Quality Assessment of Fish Oil Obtained after Enzymatic Hydrolysis of a Mixture of Rainbow Trout (Oncorhynchus mykiss) and Atlantic Salmon (Salmo salar) Rest Raw Material Pretreated by High Pressure
Abstract
:1. Introduction
2. Results and Discussion
2.1. Lipid Oxidation Parameters
2.2. Determination of FFAs
2.3. Fatty Acid Composition
2.4. Color Measurements (Yellowness)
3. Materials and Methods
3.1. Preparation of Samples
3.2. Lipid Oxidation Parameters
3.3. Determination of Free Fatty Acids (FFAs)
3.4. Fatty Acid Composition
3.5. Color Measurement
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Henchion, M.; Hayes, M.; Mullen, A.M.; Fenelon, M.; Tiwari, B. Future protein supply and demand: Strategies and factors influencing a sustainable equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2022. Available online: https://www.un.org/development/desa/pd/content/world-population-prospects-2022 (accessed on 18 April 2024).
- Ahuja, I.; Dauksas, E.; Remme, J.F.; Richardsen, R.; Løes, A.-K. Fish and fish waste-based fertilizers in organic farming—With status in Norway: A review. Waste Manag. 2020, 115, 95–112. [Google Scholar] [CrossRef]
- Rustad, T.; Storrø, I.; Slizyte, R. Possibilities for the utilisation of marine by-products. Int. J. Food Sci. Technol. 2011, 46, 2001–2014. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Omega-3 fatty acids in inflammation and autoimmune diseases. J. Am. Coll. Nutr. 2002, 21, 495–505. [Google Scholar] [CrossRef]
- Watanabe, Y.; Tatsuno, I. Omega-3 polyunsaturated fatty acids focusing on eicosapentaenoic acid and docosahexaenoic acid in the prevention of cardiovascular diseases: A review of the state-of-the-art. Expert Rev. Clin. Pharmacol. 2021, 14, 79–93. [Google Scholar] [CrossRef]
- Fiori, L.; Solana, M.; Tosi, P.; Manfrini, M.; Strim, C.; Guella, G. Lipid profiles of oil from trout (Oncorhynchus mykiss) heads, spines and viscera: Trout by-products as a possible source of omega-3 lipids? Food Chem. 2012, 134, 1088–1095. [Google Scholar] [CrossRef]
- Santhanam, R.; Ramesh, S.; Nivedhitha, S.; Balasundari, S. Pharmaceuticals and Nutraceuticals from Fish and Fish Wastes; Apple Academic Press: Point Pleasant, NJ, USA, 2022. [Google Scholar]
- Cooney, R.; de Sousa, D.B.; Fernández-Ríos, A.; Mellett, S.; Rowan, N.; Morse, A.P.; Hayes, M.; Laso, J.; Regueiro, L.; Wan, A.H. A circular economy framework for seafood waste valorisation to meet challenges and opportunities for intensive sustainability. J. Clean. Prod. 2023, 392, 136283. [Google Scholar] [CrossRef]
- Hathwar, S.C.; Bijinu, B.; Rai, A.K.; Narayan, B. Simultaneous recovery of lipids and proteins by enzymatic hydrolysis of fish industry waste using different commercial proteases. Appl. Biochem. Biotechnol. 2011, 164, 115–124. [Google Scholar] [CrossRef]
- Šližyte, R.; Daukšas, E.; Falch, E.; Storrø, I.; Rustad, T. Yield and composition of different fractions obtained after enzymatic hydrolysis of cod (Gadus morhua) by-products. Process Biochem. 2005, 40, 1415–1424. [Google Scholar] [CrossRef]
- Ivanovs, K.; Blumberga, D. Extraction of fish oil using green extraction methods: A short review. Energy Procedia 2017, 128, 477–483. [Google Scholar] [CrossRef]
- Maitan-Alfenas, G.P.; Visser, E.M.; Guimarães, V.M. Enzymatic hydrolysis of lignocellulosic biomass: Converting food waste in valuable products. Curr. Opin. Food Sci. 2015, 1, 44–49. [Google Scholar] [CrossRef]
