Recent Discovery of Nitrogen Heterocycles from Marine-Derived Aspergillus Species
Abstract
:1. Introduction
2. Structural and Biological Activity Studies
2.1. Indole Alkaloids
2.2. Diketopiperazine Alkaloids
2.3. Cyclopeptide Alkaloids
2.4. Quinazoline Alkaloids
2.5. Isoquinoline Alkaloids
2.6. Pyrrolidine Alkaloids
2.7. Other Heterocyclic Alkaloids
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Carroll, A.R.; Copp, B.R.; Grkovic, T.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2024, 41, 162–207. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.F.; Wu, N.N.; Wu, Y.W.; Qi, Y.X.; Wei, M.Y.; Pineda, L.M.; Ng, M.G.; Spadafora, C.; Zheng, J.Y.; Lu, L.; et al. Structure modification, antialgal, antiplasmodial, and toxic evaluations of a series of new marine-derived 14-membered resorcylic acid lactone derivatives. Mar. Life Sci. Technol. 2022, 4, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Rida, P.C.; LiVecche, D.; Ogden, A.; Zhou, J.; Aneja, R. The noscapine chronicle: A pharmaco-historic biography of the opiate alkaloid family and its clinical applications. Med. Res. Rev. 2015, 35, 107–1096. [Google Scholar] [CrossRef]
- Han, Y.Q.; Zhang, Q.; Xu, W.F.; Hai, Y.; Chao, R.; Wang, C.F.; Hou, X.M.; Wei, M.Y.; Gu, Y.C.; Wang, C.Y.; et al. Targeted isolation of antitubercular cycloheptapeptides and an unusual pyrroloindoline-containing new analog, asperpyrroindotide A, using LC-MS/MS-based molecular networking. Mar. Life Sci. Technol. 2023, 5, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Hai, Y.; Wei, M.Y.; Wang, C.Y.; Gu, Y.C.; Shao, C.L. The intriguing chemistry and biology of sulfur-containing natural products from marine microorganisms (1987–2020). Mar. Life Sci. Technol. 2021, 3, 488–518. [Google Scholar] [CrossRef]
- Xu, K.; Yuan, X.L.; Li, C.; Li, X.D. Recent discovery of heterocyclic alkaloids from marine-derived Aspergillus Species. Mar. Drugs 2020, 18, 54. [Google Scholar] [CrossRef]
- Wibowo, J.T.; Ahmadi, P.; Rahmawati, S.I.; Bayu, A.; Putra, M.Y.; Kijjoa, A. Marine-Derived indole alkaloids and their biological and pharmacological Activities. Mar. Drugs 2022, 20, 3. [Google Scholar] [CrossRef]
- Singh, P.T.; Singh, M.Q. Recent progress in biological activities of indole and indole alkaloids. Mini-Rev. Med. Chem. 2018, 18, 9–25. [Google Scholar] [CrossRef]
- Wu, J.; Wang, F.; He, L.M.; Zhou, S.Y.; Wang, S.B.; Jia, J.; Hong, K.; Cai, Y.S. Aculeaquamide A, cytotoxic paraherquamide from the marine fungus Aspergillus aculeatinus WHUF0198. Nat. Prod. Res. 2021, 36, 4382–4387. [Google Scholar] [CrossRef]
- Girich, E.V.; Yurchenko, A.N.; Smetanina, O.F.; Trinh, P.T.H.; Ngoc, N.T.D.; Pivkin, M.V.; Popov, R.S.; Pislyagin, E.A.; Menchinskaya, E.S.; Chingizova, E.A.; et al. Neuroprotective metabolites from vietnamese marine derived fungi of Aspergillus and Penicillium genera. Mar. Drugs 2020, 18, 608. [Google Scholar] [CrossRef]
- Lv, H.; Wang, K.; Xue, Y.; Chen, J.; Su, H.; Zhang, J.; Wu, Y.; Jia, J.; Bi, H.; Wang, H.; et al. Three new metabolites from the marine-derived Fungus Aspergillus sp. WHUF03110. Nat. Pro. Commun. 2021, 16, 10936–10940. [Google Scholar] [CrossRef]
- Li, P.; Zhang, M.; Li, H.; Wang, R.; Hou, H.; Li, X.; Liu, K.; Chen, H. New prenylated indole homodimeric and pteridine alkaloids from the marine-derived fungus Aspergillus austroafricanus Y32-2. Mar. Drugs 2021, 19, 98. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, L.; Xie, Q.Y.; Guo, J.C.; Ma, Q.Y.; Dai, L.T.; Zhou, L.M.; Dai, H.F.; Kong, F.D.; Luo, D.Q.; et al. Diverse indole-diterpenoids with protein tyrosine phosphatase 1B inhibitory activities from the marine coral-derived fungus Aspergillus sp. ZF-104. Phytochemistry 2023, 216, 113888. [Google Scholar] [CrossRef]
- Tuan, C.D.; Hung, N.V.; Minh, L.T.H.; Lien, H.T.H.; Chae, J.W.; Yun, H.Y.; Kim, Y.H.; Cuong, P.V.; Huong, D.T.M. A new indole glucoside and other constituents from the Sea cucumber-derived Aspergillus fumigatus M580 and their biological activities. Rec. Nat. Prod. 2022, 16, 633–638. [Google Scholar] [CrossRef]
