik, K.; Tokkas, J.; Goyal, S. Microbial Pigments: A Review. Int. J. Microb. Resour. Technol. 2012, 1, 361–365. [Google Scholar]
- Yuan, B.; Li, Z.; Shan, H.; Dashnyam, B.; Xu, X.; McClements, D.J.; Zhang, B.; Tan, M.; Wang, Z.; Cao, C. A Review of Recent Strategies to Improve the Physical Stability of Phycocyanin. Curr. Res. Food Sci. 2022, 5, 2329–2337. [Google Scholar] [CrossRef] [PubMed]
- Sekar, S.; Chandramohan, M. Phycobiliproteins as a Commodity: Trends in Applied Research, Patents and Commercialization. J. Appl. Phycol. 2008, 20, 113–136. [Google Scholar] [CrossRef]
- Soni, A.; Dubey, M.; Verma, M.; Dhankhar, R.; Kaushal, V.; Atri, R.; Sabharwal, R. Revisiting the Role of Phycocyanin in Current Clinical Practice. Int. J. Pharm. Sci. Res. 2015, 6, 4600–4950. [Google Scholar]
- Eriksen, N.T. Production of Phycocyanin—A Pigment with Applications in Biology, Biotechnology, Foods and Medicine. Appl. Microbiol. Biotechnol. 2008, 80, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Adjali, A.; Clarot, I.; Chen, Z.; Marchioni, E.; Boudier, A. Physicochemical Degradation of Phycocyanin and Means to Improve Its Stability: A Short Review. J. Pharm. Anal. 2022, 12, 406–414. [Google Scholar] [CrossRef]
- Figueira, F.d.S.; Moraes, C.C.; Kalil, S.J. C-Phycocyanin Purification: Multiple Processes for Different Applications. Braz. J. Chem. Eng. 2018, 35, 1117–1128. [Google Scholar] [CrossRef]
- Pez Jaeschke, D.; Rocha Teixeira, I.; Damasceno Ferreira Marczak, L.; Domeneghini Mercali, G. Phycocyanin from Spirulina: A Review of Extraction Methods and Stability. Food Res. Int. 2021, 143, 110314. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Wu, Y.; Wang, G.; Jia, T.; Zhang, Y. Purification and Bioactivities of Phycocyanin. Crit. Rev. Food Sci. Nutr. 2017, 57, 3840–3849. [Google Scholar] [CrossRef]
- Silva, L.A.; Kuhn, K.R.; Moraes, C.C.; Burkert, C.A.V.; Kalil, S.J. Experimental Design as a Tool for Optimization of C-Phycocyanin Purification by Precipitation from Spirulina Platensis. J. Braz. Chem. Soc. 2009, 20, 5–12. [Google Scholar] [CrossRef]
- Chaiklahan, R.; Chirasuwan, N.; Loha, V.; Tia, S.; Bunnag, B. Separation and Purification of Phycocyanin from Spirulina sp. Using a Membrane Process. Bioresour. Technol. 2011, 102, 7159–7164. [Google Scholar] [CrossRef] [PubMed]
- Chittapun, S.; Jonjaroen, V.; Khumrangsee, K.; Charoenrat, T. C-Phycocyanin Extraction from Two Freshwater Cyanobacteria by Freeze Thaw and Pulsed Electric Field Techniques to Improve Extraction Efficiency and Purity. Algal Res. 2020, 46, 101789. [Google Scholar] [CrossRef]