- Deepika, D.; Vegneshwaran, V.; Julia, P.; Sukhinder, K.; Sheila, T.; Heather, M.; Wade, M. Investigation on oil extraction methods and its influence on omega-3 content from cultured salmon. J. Food Process. Technol. 2014, 5, 12. [Google Scholar] [CrossRef]
- García-Moreno, P.J.; Morales-Medina, R.; Pérez-Gálvez, R.; Bandarra, N.M.; Guadix, A.; Guadix, E.M. Optimisation of oil extraction from sardine (Sardina pilchardus) by hydraulic pressing. Int. J. Food Sci. Technol. 2014, 49, 2167–2175. [Google Scholar] [CrossRef]
- Rubio-Rodríguez, N.; De Diego, S.M.; Beltrán, S.; Jaime, I.; Sanz, M.T.; Rovira, J. Supercritical fluid extraction of fish oil from fish by-products: A comparison with other extraction methods. J. Food Eng. 2012, 109, 238–248. [Google Scholar] [CrossRef]
- Routray, W.; Dave, D.; Ramakrishnan, V.V.; Murphy, W. Production of high quality fish oil by enzymatic protein hydrolysis from cultured Atlantic salmon by-products: Investigation on effect of various extraction parameters using central composite rotatable design. Waste Biomass Valorization 2018, 9, 2003–2014. [Google Scholar] [CrossRef]
- Vázquez, J.A.; Meduíña, A.; Durán, A.I.; Nogueira, M.; Fernández-Compás, A.; Pérez-Martín, R.I.; Rodríguez-Amado, I. Production of valuable compounds and bioactive metabolites from by-products of fish discards using chemical processing, enzymatic hydrolysis, and bacterial fermentation. Mar. Drugs 2019, 17, 139. [Google Scholar] [CrossRef]
- Ali, A.; Wei, S.; Liu, Z.; Fan, X.; Sun, Q.; Xia, Q.; Liu, S.; Hao, J.; Deng, C. Non-thermal processing technologies for the recovery of bioactive compounds from marine by-products. LWT 2021, 147, 111549. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Q.; Liu, S.; Wei, S.; Xia, Q.; Ji, H.; Deng, C.; Hao, J. Extraction of fish oil from fish heads using ultra-high pressure pre-treatment prior to enzymatic hydrolysis. Innov. Food Sci. Emerg. Technol. 2021, 70, 102670. [Google Scholar] [CrossRef]
- Kotsoni, E.; Daukšas, E.; Aas, G.H.; Rustad, T.; Tiwari, B.K.; Cropotova, J. Effect of high-pressure pretreatment on enzymatic hydrolysis of a mixture of rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar) rest raw material. Front. Sustain. Food Syst. 2024, 8, 1313975. [Google Scholar] [CrossRef]
- de Oliveira, F.A.; Neto, O.C.; dos Santos, L.M.R.; Ferreira, E.H.R.; Rosenthal, A. Effect of high pressure on fish meat quality—A review. Trends Food Sci. Technol. 2017, 66, 1–19. [Google Scholar] [CrossRef]
- Bolumar, T.; Andersen, M.L.; Orlien, V. Mechanisms of radical formation in beef and chicken meat during high pressure processing evaluated by electron spin resonance detection and the addition of antioxidants. Food Chem. 2014, 150, 422–428. [Google Scholar] [CrossRef]
- Medina-Meza, I.G.; Barnaba, C.; Barbosa-Cánovas, G.V. Effects of high pressure processing on lipid oxidation: A review. Innov. Food Sci. Emerg. Technol. 2014, 22, 1–10. [Google Scholar] [CrossRef]
- Truong, B.Q.; Buckow, R.; Stathopoulos, C.E.; Nguyen, M.H. Advances in high-pressure processing of fish muscles. Food Eng. Rev. 2015, 7, 109–129. [Google Scholar] [CrossRef]
- Codex, S. STAN 329-2017; Standard for Fish Oils. Codex Alimentarius Commission: Rome, Italy, 2017.
- Kiokias, S.; Varzakas, T.H.; Arvanitoyannis, I.S.; Labropoulos, A.E. 12 Lipid Oxidation and Control of Oxidation. Available online: https://www.researchgate.net/profile/Sotirios-Kiokias/publication/285327829_Lipid_Oxidation_and_Control_of_Oxidation/links/600d6a4c45851553a0682f72/Lipid-Oxidation-and-Control-of-Oxidation.pdf (accessed on 28 May 2024).