- Guo, X.; Meng, Q.Y.; Liu, J.; Wu, J.S.; Jia, H.L.; Liu, D.; Gu, Y.C.; Liu, J.R.; Huang, J.; Fan, A.L.; et al. Sclerotiamides C-H notoamides from a marine gorgonian-derived fungus with cytotoxic activities. J. Nat. Prod. 2022, 85, 1067–1078. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wang, H.; Chen, B.; Dai, H.; Sun, J.; Han, J.; Liu, H. Discovery of anti-MRSA secondary metabolites from a marine-derived fungus Aspergillus fumigatus. Mar. Drugs 2022, 20, 302. [Google Scholar] [CrossRef]
- Qiu, Y.; Guo, Q.; Ran, Y.Q.; Lan, W.J.; Lam, C.K.; Feng, G.K.; Deng, R.; Zhu, X.F.; Li, H.J.; Chen, L.P. Cytotoxic alkaloids from the marine shellfish-associated fungus Aspergillus sp. XBB-4 induced by an amino acid-directed strategy. RSC Adv. 2020, 10, 4243–4250. [Google Scholar] [CrossRef]
- Xu, A.; Xu, X.N.; Zhang, M.; Li, C.L.; Liu, L.; Fu, D.Y. Cytotoxic indole alkaloids and polyketides produced by a marine-derived fungus Aspergillus flavipes DS720. Front. Microbiol. 2022, 13, 959754. [Google Scholar] [CrossRef]
- Yan, L.H.; Li, X.M.; Chi, L.P.; Li, X.; Wang, B.G. Six new antimicrobial metabolites from the deep-sea sediment-derived fungus Aspergillus fumigatus SD-406. Mar. Drugs 2022, 20, 4. [Google Scholar] [CrossRef]
- Yao, F.H.; Liang, X.; Cheng, X.; Dong, J.D.; Qi, S.H. Antifungal peptides from the marine gorgonian-associated fungus Aspergillus sp. SCSIO41501. Phytochemistry 2021, 192, 112967. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.L.; Sun, C.X.; Hou, X.W.; Che, Q.; Zhang, G.J.; Gu, Q.Q.; Liu, C.G.; Zhu, T.J.; Li, D.H. Ascandinines A–D, indole diterpenoids, from the sponge-derived fungus Aspergillus candidus HDN15-152. J. Org. Chem. 2021, 86, 2431–2436. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Liang, X.; Huang, Z.H.; Qi, S.H. New alkaloids and isocoumarins from the marine gorgonian-derived fungus Aspergillus sp. SCSIO 41501. Nat. Prod. Res. 2019, 34, 1992–2000. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Wang, P.; Lin, X.P.; Salendra, L.; Kong, F.D.; Liao, S.R.; Yang, B.; Zhou, X.F.; Wang, J.F.; Liu, Y.H. Phloroglucinol heterodimers and bis-indolyl alkaloids from the sponge-derived fungus Aspergillus sp. SCSIO 41018. Org. Chem. Front. 2019, 6, 3053. [Google Scholar] [CrossRef]
- Luo, X.W.; Lin, Y.; Lu, Y.J.; Zhou, X.F.; Liu, Y.H. Peptides and polyketides isolated from the marine sponge-derived fungus Aspergillus terreus SCSIO 41008. Chin. J. Nat. Med. 2019, 17, 0149–0154. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.M.; Liang, X.A.; Kong, Y.; Jia, B. Structural diversity and biological activities of indole diketopiperazine alkaloids from fungi. J. Agric. Food Chem. 2016, 64, 6659–6671. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.H.; Du, H.F.; Liu, Y.F.; Cao, F.; Luo, D.Q.; Wang, C.Y. Novel anti-inflammatory diketopiperazine alkaloids from the marine-derived fungus Penicillium brasilianum. Appl. Microbiol. Biotechnol. 2024, 108, 194. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.S.; Li, Z.; Gao, J.Y.; He, H.T.; Dai, H.Q.; Xia, X.K.; Liu, C.H.; Zhang, L.X.; Song, F.H. New diketopiperazines from a marine-derived fungus strain Aspergillus versicolor MF180151. Mar. Drugs 2019, 17, 262. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.F.; Sun, J.; Wang, S.Y.; Du, W.S.; Zhou, L.M.; Kong, F.D. A pair of new spirocyclic alkaloid enantiomers with TrxR inhibitory activities were isolated from marine-derived Aspergillus ruber TX-M4-1. J. Ocean Univ. China 2023, 22, 1677–1682. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Li, L.; Zhang, Y.H.; Yang, Y.Y.; Li, L.F.; Yang, K.; Liu, Y.F.; Cao, F. (±)-Dibrevianamides Q1 and Q2, the key precursors of asperginulin A from a marine-derived fungus. Appl. Microbiol. Biotechnol. 2023, 107, 6459–6467. [Google Scholar] [CrossRef]
- Long, J.Y.; Pang, X.Y.; Lin, X.P.; Liao, S.R.; Zhou, X.F.; Wang, J.F.; Yang, B.; Liu, Y.H. Asperbenzophenone A and versicolamide C, new fungal metabolites from the soft coral derived Aspergillus sp. SCSIO 41036. Chem. Biodivers. 2022, 19, e202100925. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.S.; Shi, X.H.; Yao, G.S.; Shao, C.L.; Fu, X.M.; Zhang, X.L.; Guan, H.S.; Wang, C.Y. New thiodiketopiperazine and 3,4-dihydroisocoumarin derivatives from the marine-derived fungus Aspergillus terreus. Mar. Drugs 2020, 18, 132. [Google Scholar] [CrossRef]