- Moraes, C.C.; De Medeiros Burkert, J.F.; Kalil, S.J. C-phycocyanin Extraction Process for Large-scale Use. J. Food Biochem. 2010, 34, 133–148. [Google Scholar] [CrossRef]
- Moraes, C.C.; Sala, L.; Cerveira, G.P.; Kalil, S.J. C-Phycocyanin Extraction from Spirulina Platensis Wet Biomass. Braz. J. Chem. Eng. 2011, 28, 45–49. [Google Scholar] [CrossRef]
- Schipper, K.; Fortunati, F.; Oostlander, P.C.; Al Muraikhi, M.; Al Jabri, H.M.S.J.; Wijffels, R.H.; Barbosa, M.J. Production of Phycocyanin by Leptolyngbya sp. in Desert Environments. Algal Res. 2020, 47, 101875. [Google Scholar] [CrossRef]
- Berrouane, N.E.H.; Attal, F.S.; Benchabane, A.; Saghour, I.; Bitam, A.; Gachovska, T.; Amiali, M. Freeze–Thaw-, Enzyme-, Ultrasound- and Pulsed Electric Field-Assisted Extractions of C-Phycocyanin from Spirulina Platensis Dry Biomass. J. Food Meas. Charact. 2022, 16, 1625–1635. [Google Scholar] [CrossRef]
- Tavanandi, H.A.; Mittal, R.; Chandrasekhar, J.; Raghavarao, K.S.M.S. Simple and Efficient Method for Extraction of C-Phycocyanin from Dry Biomass of Arthospira Platensis. Algal Res. 2018, 31, 239–251. [Google Scholar] [CrossRef]
- Juin, C.; Chérouvrier, J.-R.; Thiéry, V.; Gagez, A.-L.; Bérard, J.-B.; Joguet, N.; Kaas, R.; Cadoret, J.-P.; Picot, L. Microwave-Assisted Extraction of Phycobiliproteins from Porphyridium Purpureum. Appl. Biochem. Biotechnol. 2015, 175, 1–15. [Google Scholar] [CrossRef]
- İlter, I.; Akyıl, S.; Demirel, Z.; Koç, M.; Conk-Dalay, M.; Kaymak-Ertekin, F. Optimization of Phycocyanin Extraction from Spirulina Platensis Using Different Techniques. J. Food Compos. Anal. 2018, 70, 78–88. [Google Scholar] [CrossRef]
- Khandual, S.; Sanchez, E.O.L.; Andrews, H.E.; De la Rosa, J.D.P. Phycocyanin Content and Nutritional Profile of Arthrospira Platensis from Mexico: Efficient Extraction Process and Stability Evaluation of Phycocyanin. BMC Chem. 2021, 15, 24. [Google Scholar] [CrossRef]
- Muinao, T.; Pal, M.; Boruah, H.P.D. Cytosolic and Transmembrane Protein Extraction Methods of Breast and Ovarian Cancer Cells: A Comparative Study. J. Biomol. Tech. 2018, 29, 71. [Google Scholar] [CrossRef]
- Raorane, M.L.; Narciso, J.O.; Kohli, A. Total Soluble Protein Extraction for Improved Proteomic Analysis of Transgenic Rice Plant Roots. In Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA, 2016; Volume 1385, pp. 139–147. [Google Scholar]
- Gorgich, M.; Passos, M.L.C.; Mata, T.M.; Martins, A.A.; Saraiva, M.L.M.F.S.; Caetano, N.S. Enhancing Extraction and Purification of Phycocyanin from Arthrospira sp. with Lower Energy Consumption. Energy Rep. 2020, 6, 312–318. [Google Scholar] [CrossRef]