- Chelh, I.; Gatellier, P.; Santé-Lhoutellier, V. Characterisation of fluorescent Schiff bases formed during oxidation of pig myofibrils. Meat Sci. 2007, 76, 210–215. [Google Scholar] [CrossRef]
- Estévez, M. Protein carbonyls in meat systems: A review. Meat Sci. 2011, 89, 259–279. [Google Scholar] [CrossRef]
- Cropotova, J.; Mozuraityte, R.; Standal, I.B.; Ojha, S.; Rustad, T.; Tiwari, B. Influence of high-pressure processing on quality attributes of haddock and mackerel minces during frozen storage, and fishcakes prepared thereof. Innov. Food Sci. Emerg. Technol. 2020, 59, 102236. [Google Scholar] [CrossRef]
- Júnior, B.; Tribst, A.A.L.; Cristianini, M. Effect of high-pressure technologies on enzymes applied in food processing. In Enzyme inhibitors and Activators; IntechOpen: London, UK, 2017; pp. 49–72. [Google Scholar] [CrossRef]
- Rashid, M.T.; Liu, K.; Han, S.; Jatoi, M.A. The effects of thermal treatment on lipid oxidation, protein changes, and storage stabilization of rice bran. Foods 2022, 11, 4001. [Google Scholar] [CrossRef]
- Bimbo, A.P. Guidelines for characterizing food-grade fish oils. Inform 1998, 9, 473–483. [Google Scholar]
- Ozyurt, G.; Ekmen, D.; Durmuş, M.; Ucar, Y. Assessment of the safety of dietary fish oil supplements in terms of content and quality. Environ. Sci. Pollut. Res. 2022, 29, 25006–25019. [Google Scholar] [CrossRef]
- Yagiz, Y.; Kristinsson, H.G.; Balaban, M.O.; Welt, B.A.; Ralat, M.; Marshall, M.R. Effect of high pressure processing and cooking treatment on the quality of Atlantic salmon. Food Chem. 2009, 116, 828–835. [Google Scholar] [CrossRef]
- Kvangarsnes, K.; Kendler, S.; Rustad, T.; Aas, G.H. Induced oxidation and addition of antioxidant before enzymatic hydrolysis of heads of rainbow trout (Oncorhynchus mykiss)–effect on the resulting oil and protein fraction. Heliyon 2021, 7, e06816. [Google Scholar] [CrossRef]
- Cropotova, J.; Mozuraityte, R.; Standal, I.B.; Rustad, T. Assessment of lipid oxidation in Atlantic mackerel (Scomber scombrus) subjected to different antioxidant and sous-vide cooking treatments by conventional and fluorescence microscopy methods. Food Control. 2019, 104, 1–8. [Google Scholar] [CrossRef]
- AOCS. Official Methods and Recommended Practices of the American Oil Chemists’ Society; AOCS: Champaign, IL, USA, 1998; Volume 5, pp. 2–93. [Google Scholar]
- Ke, P.; Woyewoda, A. Microdetermination of thiobarbituric acid values in marine lipids by a direct spectrophotometric method with a monophasic reaction system. Anal. Chim. Acta 1979, 106, 279–284. [Google Scholar] [CrossRef]
- Cropotova, J.; Mozuraityte, R.; Standal, I.B.; Rustad, T. The influence of cooking parameters and chilled storage time on quality of sous-vide Atlantic mackerel (Scomber scombrus). J. Aquat. Food Prod. Technol. 2019, 28, 505–518. [Google Scholar] [CrossRef]