- Li, L.; Chang, Q.H.; Zhang, S.S.; Yang, K.; Chen, F.L.; Zhu, H.J.; Cao, F.; Liu, Y.F. (±)-Brevianamides Z and Z1, new diketopiperazine alkaloids from the marine-derived fungus Aspergillus versicolor. J. Mol. Struct. 2022, 1261, 132904. [Google Scholar] [CrossRef]
- Lu, X.W.; Chen, C.M.; Tao, H.M.; Lin, X.P.; Yang, B.; Zhou, X.F.; Liu, Y.H. Structurally diverse diketopiperazine alkaloids from the marine-derived fungus Aspergillus versicolor SCSIO 41016. Org. Chem. Front. 2019, 6, 736–740. [Google Scholar] [CrossRef]
- Mao, J.Q.; Zheng, Y.Y.; Wang, C.Y.; Liu, Y.; Yao, G.S. Sclerotioloids A–C: Three new alkaloids from the marine-derived fungus Aspergillus sclerotiorum ST0501. Mar. Drugs 2023, 21, 219. [Google Scholar] [CrossRef] [PubMed]
- Hong, Q.; Guo, M.M.; Yang, J.; Wei, X.; Liao, L.; Xin, X.J.; Zhang, D.; An, F.L. Four previously undescribed diketopiperazines from marine fungus Aspergillus puniceus FAHY0085 and their effects on liver X receptor α. Phytochemistry 2023, 214, 113816. [Google Scholar] [CrossRef]
- Sun, C.; Ha, Y.; Liu, X.; Wang, N.; Lian, X.Y.; Zhang, Z. Isolation and structure elucidation of new metabolites from the mariana-trench-associated fungus Aspergillus sp. SY2601. Molecules 2024, 29, 459. [Google Scholar] [CrossRef]
- Liu, W.; Wang, L.P.; Wang, B.; Xu, Y.C.; Zhu, G.L.; Lan, M.M.; Zhu, W.M.; Sun, K.L. Diketopiperazine and diphenylether derivatives from Marine algae-derived Aspergillus versicolor OUCMDZ-2738 by epigenetic activation. Mar. Drugs 2019, 17, 6. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.B.; Gui, Y.H.; Liu, L.; Su, Z.Y.; Jiao, W.H.; Li, L.; Sun, F.; Wang, S.P.; Yang, F.; Lin, H.W. A new asymmetric diketopiperazine dimer from the sponge-associated fungus Aspergillus versicolor 16F-11. Magn. Reson. Chem. 2019, 57, 49–54. [Google Scholar] [CrossRef]
- Liu, Z.M.; Chen, Y.C.; Li, S.N.; Hu, C.Y.; Liu, H.X.; Zhang, W.M. Indole diketopiperazine alkaloids from the deep-sea-derived fungus Aspergillus sp. FS445. Nat. Prod. Res. 2021, 36, 5213–5221. [Google Scholar] [CrossRef]
- Lv, D.; Xia, J.; Guan, X.; Lai, Q.; Zhang, B.; Lin, J.; Shao, Z.; Luo, S.; Zhangsun, D.; Qin, J.J.; et al. Indole diketopiperazine alkaloids isolated from the marine-derived fungus Aspergillus chevalieri MCCC M23426. Front Microbiol. 2022, 13, 950857. [Google Scholar] [CrossRef]
- Hu, J.S.; He, Y.P.; Zhou, F.G.; Wu, P.P.; Chen, L.Y.; Ni, C.; Zhang, Z.K.; Xiao, X.J.; An, L.K.; He, X.X.; et al. New indole diketopiperazine alkaloids from soft coral-associated epiphytic fungus Aspergillus versicolor CGF 9-1-2. Chem. Biodivers. 2023, 20, e202300301. [Google Scholar] [CrossRef] [PubMed]
- Lv, F.V.; Mándi, A.; Li, X.M.; Chi, L.P.; Li, X.; Wang, B.G.; Kurtán, T.; Meng, L.H. Emestrin-type thiodiketopiperazines from Aspergillus nidulans SD-531, a fungus obtained from the deep-sea sediment of cold seep in the south china sea. Deep-Sea Res. PT I 2023, 195, 104004. [Google Scholar] [CrossRef]
- Yang, J.; Gong, L.Z.; Guo, M.M.; Jiang, Y.; Ding, Y.; Wang, Z.J.; Xin, X.J.; An, F.L. Bioactive indole diketopiperazine alkaloids from the marine endophytic fungus Aspergillus sp. YJ191021. Mar. Drugs 2021, 19, 157. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Xu, J.Z.; Wang, P.M.; Ding, W.J. Novel indole diketopiperazine stereoisomers from a marine-derived fungus Aspergillus sp. Mycology 2022, 14, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Li, H.L.; Yang, S.Q.; Li, X.M.; Li, X.; Wang, B.G. Structurally diverse alkaloids produced by Aspergillus creber EN-602, an endophytic fungus obtained from the marine red alga Rhodomela confervoides. Bioorg. Chem. 2021, 110, 104822. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Sarotti, A.M.; Jiang, G.; Huguet-Tapia, J.C.; Zheng, S.L.; Wu, X.; Li, C.; Ding, Y.; Cao, S. Waikikiamides A-C: Complex diketopiperazine dimer and diketopiperazine-polyketide hybrids from a Hawaiian marine fungal strain Aspergillus sp. FM242. Org. Lett. 2020, 22, 4408–4412. [Google Scholar] [CrossRef]