- Stramarkou, M.; Papadaki, S.; Kyriakopoulou, K.; Krokida, M. Recovery of Functional Pigments from Four Different Species of Microalgae. IOSR J. Environ. Sci. Toxicol. Food Technol. 2016, 10, 26–30. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Paciulli, M.; Abbaspourrad, A. Extraction of Phycocyanin—A Natural Blue Colorant from Dried Spirulina Biomass: Influence of Processing Parameters and Extraction Techniques. J. Food Sci. 2020, 85, 727–735. [Google Scholar] [CrossRef]
- Park, J.; Lee, H.; Dinh, T.B.; Choi, S.; De Saeger, J.; Depuydt, S.; Brown, M.T.; Han, T. Commercial Potential of the Cyanobacterium Arthrospira Maxima: Physiological and Biochemical Traits and the Purification of Phycocyanin. Biology 2022, 11, 628. [Google Scholar] [CrossRef]
- Fabre, J.F.; Niangoran, N.U.F.; Gaignard, C.; Buso, D.; Mouloungui, Z.; Valentin, R. Extraction, Purification and Stability of C-Phycocyanin from Arthrospira Platensis. Eur. Food Res. Technol. 2022, 248, 1583–1599. [Google Scholar] [CrossRef]
- Lijassi, I.; Arahou, F.; Koudi, S.T.H.; Wahby, A.; Benaich, S.; Rhazi, L.; Wahby, I. Optimized Extraction of Phycobiliproteins from Arthrospira Platensis: Quantitative and Qualitative Assessment of C-Phycocyanin, Allophycocyanin, and Phycoerythrin. Braz. J. Chem. Eng. 2024. [Google Scholar] [CrossRef]
- Dianursanti; Hafidzah, M.A. The Enhancement of Phycocyanin Yield and Purity from Spirulina Platensis Using Freeze-Thawing Method on Various Solvents. In AIP Conference Proceedings; American Institute of Physics Inc.: College Park, MD, USA, 2021; Volume 2344. [Google Scholar]
- Mastropetros, S.G.; Pispas, K.; Zagklis, D.; Tsigkou, K.; Ali, S.S.; Ariyadasa, T.U.; Kornaros, M. Effect of a Dark-Colored Substrate on the Production of Phycocyanin by the Cyanobacterium Phormidium sp. J. Environ. Chem. Eng. 2023, 11, 110580. [Google Scholar] [CrossRef]
- Hotos, G.N. Culture Growth of the Cyanobacterium Phormidium sp. In Various Salinity and Light Regimes and Their Influence on Its Phycocyanin and Other Pigments Content. J. Mar. Sci. Eng. 2021, 9, 798. [Google Scholar] [CrossRef]
- Avci, S.; Haznedaroglu, B.Z. Pretreatment of Algal and Cyanobacterial Biomass for High Quality Phycocyanin Extraction. J. Appl. Phycol. 2022, 34, 2015–2026. [Google Scholar] [CrossRef]