- Bernárdez, M.; Pastoriza, L.; Sampedro, G.; Herrera, J.J.; Cabo, M.L. Modified method for the analysis of free fatty acids in fish. J. Agric. Food Chem. 2005, 53, 1903–1906. [Google Scholar] [CrossRef]
Fatty Acids | Control | 200 MPa | 400 MPa | 600 MPa | |||
---|---|---|---|---|---|---|---|
4 min | 8 min | 4 min | 8 min | 4 min | 8 min | ||
C14:0 | 2.82 ± 0.01 a | 2.87 ± 0.05 a | 2.91 ± 0.00 a | 2.86 ± 0.01 a | 2.85 ± 0.02 a | 2.91 ± 0.07 a | 2.92 ± 0.01 a |
C16:0 | 10.77 ± 0.02 a | 11.14 ± 0.04 b | 11.32 ± 0.02 c | 11.03 ± 0.03 bd | 11.00 ± 0.04 d | 11.12 ± 0.06 b | 11.39 ± 0.05 c |
C16:1 (n-7) | 3.23 ± 0.05 a | 3.25 ± 0.01 a | 3.27 ± 0.01 a | 3.22 ± 0.02 a | 3.22 ± 0.04 a | 3.22 ± 0.03 a | 3.27 ± 0.02 a |
C18:0 | 3.57 ± 0.00 a | 3.72 ± 0.04 bc | 3.78 ± 0.01 cd | 3.76 ± 0.01 bd | 3.70 ± 0.03 b | 3.71 ± 0.01 b | 3.82 ± 0.03 d |
C18:1 (n-9) | 39.94 ± 0.02 a | 39.61 ± 0.15 bc | 39.63 ± 0.05 bc | 39.67 ± 0.03 ab | 39.88 ± 0.03 ab | 39.74 ± 0.10 ab | 39.43 ± 0.06 c |
C18:1 (n-7) | 3.37 ± 0.01 a | 3.35 ± 0.02 a | 3.36 ± 0.00 a | 3.33 ± 0.01 a | 3.33 ± 0.00 a | 3.35 ± 0.02 a | 3.37 ± 0.04 a |
C18:2 (n-6) | 14.28 ± 0.02 a | 14.09 ± 0.05 bd | 13.96 ± 0.02 c | 14.06 ± 0.02 b | 14.18 ± 0.02 d | 14.10 ± 0.05 bd | 13.90 ± 0.00 c |
C18:3 (n-3) | 7.07 ± 0.01 ac | 6.98 ± 0.03 ab | 6.91 ± 0.03 b | 6.95 ± 0.04 b | 7.09 ± 0.04 c | 6.97 ± 0.02 ab | 6.93 ± 0.03 b |
C18:4 (n-3) | 0.81 ± 0.01 a | 0.82 ± 0.02 a | 0.82 ± 0.01 a | 0.82 ± 0.01 a | 0.79 ± 0.03 a | 0.79 ± 0.01 a | 0.82 ± 0.01 a |
C20:0 | 0.50 ± 0.00 a | 0.52 ± 0.01 a | 0.51 ± 0.01 a | 0.51 ± 0.02 a | 0.53 ± 0.02 a | 0.52 ± 0.02 a | 0.53 ± 0.00 a |
C20:1 (n-9) | 3.56 ± 0.10 a | 3.52 ± 0.09 a | 3.52 ± 0.07 a | 3.55 ± 0.10 a | 3.39 ± 0.03 a | 3.49 ± 0.07 a | 3.46 ± 0.01 a |
C20:3 (n-3) | 0.59 ± 0.01 a | 0.57 ± 0.02 ac | 0.52 ± 0.01 b | 0.56 ± 0.02 abc | 0.55 ± 0.02 abc | 0.59 ± 0.02 a | 0.53 ± 0.01 cb |
C20:4 (n-6) | 0.20 ± 0.01 a | 0.18 ± 0.01 a | 0.21 ± 0.02 a | 0.21 ± 0.02 a | 0.19 ± 0.01 a | 0.21 ± 0.03 a | 0.22 ± 0.01 a |
C20:5 (n-3) | 2.97 ± 0.01 ab | 2.95 ± 0.03 ab | 2.90 ± 0.01 a | 3.03 ± 0.01 b | 3.04 ± 0.03 b | 2.91 ± 0.01 a | 2.91 ± 0.03 a |
C22:0 | 0.23 ± 0.01 ab | 0.23 ± 0.01 ab | 0.24 ± 0.01 ab | 0.22 ± 0.01 ab | 0.20 ± 0.03 b | 0.24 ± 0.01 a | 0.25 ± 0.01 a |
C22:1 (n-11) | 1.56 ± 0.02 a | 1.60 ± 0.02 ab | 1.60 ± 0.03 ab | 1.62 ± 0.02 ab | 1.59 ± 0.02 a | 1.59 ± 0.02 ab | 1.67 ± 0.03 b |
C22:1 (n-9) | 0.40 ± 0.02 a | 0.42 ± 0.02 a | 0.41 ± 0.01 a | 0.41 ± 0.01 a | 0.43 ± 0.02 a | 0.41 ± 0.01 a | 0.43 ± 0.01 a |
C22:5 | 1.07 ± 0.00 a | 1.06 ± 0.03 a | 1.05 ± 0.02 a | 1.12 ± 0.01 b | 1.08 ± 0.01 ab | 1.09 ± 0.03 ab | 1.08 ± 0.01 ab |