- Ding, Y.; Zhu, X.J.; Hao, L.L.; Zhao, M.Y.; Hua, Q.; An, F.L. Bioactive indolyl diketopiperazines from the marine derived endophytic Aspergillus versicolor DY180635. Mar. Drugs 2020, 18, 338. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.Y.; Guo, X.; Wu, J.S.; Liu, D.; Gu, Y.C.; Huang, J.; Fan, A.L.; Lin, W.H. Prenylated notoamide-type alkaloids isolated from the fungus Aspergillus sclerotiorum and their inhibition of NLRP3 inflammasome activation and antibacterial activities. Phytochemistry 2022, 203, 113424. [Google Scholar] [CrossRef]
- Wei, X.; Feng, C.; Wang, S.Y.; Zhang, D.M.; Li, X.H.; Zhang, C.X. New indole diketopiperazine alkaloids from soft coral-associated epiphytic fungus Aspergillus sp. EGF 15-0-3. Chem. Biodivers. 2020, 17, e2000106. [Google Scholar] [CrossRef]
- Dong, Y.L.; Li, X.M.; Shi, X.S.; Wang, Y.R.; Wang, B.G.; Meng, L.H. Diketopiperazine alkaloids and bisabolene sesquiterpenoids from Aspergillus versicolor AS-212, an endozoic fungus associated with deep-sea coral of Magellan Seamounts. Mar. Drugs 2023, 21, 293. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.L.; Li, X.M.; Wang, Y.R.; Shi, X.S.; Wang, B.G.; Meng, L.H. Oxepine-containing pyrazinopyrimidine alkaloids and quinolinone derivatives produced by Aspergillus versicolor AS-212, a deep-sea-derived endozoic fungus. Fitoterapia 2023, 168, 105559. [Google Scholar] [CrossRef] [PubMed]
- Youssef, D.T.A.; Shaala, L.A.; Genta-Jouve, G. Asperopiperazines A and B: Antimicrobial and cytotoxic dipeptides from a tunicate-derived fungus Aspergillus sp. DY001. Mar. Drugs 2022, 20, 451. [Google Scholar] [CrossRef]
- Ye, G.T.; Huang, C.Y.; Li, J.L.; Chen, T.; Tang, J.; Liu, W.B.; Long, Y.H. Isolation, structural characterization and antidiabetic activity of new diketopiperazine alkaloids from mangrove endophytic fungus Aspergillus sp. 16-5c. Mar. Drugs 2021, 19, 402. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.H.; Du, F.Y.; Li, X.M.; Yang, S.Q.; Wang, B.G.; Li, X. Antibacterial indole diketopiperazine alkaloids from the deep-sea cold seep-derived fungus Aspergillus chevalieri. Mar. Drugs 2023, 21, 195. [Google Scholar] [CrossRef] [PubMed]
- Girich, E.V.; Rasin, A.B.; Popov, R.S.; Yurchenko, E.A.; Chingizova, E.A.; Trinh, P.T.H.; Ngoc, N.T.D.; Pivkin, M.V.; Zhuravleva, O.I.; Yurchenko, A.N. New tripeptide derivatives asperripeptides A-C from Vietnamese mangrove-derived fungus Aspergillus terreus LM.5.2. Mar. Drugs 2022, 20, 77. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Liu, M.; Jenkins, I.D.; Liu, X.; Zhang, L.; Quinn, R.J.; Feng, Y. Genome-inspired chemical exploration of marine fungus Aspergillus fumigatus MF071. Mar. Drugs 2020, 18, 352. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Wang, Y.; Liu, T.; Lian, Y.X.; Bai, Q.Q.; Song, X.P.; Han, C.R.; Zheng, C.J.; Chen, G.Y. One new piperazinedione isolated from a mangrove-derived fungus Aspergillus niger JX-5. Nat. Prod. Res. 2020, 36, 2277–2283. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Zhang, X.L.; Lu, X.H.; Zheng, Z.H.; Ma, X.; Qi, S.H. Diketopiperazine-Type alkaloids from a deep-Sea-derived Aspergillus puniceus fungus and their effects on liver X receptor α. J. Nat. Prod. 2019, 82, 1558–1564. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.H.; Li, P.H.; Li, X.M.; Yang, S.Q.; Liu, K.C.; Wang, B.G.; Li, X. Chevalinulins A and B, proangiogenic alkaloids with a spiro[bicyclo [2.2.2]octane-diketopiperazine] skeleton from deep-sea cold-seep-derived fungus Aspergillus chevalieri CS-122. Org. Lett. 2022, 24, 2684–2688. [Google Scholar] [CrossRef]
- Tuenter, E.; Exarchou, V.; Apers, S.; Pieters, L. Cyclopeptide alkaloids. Phytochem. Rev. 2017, 16, 623–637. [Google Scholar] [CrossRef]