- Patel, A.; Mishra, S.; Pawar, R.; Ghosh, P.K. Purification and Characterization of C-Phycocyanin from Cyanobacterial Species of Marine and Freshwater Habitat. Protein Expr. Purif. 2005, 40, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Nair, M.S.; Rajarathinam, R.; Velmurugan, S.; Sam, K.J.; Arumugam, L. Statistical Optimization and Downstream Processing of C-Phycocyanin from Phormidium Valderianum. Chem. Eng. Technol. 2023, 46, 279–289. [Google Scholar] [CrossRef]
- Silkina, A.; Kultschar, B.; Llewellyn, C.A. Far-Red Light Acclimation for Improved Mass Cultivation of Cyanobacteria. Metabolites 2019, 9, 170. [Google Scholar] [CrossRef]
- Chou, P.; Candelo, V.; Llewellyn, C.A. Separating and Purifying Mycosporine-like Amino Acids from Cyanobacteria for Application in Commercial Sunscreen Formulations. BioTech 2023, 12, 16. [Google Scholar] [CrossRef] [PubMed]
- Imbimbo, P.; D’Elia, L.; Corrado, I.; Alvarez-Rivera, G.; Marzocchella, A.; Ibáñez, E.; Pezzella, C.; Branco dos Santos, F.; Monti, D.M. An Alternative Exploitation of Synechocystis sp. PCC6803: A Cascade Approach for the Recovery of High Added-Value Products. Molecules 2023, 28, 3144. [Google Scholar] [CrossRef] [PubMed]
- Sheng, J.; Vannela, R.; Rittmann, B.E. Evaluation of Cell-Disruption Effects of Pulsed-Electric-Field Treatment of Synechocystis PCC 6803. Environ. Sci Technol 2011, 45, 3795–3802. [Google Scholar] [CrossRef] [PubMed]
- Aoki, J.; Sasaki, D.; Asayama, M. Development of a Method for Phycocyanin Recovery from Filamentous Cyanobacteria and Evaluation of Its Stability and Antioxidant Capacity. BMC Biotechnol. 2021, 21, 40. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.; Pabbi, S. A Simple Improved Protocol for Purification of C-Phycocyanin from Overproducing Cyanobacteria and Its Characterization. J. Appl. Phycol. 2022, 34, 799–810. [Google Scholar] [CrossRef]
- Senatore, V.; Rueda, E.; Bellver, M.; Díez-Montero, R.; Ferrer, I.; Zarra, T.; Naddeo, V.; García, J. Production of Phycobiliproteins, Bioplastics and Lipids by the Cyanobacteria Synechocystis sp. Treating Secondary Effluent in a Biorefinery Approach. Sci. Total Environ. 2023, 857, 159343. [Google Scholar] [CrossRef]
- Hsieh-Lo, M.; Castillo, G.; Ochoa-Becerra, M.A.; Mojica, L. Phycocyanin and Phycoerythrin: Strategies to Improve Production Yield and Chemical Stability. Algal Res. 2019, 42, 101600. [Google Scholar] [CrossRef]
- Saran, S.; Puri, N.; Jasuja, N.D.; Kumar, M.; Sharma, G. Optimization, Purification and Characterization of Phycocyanin from Spirulina Platensis. Int. J. Appl. Pure Sci. Agric. 2016, 2, 15–21. [Google Scholar]