C22:6 (n-3) | 3.05 ± 0.02 ab | 3.12 ± 0.06 a | 3.10 ± 0.04 a | 3.07 ± 0.02 ab | 2.96 ± 0.04 b | 3.04 ± 0.04 ab | 3.07 ± 0.01 ab |
SFAs 1 | 17.89 ± 0.01 a | 18.47 ± 0.02 b | 18.75 ± 0.01 c | 18.38 ± 0.01 bd | 18.28 ± 0.02 d | 18.50 ± 0.03 b | 18.92 ± 0.03 e |
MUFAs 2 | 52.06 ± 0.06 a | 51.75 ± 0.06 ab | 51.79 ± 0.03 ab | 51.81 ± 0.04 ab | 51.84 ± 0.02 ab | 51.81 ± 0.04 ab | 51.63 ± 0.04 b |
PUFAs 3 | 30.04 ± 0.02 ac | 29.78 ± 0.03 ac | 29.46 ± 0.02 b | 29.82 ± 0.02 ac | 29.88 ± 0.02 ac | 29.69 ± 0.03 cb | 29.45 ± 0.02 b |
HP Pretreatment | Yellowness (b*) | |||
---|---|---|---|---|
0 Days | 2 Weeks | 4 Weeks | 8 Weeks | |
Control | 19.4 ± 2.0 Aa | 22 ± 1.3 Aa | 18.3 ± 0.7 Aa | 19.3 ± 0.8 Aab |
200 MPa × 4 min | 22.2 ± 2.4 Aa | 19.6 ± 1.2 Aa | 18.7 ± 0.4 Aa | 17.6 ± 0.9 Aa |
200 MPa × 8 min | 19.8 ± 0.5 Aa | 22.5 ± 1.2 Aa | 19.5 ± 1.8 Aa | 17.4 ± 0.4 Aa |
400 MPa × 4 min | 21.3 ± 2.1 Aa | 21.1 ± 0.6 Aa | 19.5 ± 0.2 Aa | 20.3 ± 0.3 Aab |
400 MPa × 8 min | 22.4 ± 1.3 Aa | 20 ± 3.4 Aa | 18.9 ± 0.9 Aa | 21.1 ± 1.6 Ab |
600 MPa × 4 min | 20.3 ± 0.9 ABa | 21.7 ± 0.8 Aa | 21.2 ± 0.3 Aa | 18.7 ± 0.0 Bab |
600 MPa × 8 min | 22 ± 0.6 Aa | 21.5 ± 1.6 Aa | 19.9 ± 1.1 Aa | 19.2 ± 0.3 Aab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotsoni, E.; Daukšas, E.; Aas, G.H.; Rustad, T.; Tiwari, B.K.; Cropotova, J. Quality Assessment of Fish Oil Obtained after Enzymatic Hydrolysis of a Mixture of Rainbow Trout (Oncorhynchus mykiss) and Atlantic Salmon (Salmo salar) Rest Raw Material Pretreated by High Pressure. Mar. Drugs 2024, 22, 261. https://doi.org/10.3390/md22060261
Kotsoni E, Daukšas E, Aas GH, Rustad T, Tiwari BK, Cropotova J. Quality Assessment of Fish Oil Obtained after Enzymatic Hydrolysis of a Mixture of Rainbow Trout (Oncorhynchus mykiss) and Atlantic Salmon (Salmo salar) Rest Raw Material Pretreated by High Pressure. Marine Drugs. 2024; 22(6):261. https://doi.org/10.3390/md22060261
Chicago/Turabian StyleKotsoni, Elissavet, Egidijus Daukšas, Grete Hansen Aas, Turid Rustad, Brijesh K. Tiwari, and Janna Cropotova. 2024. "Quality Assessment of Fish Oil Obtained after Enzymatic Hydrolysis of a Mixture of Rainbow Trout (Oncorhynchus mykiss) and Atlantic Salmon (Salmo salar) Rest Raw Material Pretreated by High Pressure" Marine Drugs 22, no. 6: 261. https://doi.org/10.3390/md22060261
APA StyleKotsoni, E., Daukšas, E., Aas, G. H., Rustad, T., Tiwari, B. K., & Cropotova, J. (2024). Quality Assessment of Fish Oil Obtained after Enzymatic Hydrolysis of a Mixture of Rainbow Trout (Oncorhynchus mykiss) and Atlantic Salmon (Salmo salar) Rest Raw Material Pretreated by High Pressure. Marine Drugs, 22(6), 261. https://doi.org/10.3390/md22060261