- Zhang, J.N.; Xia, Y.X.; Zhang, H.J. Natural cyclopeptides as anticancer agents in the Last 20 Years. Int. J. Mol. Sci. 2021, 22, 3973. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.Y.; Hong, X.; Yang, J.; Qin, J.J.; Zhang, B.B.; Lin, J.H.; Shao, Z.Z.; Wang, W.Y. Structure elucidation of a novel cyclic tripeptide from the marine-derived fungus Aspergillus ochraceopetaliformis DSW-2. Nat. Prod. Res. 2021, 36, 3572–3578. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.Y.; Lee, J.H.; Park, S.C.; Lee, J.; Oh, D.C.; Oh, K.B.; Shin, J. New peptides from the marine-derived fungi Aspergillus allahabadii and Aspergillus ochraceopetaliformis. Mar. Drugs 2019, 17, 488. [Google Scholar] [CrossRef] [PubMed]
- Chi, L.P.; Liu, D.; Li, X.M.; Wan, Y.; Wang, B.G.; Li, X. Aspertides A-E: Antimicrobial pentadepsipeptides with a unique p-methoxycinnamoyl amide group from the marine isolates Aspergillus tamarii MA-21 and Aspergillus insuetus SD-512. J. Agric. Food. Chem. 2023, 71, 13316–13324. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.F.; Zhang, R.; Ma, B.; Wang, W.Z.; Yu, C.; Han, J.J.; Zhu, L.J.; Zhang, X.; Dai, H.Q.; Liu, H.W.; et al. Japonamides A and B, two new cyclohexadepsipeptides from the marine-sponge-derived fungus Aspergillus japonicus and their synergistic antifungal activities. J. Fungi 2022, 8, 1058. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.J.; Tian, D.M.; Chen, M.; Xia, Z.X.; Tang, X.Y.; Zhang, S.H.; Wei, J.H.; Li, X.N.; Yao, X.S.; Wu, B.; et al. Molecular networking-guided isolation of cyclopentapeptides from the hydrothermal vent sediment derived fungus Aspergillus pseudoviridinutans TW58-5 and their anti-inflammatory effects. J. Nat. Prod. 2023, 86, 1919–1930. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.Z.; Liu, J.T.; Hu, Q.; He, R.J.; Guan, X.Q.; Ge, G.B.; Han, H.; Yang, F.; Lin, H.W. Pancreatic lipase inhibitory cyclohexapeptides from the marine sponge-derived fungus Aspergillus sp. 151304. J. Nat. Prod. 2020, 83, 2287–2293. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Wahab, N.M.; Scharf, S.; Özkaya, F.C.; Kurtán, T.; Mándi, A.; Fouad, M.A.; Kamel, M.S.; Müller, W.E.G.; Kalscheuer, R.; Lin, W.; et al. Induction of secondary metabolites from the marine-derived fungus Aspergillus versicolor through co-cultivation with Bacillus subtilis. Planta Med. 2019, 85, 503–512. [Google Scholar] [CrossRef]
- Zeng, Q.; Chen, Y.C.; Wang, J.F.; Shi, X.F.; Che, Y.H.; Chen, X.Y.; Zhong, W.M.; Zhang, W.M.; Wei, X.Y.; Wang, F.Z.; et al. Diverse secondary metabolites from the coral-derived fungus Aspergillus hiratsukae SCSIO 5Bn1003. Mar. Drugs 2022, 20, 150. [Google Scholar] [CrossRef]
- Magot, F.; Van Soen, G.; Buedenbender, L.; Li, F.; Soltwedel, T.; Grauso, L.; Mangoni, A.; Blümel, M.; Tasdemir, D. Bioactivity and metabolome mining of deep-sea sediment-derived microorganisms reveal new hybrid PKS-NRPS macrolactone from Aspergillus versicolor PS108-62. Mar. Drugs 2023, 21, 95. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.X.; Zhang, Z.P.; Ren, Z.L.; Yu, L.; Zhou, H.; Han, Y.X.; Shah, M.; Che, Q.; Zhang, G.J.; Li, D.H.; et al. Antibacterial cyclic tripeptides from antarctica-sponge-derived fungus Aspergillus insulicola HDN151418. Mar. Drugs 2020, 18, 532. [Google Scholar] [CrossRef] [PubMed]
- Aparicio-Cuevas, M.A.; González, M.D.C.; Raja, H.; Rivero-Cruz, I.; Kurina, S.J.; Burdette, J.E.; Oberlies, N.H.; Figueroa, M. Metabolites from the marine-facultative Aspergillus sp. MEXU 27854 and Gymnoascus hyalinosporus MEXU 29901 from Caleta Bay, Mexico. Tetrahedron Lett. 2019, 60, 1649–1652. [Google Scholar] [CrossRef]
- Alagarsamy, V.; Chitra, K.; Saravanan, G.; Raja Solomon, V.; Sulthana, M.T.; Narendhar, B. An overview of quinazolines: Pharmacological significance and recent developments. Eur. J. Med. Chem. 2018, 151, 628–685. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.J.; Liu, Y.; Gao, J.Y.; Hu, J.S.; He, H.T.; Dai, S.W.; Wang, L.Q.; Dai, H.Q.; Zhang, L.X.; Song, F.H. Antitubercular metabolites from the marine-derived fungus strain Aspergillus fumigatus MF029. Nat. Prod. Res. 2019, 35, 2647–2654. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.S.; Yang, L.; Kong, F.D.; Zhao, J.H.; Yao, L.; Yuchi, Z.G.; Ma, Q.Y.; Xie, Q.Y.; Zhou, L.M.; Guo, M.F.; et al. Three new quinazoline-containing indole alkaloids from the marine-derived fungus Aspergillus sp. HNMF114. Front. Microbiol. 2021, 12, 680879. [Google Scholar] [CrossRef]