- da Costa Ores, J.; de Amarante, M.C.A.; Kalil, S.J. Co-Production of Carbonic Anhydrase and Phycobiliproteins by Spirulina sp. and Synechococcus Nidulans. Bioresour. Technol. 2016, 219, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Priatni, S.; Ratnaningrum, D.; Kosasih, W.; Warya, S.; Audina, E. IOP Conference Series: Earth and Environmental Science Phycobiliproteins Production and Heavy Metals Reduction Ability of Porphyridium Sp The Screening of Antidiabetic Activity and The Cultivation Study of Local Marine Microalgae Phycobiliproteins Production and Heavy Metals Reduction Ability of Porphyridium sp. IOP Conf. Ser. Earth Environ. Sci. 2018, 160, 12006. [Google Scholar] [CrossRef]
- Mogany, T.; Kumari, S.; Swalaha, F.M.; Bux, F. Extraction and Characterisation of Analytical Grade C-Phycocyanin from Euhalothece sp. J. Appl. Phycol. 2019, 31, 1661–1674. [Google Scholar] [CrossRef]
- Aiba, S.; Ogawa, T. Assessment of Growth Yield of a Blue—Green Alga, Spirulina Platensis, in Axenic and Continuous Culture. Microbiology 1977, 102, 179–182. [Google Scholar] [CrossRef]
- Clesceri, L.S. Standard Methods for the Examination of Water and Wastewater; American Public Health Association; American Water Works Association and Water Environment Federation: Washington, DC, USA, 1998. [Google Scholar]
- Teixeira, I.R.; Marczak, L.D.F.; Mercali, G.D.; Jaeschke, D.P. Saline Extraction Assisted by Ultrasound: A Method to Obtain Purified Phycocyanin. J. Biotechnol. 2024, 384, 38–44. [Google Scholar] [CrossRef]
- Noble, J.E.; Bailey, M.J.A. Chapter 8 Quantitation of Protein. In Methods in Enzymology; Burgess, R.R., Deutscher, M.P., Eds.; Academic Press: Cambridge, MA, USA, 2009; Volume 463, pp. 73–95. ISBN 0076-6879. [Google Scholar]
- Manthos, G.; Zagklis, D.; Mesisklis, K.; Kornaros, M. Effect of Two-Phase Olive Pomace Acidification on Odor Prevention and Kernel Oil Acidity Reduction as a Function of Storage Duration. J. Environ. Manag. 2021, 298, 113453. [Google Scholar] [CrossRef]
- Zivot, E.; Wang, J. Rolling Analysis of Time Series. In Modeling Financial Time Series with S-Plus®; Springer: New York, NY, USA, 2003; pp. 299–346. [Google Scholar] [CrossRef]
Cycle | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th |
---|---|---|---|---|---|---|---|---|---|
Solution | |||||||||
CaCl2 | 0.92 ± 0.14 a | 0.66 ± 0.07 a,b | 0.71 ± 0.11 a,b | 0.69 ± 0.01 a,b | 0.61 ± 0.01 a,b | 0.58 ± 0.09 a,b | 0.54 ± 0.09 b | 0.51 ± 0.08 b | 0.46 ± 0.08 b |
PB pH 6 | 0.27 ± 0.10 a | 0.78 ± 0.09 a | 0.77 ± 0.11a | 0.74 ± 0.15 a | 0.75 ± 0.16 a | 0.70 ± 0.16 a | 0.67 ± 0.14 a | 0.65 ± 0.12 a | 0.64 ± 0.13 a |
PB pH 6.5 | 0.67 ± 0.21 a | 0.72 ± 0.24 a | 0.73 ± 0.22 a | 0.61 ± 0.12 a | 0.61 ± 0.13 a | 0.59 ± 0.11 a | 0.59 ± 0.11 a | 0.59 ± 0.12 a | 0.56 ± 0.13 a |
PB pH 7 | 0.30 ± 0.07 a | 0.71 ± 0.15 a | 0.64 ± 0.14 a | 0.60 ± 0.13 a | 0.59 ± 0.13 a | 0.54 ± 0.12 a | 0.54 ± 0.13 a | 0.52 ± 0.11 a | 0.50 ± 0.13 a |
Tris-HCl pH 7 | 0.62 ± 0.09 a | 0.47 ± 0.08 a,b | 0.45 ± 0.07 a,b | 0.44 ± 0.08 a,b | 0.42 ± 0.08 a,b | 0.41 ± 0.08 a,b | 0.36 ± 0.07 a,b | 0.34 ± 0.06 a,b | 0.31 ± 0.05 b |
Tris-HCl pH 7.5 | 0.57 ± 0.12 a | 0.44 ± 0.06 a,b | 0.41 ± 0.06 a,b | 0.37 ± 0.07 a,b | 0.35 ± 0.06 a,b | 0.33 ± 0.06 a,b | 0.29 ± 0.05 b | 0.28 ± 0.05 b | 0.25 ± 0.04 b |
Tris-HCl pH 8 | 0.45 ± 0.03 a | 0.38 ± 0.07 a,b | 0.34 ± 0.06 a,b,c | 0.28 ± 0.05 b,c,d | 0.24 ± 0.03 b,c,d | 0.22 ± 0.02 b,c,d | 0.19 ± 0.01 c,d | 0.17 ± 0.01 d | 0.16 ± 0.01 d |
DW | 0.22 ± 0.08 a | 0.15 ± 0.02 a | 0.13 ± 0.02 a | 0.12 ± 0.02 a | 0.11 ± 0.02 a | 0.11 ± 0.01 a | 0.11 ± 0.01 a | 0.10 ± 0.01 a | 0.10 ± 0.01 a |
Tap Water | 0.41 ± 0.03 a | 0.27 ± 0.03 a,b | 0.22 ± 0.02 b | 0.17 ± 0.00 b | 0.13 ± 0.00 b | 0.12 ± 0.01 b | 0.09 ± 0.01 b | 0.09 ± 0.01 b | 0.08 ± 0.01 b |
Cycle | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th |
---|---|---|---|---|---|---|---|---|---|
Solution | |||||||||
CaCl2 | 1.50 ± 0.07 a | 1.39 ± 0.10 a | 1.46 ± 0.09 a | 1.45 ± 0.16 a | 1.46 ± 0.25 a | 1.42 ± 0.23 a | 1.30 ± 0.23 a | 1.21 ± 0.28 a | 1.07 ± 0.31 a |
PB pH 6 | 0.73 ± 0.01 b,c | 0.57 ± 0.00 d | 0.75 ± 0.00 a,b | 0.74 ± 0.00 b,c | 0.77 ± 0.01 a | 0.75 ± 0.00 ab | 0.77 ± 0.00 a | 0.77 ± 0.01 a | 0.72 ± 0.01 c |
PB pH 6.5 | 0.61 ± 0.02 b | 0.52 ± 0.00 c | 0.67 ± 0.00 a,b | 0.67 ± 0.02 a,b | 0.71 ± 0.02 a | 0.68 ± 0.02 a,b | 0.67 ± 0.03 a,b | 0.67 ± 0.02 a,b | 0.66 ± 0.00 a,b |
PB pH 7 | 0.47 ± 0.03 c | 0.55 ± 0.05 b,c | 0.61 ± 0.04 a,b | 0.61 ± 0.00 a,b | 0.67 ± 0.02 a,b | 0.68 ± 0.03 a | 0.67 ± 0.05 a,b | 0.61 ± 0.02 a,b | 0.60 ± 0.03 a,b,c |
Tris-HCl pH 7 | 0.50 ± 0.01 a | 0.43 ± 0.00 b | 0.41 ± 0.01 c | 0.39 ± 0.01 c | 0.37 ± 0.00 d | 0.36 ± 0.00 d | 0.31 ± 0.00 e | 0.29 ± 0.00 f | 0.26 ± 0.00 g |
Tris-HCl pH 7.5 | 0.49 ± 0.01 a | 0.44 ± 0.02 b | 0.40 ± 0.00 c | 0.38 ± 0.01 c,d | 0.36 ± 0.00 d,e | 0.33 ± 0.00 e | 0.30 ± 0.00 f | 0.30 ± 0.00 f | 0.26 ± 0.00 g |
Tris-HCl pH 8 | 0.49 ± 0.03 a | 0.39 ± 0.03 b | 0.37 ± 0.03 b,c | 0.34 ± 0.02 b,c,d | 0.32 ± 0.03 b,c,d,e | 0.30 ± 0.02 c,d,e,f | 0.26 ± 0.01 d,e,f | 0.24 ± 0.00 e,f | 0.23 ± 0.00 f |
DW | 0.68 ± 0.04 a,b | 0.59 ± 0.01 b | 0.70 ± 0.03 a,b | 0.69 ± 0.03 a,b | 0.72 ± 0.04 a | 0.73 ± 0.03 a | 0.71 ± 0.00 a | 0.67 ± 0.03 ab | 0.66 ± 0.01 a,b |