- Fredimoses, M.; Ai, W.; Lin, X.P.; Zhou, X.F.; Liao, S.R.; Pan, L.; Liu, Y.H. Two new Aspera chaetominines A and B, and a new derivative of terrein, isolated from marine sponge associated fungus Aspergillus versicolour SCSIO XWS04 F52. Nat. Prod. Res. 2023, 7, 1–13. [Google Scholar] [CrossRef]
- Liu, Y.J.; Zhang, J.L.; Li, C.; Mu, X.G.; Liu, X.L.; Wang, L.; Zhao, Y.C.; Zhang, P.; Li, X.D.; Zhang, X.X. Antimicrobial secondary metabolites from the seawater-derived fungus Aspergillus sydowii SW9. Molecules 2019, 24, 4596. [Google Scholar] [CrossRef]
- Kong, F.D.; Zhang, S.L.; Zhou, S.Q.; Ma, Q.Y.; Xie, Q.Y.; Chen, J.P.; Li, J.H.; Zhou, L.M.; Yuan, J.Z.; Hu, Z.; et al. Quinazoline-Containing indole alkaloids from the marine-derived fungus Aspergillus sp. HNMF114. J. Nat. Prod. 2019, 82, 3456–3463. [Google Scholar] [CrossRef]
- Ohte, S.; Shiokawa, T.; Koyama, N.; Katagiri, T.; Imada, C.; Tomoda, H. A new diketopiperazine-like inhibitor of bone morphogenetic protein-induced osteoblastic differentiation produced by marine-derived Aspergillus sp. BFM-0085. J. Antibiot. 2020, 73, 554–558. [Google Scholar] [CrossRef]
- Belousova, E.B.; Zhuravleva, O.I.; Yurchenko, E.A.; Oleynikova, G.K.; Antonov, A.S.; Kirichuk, N.N.; Chausova, V.E.; Khudyakova, Y.V.; Menshov, A.S.; Popov, R.S.; et al. New anti-hypoxic metabolites from co-culture of marine-derived fungi Aspergillus carneus KMM 4638 and Amphichorda sp. KMM 4639. Biomolecules 2023, 13, 741. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.F.; Chao, R.; Hai, Y.; Guo, Y.Y.; Wei, M.Y.; Wang, C.Y.; Shao, C.L. 17-Hydroxybrevianamide N and its N1-methyl derivative, quinazolinones from a soft-coral-derived Aspergillus sp. Fungus: 13S enantiomers as the true natural products. J. Nat. Prod. 2021, 84, 1353–1358. [Google Scholar] [CrossRef]
- Bao, J.; Li, X.X.; Zhu, K.K.; He, F.; Wang, Y.Y.; Yu, J.H.; Zhang, X.Y.; Zhang, H. Bioactive aromatic butenolides from a mangrove sediment originated fungal species, Aspergillus terreus SCAU011. Fitoterapia 2021, 150, 104856. [Google Scholar] [CrossRef]
- Wang, C.; Sarotti, A.M.; Zaman, K.A.U.; Wu, X.H.; Cao, S.G. New alkaloids from a Hawaiian fungal strain Aspergillus felis FM324. Front. Chem. 2021, 9, 724617. [Google Scholar] [CrossRef]
- Si, Y.Y.; Tang, M.X.; Lin, S.; Chen, G.; Hua, H.M.; Bai, J.; Wang, Y.B.; Wang, H.F.; Pei, Y.H. 2-Methyl-versiquinazoline C, a new fumiquinazoline-type alkaloid from the fungus Aspergillus flavipes PJ03-11. J. Asian Nat. Prod. Res. 2019, 21, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.L.; Zhou, H.M.; Huang, X.; Peng, S.Y.; Li, J.Y.; Ding, B.; Tao, Y.W.; Huang, H.B. New glucosidated indole-quinazoline alkaloids from mangrove endophytic fungus Aspergillus fumigatus SAl12. Nat. Prod. Res. 2023, 1–6. [Google Scholar] [CrossRef]
- Shuai, H.; Myronovskyi, M.; Rosenkränzer, B.; Paulus, C.; Nadmid, S.; Stierhof, M.; Kolling, D.; Luzhetskyy, A. Novel biosynthetic route to the isoquinoline scaffold. ACS Chem. Biol. 2022, 17, 598–608. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.M.; Liang, X.; Yao, F.H.; Qi, S.H. Five new aromatic polyketides and isoquinoline alkaloids from the deep-sea-derived fungus Aspergillus puniceus SCSIO z021. Tetrahedron 2022, 126, 133067. [Google Scholar] [CrossRef]
- Liu, C.M.; Yao, F.H.; Lu, X.H.; Zhang, X.X.; Luo, L.X.; Liang, X.; Qi, S.H. Isoquinoline alkaloids as protein tyrosine phosphatase inhibitors from a deep-sea-derived fungus Aspergillus puniceus. Mar. Drugs 2022, 20, 78. [Google Scholar] [CrossRef]
- Pang, X.Y.; Lin, X.P.; Zhou, X.F.; Yang, B.; Tian, X.P.; Wang, J.F.; Xu, S.H.; Liu, Y.H. New quinoline alkaloid and bisabolane-type sesquiterpenoid derivatives from the deep-sea-derived fungus Aspergillus sp. SCSIO06786. Fitoterapia 2020, 140, 104406. [Google Scholar] [CrossRef]
- Islam, M.T.; Mubarak, M.S. Pyrrolidine alkaloids and their promises in pharmacotherapy. Adv. Tradit. Med. 2020, 20, 13–22. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, L.J.; Shi, Y.T.; Yan, X.J.; Wu, B.; He, S. Molecular networking-driven discovery of antibacterial perinadines, new tetracyclic alkaloids from the marine sponge-derived fungus Aspergillus sp. ACS Omega 2022, 7, 9909–9916. [Google Scholar] [CrossRef] [PubMed]