Tap Water | 0.77 ± 0.27 a | 0.59 ± 0.19 a | 0.65 ± 0.22 a | 0.66 ± 0.21 a | 0.67 ± 0.22 a | 0.64 ± 0.21 a | 0.67 ± 0.23 a | 0.61 ± 0.28 a | 0.59 ± 0.31 a |
Cycle | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th |
---|---|---|---|---|---|---|---|---|---|
Solution | |||||||||
CaCl2 | 0.17 ± 0.09 b | 0.50 ± 0.12 ab | 0.80 ± 0.23 a | 0.79 ± 0.12 a | 0.72 ± 0.07 a | 0.65 ± 0.05 a | 0.57 ± 0.04 ab | 0.48 ± 0.04 ab | 0.39 ± 0.04 ab |
PB pH 6 | 0.02 ± 0.01 d | 0.08 ± 0.02 c,d | 0.44 ± 0.02 b,c | 0.76 ± 0.04 a,b | 0.96 ± 0.11 a | 1.02 ± 0.09 a | 1.03 ± 0.13 a | 1.04 ± 0.15 a | 0.99 ± 0.15 a |
PB pH 6.5 | 0.22 ± 0.11 c | 0.40 ± 0.21 b,c | 0.71 ± 0.11 a,b,c | 0.90 ± 0.04 a,b | 1.01 ± 0.06 a | 1.04 ± 0.14 a | 1.00 ± 0.14 a | 0.78 ± 0.14 a,b | 0.70 ± 0.14 a,b,c |
PB pH 7 | 0.10 ± 0.01 b | 0.39 ± 0.35 a,b | 0.60 ± 0.33 a,b | 0.79 ± 0.26 a,b | 0.88 ± 0.22 a,b | 0.94 ± 0.15 a,b | 0.94 ± 0.14 a | 0.95 ± 0.11 a | 0.92 ± 0.10 a,b |
Tris-HCl pH 7 | 0.80 ± 0.14 a | 0.59 ± 0.14 a,b | 0.50 ± 0.14 a,b | 0.39 ± 0.15 a,b | 0.32 ± 0.14 a,b | 0.25 ± 0.14 b | 0.20 ± 0.13 b | 0.16 ± 0.12 b | 0.13 ± 0.10 b |
Tris-HCl pH 7.5 | 0.67 ± 0.14 a | 0.47 ± 0.15 a,b | 0.41 ± 0.16 a,b | 0.31 ± 0.16 a,b | 0.25 ± 0.15 a,b | 0.19 ± 0.13 a,b | 0.15 ± 0.10 b | 0.10 ± 0.04 b | 0.10 ± 0.07 b |
Tris-HCl pH 8 | 0.64 ± 0.14 a | 0.38 ± 0.16 a,b | 0.30 ± 0.15 a,b | 0.22 ± 0.13 a,b | 0.14 ± 0.06 a,b | 0.14 ± 0.09 a,b | 0.11 ± 0.07 b | 0.09 ± 0.05 b | 0.05 ± 0.03 b |
DW | 0.21 ± 0.15 d | 0.37 ± 0.00 c,d | 0.61 ± 0.01 b,c | 0.76 ± 0.01 a,b | 0.91 ± 0.04 a,b | 0.97 ± 0.06 a | 1.02 ± 0.09 a | 1.01 ± 0.10 a | 0.97 ± 0.09 a |
Cycle | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th | 9th |
---|---|---|---|---|---|---|---|---|---|
Solution | |||||||||
Tris-HCl pH 7 | 0.61 ± 0.02 d | 1.04 ± 0.04 c | 1.21 ± 0.07 a,b | 1.33 ± 0.02 a | 1.37 ± 0.02 a | 1.29 ± 0.01 a | 1.29 ± 0.01 a | 1.18 ± 0.05 a | 1.08 ± 0.08 c |
Tris-HCl pH 7.5 | 0.49 ± 0.02 d | 0.93 ± 0.08 b,c | 1.09 ± 0.09 a,b | 1.14 ± 0.08 a,b | 1.17 ± 0.08 a | 1.13 ± 0.02 a,b | 1.02 ± 0.04 a,b,c | 1.00 ± 0.05 a,b,c | 0.82 ± 0.03 c |
Tris-HCl pH 8 | 0.39 ± 0.02 a | 0.57 ± 0.20 a | 0.68 ± 0.25 a | 0.74 ± 0.24 a | 0.81 ± 0.18 a | 0.75 ± 0.01 a | 0.73 ± 0.16 a | 0.69 ± 0.15 a | 0.60 ± 0.18 a |
Microorganism | Extraction Solvent | Freeze–Thaw Cycles | Phycocyanin Yield | Purity | Reference |
---|---|---|---|---|---|
Arthrospira (Spirulina) platensis | Sodium Phosphate buffer 0.1 M pH 7 | 3 | 146 mg g−1 | 0.8 | [44] |
Arthrospira (Spirulina) sp. LEB18 | Tris-HCl buffer 10 mM pH 8.3 | 2 | 58 mg g−1 | n.a. | [45] |
4 | 101 mg g−1 | ||||