- Park, S.C.; Lee, J.H.; Hwang, J.Y.; Kwon, O.S.; Liao, L.; Oh, D.C.; Oh, K.B.; Shin, J. Ochraceopetalin, a mixed-biogenetic salt of polyketide and amino acid origins from a marine-derived Aspergillus ochraceopetaliformis fungus. Mar. Drugs 2021, 19, 413. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Zeng, Q.; Mai, Z.M.; Chen, Y.C.; Shi, X.F.; Chen, X.Y.; Zhong, W.M.; Wei, X.Y.; Zhang, W.M.; Zhang, S.; et al. Asperorydines N-P, three new cyclopiazonic acid alkaloids from the marine-derived fungus Aspergillus flavus SCSIO F025. Fitoterapia 2021, 150, 104839. [Google Scholar] [CrossRef] [PubMed]
- Anh, C.V.; Yoon, Y.D.; Kang, J.S.; Lee, H.S.; Heo, C.S.; Shin, H.J. Nitrogen-Containing secondary metabolites from a deep-sea fungus Aspergillus unguis and their anti-inflammatory activity. Mar. Drugs 2022, 20, 217. [Google Scholar] [CrossRef] [PubMed]
- Gou, X.; Jia, J.; Xue, Y.; Ding, W.; Dong, Z.; Tian, D.; Chen, M.; Bi, H.; Hong, K.; Tang, J. New pyrones and their analogs from the marine mangrove-derived Aspergillus sp. DM94 with antibacterial activity against Helicobacter pylori. Appl. Microbiol. Biotechnol. 2020, 104, 7971–7978. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Han, J.; Wang, Y.; Lin, R.; Yang, H.; Li, J.; Wei, S.; Polyak, S.W.; Song, F. Two new spiro-heterocyclic γ-lactams from A marine-derived Aspergillus fumigatus strain CUGBMF170049. Mar. Drugs 2019, 17, 289. [Google Scholar] [CrossRef] [PubMed]
- Jiao, F.W.; Xing, Y.N.; Liu, T.Y. New azaspirene derivatives from marine-derived fungus Aspergillus micronesiensis NF666. Tetrahedron Lett. 2023, 123, 154566. [Google Scholar] [CrossRef]
- Xu, L.; Guo, F.W.; Zhang, X.Q.; Zhou, T.Y.; Wang, C.J.; Wei, M.Y.; Gu, Y.C.; Wang, C.Y.; Shao, C.L. Discovery, total syntheses and potent anti-inflammatory activity of pyrrolinone-fused benzoazepine alkaloids asperazepanones A and B from Aspergillus candidus. Commun. Chem. 2022, 5, 80. [Google Scholar] [CrossRef]
- Wang, J.M.; Li, Z.C.; Zhang, Y.T.; Chen, C.M.; Chen, W.H.; Gao, C.H.; Liu, Y.H.; Tan, Y.H.; Luo, X.W. A new α-cyclopiazonic acid alkaloid identified from the Weizhou Island coral-derived fungus Aspergillus flavus GXIMD 02503. J. Ocean Univ. China 2022, 21, 1307–1312. [Google Scholar] [CrossRef]
- Chen, Z.H.; Liu, H.S.; Ding, B.; Guo, S.Y.; Huang, H.B.; Tao, Y.W. Two new alkaloids from the endophytic fungus Aspergillus fumigatus SAS10 isolated from the mangrove tree Sonneratia apetala. Nat. Prod. Res. 2023, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.B.; Zhu, Y.J.; Chen, J.J.; Chen, J.; Li, C.Y.; Gao, Z.Z.; Li, J.; Liu, L. Discovery of novel bactericides from Aspergillus alabamensis and their antibacterial activity against fish pathogens. J. Agric. Food Chem. 2023, 71, 4298–4305. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.H.; Yan, Q.X.; Zhang, Y.; Wu, T.Z.; Zou, Z.B.; Liu, Q.M.; Jiang, J.Y.; Xie, M.M.; Xu, L.; Hao, Y.J.; et al. Citriquinolinones A and B: Rare isoquinolinone-embedded citrinin analogues and related metabolites from the deep-sea-derived Aspergillus versicolor 170217. Mar. Drugs 2023, 21, 504. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.Q.; Hu, Z.Q.; Li, C.S.; Wu, X.H.; Cao, S.G. Circumdatin M, a new benzodiazepine alkaloid with a unique pyrimidone-4-pyrone moiety from a Hawaiian marine fungus Aspergillus sp. FM242. Tetrahedron Lett. 2019, 60, 1724–1726. [Google Scholar] [CrossRef]
- Li, H.Q.; Guo, J.R.; Zhang, R.G.; Wang, J.P.; Hu, Z.X.; Zhang, Y.H. Two new nucleoside derivatives isolated from the marine-derived Aspergillus versicolor and their intramolecular transesterification. Nat. Prod. Res. 2020, 36, 3346–3352. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; She, J.L.; Liu, J.; Peng, B.; Yuan, Z.M.; Zhou, X.F. Pyripyropene U, a new alkaloid from the sponge-derived fungus Aspergillus sp. SCSIO41420. Nat. Prod. Res. 2023, 1–6. [Google Scholar] [CrossRef]