Arthrospira platensis | Sodium Phosphate buffer 50 mM pH 7 + 1 mM sodium azide | 1 | 175 mg g−1 | 0.8 | [34] |
Arthrospira platensis SAG 21.99 | Tris-HCl buffer 1 M pH 7 | 1 | 113 mg g−1 | 0.6 | This study |
N. commune TUBT05 | Tris-HCl buffer 1 M pH 8 | 3 | 27.4 mg g−1 | 0.5 | [13] |
Sodium Phosphate buffer 0.1 M pH 7 | 3 | 29.7 mg g−1 | 0.6 | ||
Chlorogloeopsis fritschii SAG 1411–1a | Tris-HCl buffer 1 M pH 7 | 1 | 82.2 mg g−1 | 0.8 | This study |
Sodium Phosphate buffer 0.1 M pH 6.5 | 7 | 120 mg g−1 | 1 | ||
Leptolyngbya sp. QUCCCM 56 | Milli-Q water | 4 | 80.1 mg g−1 | 2 | [16] |
Porphyridium sp. | Modified F2 medium | 1 | 0.1 mg mL−1 | n.a. | [46] |
Euhalothece sp. | Sodium Phosphate buffer 50 mM pH 7 | 1 | 35.3 mg g−1 | >2 | [47] |
Phosphate Buffer Saline | 1 | 31.1 mg g−1 | n.a. | ||
Synechocystis sp. PCC 6803 | Tris-HCl buffer 1 M pH 7 | 2 | 117 mg g−1 | 1 | This study |
Phormidium sp. | Sodium Phosphate buffer 0.5 M pH 7 | 1 | 22.6 mg g−1 | n.a. | [32] |
Phormidium sp. | Sodium Phosphate buffer 50 mM pH 7 1 mM sodium azide | 1 | 41 mg g−1 | 0.7 | [34] |
Phormidium sp. | Potassium Phosphate buffer 10 mM pH 7 | 1 | 48 mg g−1 | 0.6 | [33] |
Phormidium sp. | 0.1 M CaCl2 | 1 | 83 mg g−1 | 1.5 | This study |
Deionized water | 1 | 104 mg g−1 | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pispas, K.; Manthos, G.; Sventzouri, E.; Geroulia, M.; Mastropetros, S.G.; Ali, S.S.; Kornaros, M. Optimizing Phycocyanin Extraction from Cyanobacterial Biomass: A Comparative Study of Freeze–Thaw Cycling with Various Solvents. Mar. Drugs 2024, 22, 246. https://doi.org/10.3390/md22060246
Pispas K, Manthos G, Sventzouri E, Geroulia M, Mastropetros SG, Ali SS, Kornaros M. Optimizing Phycocyanin Extraction from Cyanobacterial Biomass: A Comparative Study of Freeze–Thaw Cycling with Various Solvents. Marine Drugs. 2024; 22(6):246. https://doi.org/10.3390/md22060246
Chicago/Turabian StylePispas, Konstantinos, Georgios Manthos, Eirini Sventzouri, Maria Geroulia, Savvas Giannis Mastropetros, Sameh Samir Ali, and Michael Kornaros. 2024. "Optimizing Phycocyanin Extraction from Cyanobacterial Biomass: A Comparative Study of Freeze–Thaw Cycling with Various Solvents" Marine Drugs 22, no. 6: 246. https://doi.org/10.3390/md22060246
APA StylePispas, K., Manthos, G., Sventzouri, E., Geroulia, M., Mastropetros, S. G., Ali, S. S., & Kornaros, M. (2024). Optimizing Phycocyanin Extraction from Cyanobacterial Biomass: A Comparative Study of Freeze–Thaw Cycling with Various Solvents. Marine Drugs, 22(6), 246. https://doi.org/10.3390/md22060246