- Peng, Q.Y.; Cai, J.; Long, J.Y.; Yang, B.; Lin, X.P.; Wang, J.F.; Xiao, J.; Liu, Y.H.; Zhou, X.F. New azaphthalide and phthalide derivatives from the marine coral-derived fungus Aspergillus sp. SCSIO41405. Phytochem. Lett. 2021, 43, 94–97. [Google Scholar] [CrossRef]
- Liu, Z.M.; Wang, Q.L.; Li, S.N.; Cui, H.; Sun, Z.H.; Chen, D.N.; Lu, Y.J.; Liu, H.X.; Zhang, W.M. Polypropionate derivatives with Mycobacterium tuberculosis protein tyrosine phosphatase B inhibitory activities from the deep-sea-derived fungus Aspergillus fischeri FS452. J. Nat. Prod. 2019, 82, 3440–3449. [Google Scholar] [CrossRef]
- Wu, B.B.; Xu, C.L.; Chen, J.J.; Chen, G.Y. Rhizoaspergillin A and rhizoaspergillinol A, including a unique orsellinic acid-ribose-pyridazinone-N-oxide hybrid, from the mangrove endophytic fungus Aspergillus sp. A1E3. Mar. Drugs 2023, 21, 598. [Google Scholar] [CrossRef]
- Niu, S.W.; Chen, Z.M.; Pei, S.X.; Shao, Z.Z.; Zhang, G.Y.; Hong, B.H. Acremolin D, a new acremolin alkaloid from the deep-sea sediment derived Aspergillus sydowii fungus. Nat. Prod. Res. 2021, 36, 4936–4942. [Google Scholar] [CrossRef]
- Liu, X.J.; Li, H.J.; Ma, W.Z.; Zhang, F.M.; Xu, M.Y.; Mahmud, T.; Lan, W.J. Phomaligols F-I, polyoxygenated cyclohexenone derivatives from marine-derived fungus Aspergillus flavus BB1. Bioorg. Chem. 2021, 115, 105269. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Sun, C.X.; Che, Q.; Zhu, T.J.; Gu, Q.Q.; Guan, H.S.; Zhang, G.J.; Li, D.H. Pyrazinopyrimidine alkaloids from a mangrove-derived fungus Aspergillus versicolor HDN11-84. Phytochemistry 2021, 188, 112817. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.H.; Chen, C.M.; Long, J.Y.; Lan, S.J.; Lin, X.P.; Liao, S.R.; Yang, B.; Zhou, X.F.; Wang, J.F.; Liu, Y.H. Bioactive secondary metabolites from the deep-sea derived fungus Aspergillus sp. SCSIO 41029. J. Antibiot. 2021, 74, 156–159. [Google Scholar] [CrossRef] [PubMed]
- Jiao, W.H.; Xu, Q.H.; Ge, G.B.; Shang, R.Y.; Zhu, H.R.; Liu, H.Y.; Cui, J.; Sun, F.; Lin, H.W. Flavipesides A-C, PKS-NRPS hybrids as pancreatic lipase inhibitors from a marine sponge symbiotic fungus Aspergillus flavipes 164013. Org. Lett. 2020, 22, 1825–1829. [Google Scholar] [CrossRef]
- Wu, J.S.; Yao, G.S.; Shi, X.H.; Rehman, S.U.; Xu, Y.; Fu, X.M.; Zhang, X.L.; Liu, Y.; Wang, C.Y. Epigenetic agents trigger the production of bioactive nucleoside derivatives and bisabolane sesquiterpenes from the marine-derived fungus Aspergillus versicolor. Front. Microbiol. 2020, 11, 85. [Google Scholar] [CrossRef]
Compounds | Producing Strains | Habitats | Genbank Accession Number | Bioactivities | Refs. |
---|---|---|---|---|---|
Aculeaquamide A (1) | A. aculeatinus WHF0198 | Deep-sea sediment, South China Sea | – | IC50 (cytotoxicity) 3.3 μM | [10] |
Asterriquinone F (2) | A. terreus LM.1.5 | Leaves of an unidentified mangrove tree, Vietnam, South China Sea | MN788658.1 | – | [11] |
Asperdiazapinone G (3) | Aspergillus sp. WHUF03110 | Mangrove soil, Yalong Bay, at Sanya, Hainan, China | MZ661122 | – | [12] |
Di-6-hydroxydeoxybrevianamide E (4) | A. austroafricanus Y32-2 | Seawater, Indian Ocean | MK267449 | – | [13] |
Dinotoamide J (5) | A. austroafricanus Y32-2 | Seawater, Indian Ocean | MK267449 | Pro-angiogenic activity | [13] |
at concentration of 70 µg/mL | |||||
Penerpene O (6) | Aspergillus sp. ZF-104 | Marine soft coral, Haikou Bay, Hainan province, China | OM320573 | IC50 (PTP1B-inhibitory activities) 17.7 ± 0.7 μM | [14] |
Penerpenes Q-R (7–8) | Aspergillus sp. ZF-104 | Marine soft coral, Haikou Bay, Hainan province, China | OM320573 | – | [14] |
Penerpenes T (9) | Aspergillus sp. ZF-104 | Marine soft coral, Haikou Bay, Hainan province, China | OM320573 | – | [14] |
Penerpene U (10) | Aspergillus sp. ZF-104 | Marine soft coral, Haikou Bay, Hainan province, China | OM320573 | IC50 (PTP1B-inhibitory activities) | [14] |
28.1 ± 2.2 μM | |||||
Penerpene V (11) | Aspergillus sp. ZF-104 | Marine soft coral, Haikou Bay, Hainan province, China | OM320573 | – | [14] |
O-β-D-glucopyranosyl ester (12) | A. fumigatus M580 | Sea cucumber, Co To-Thanh Lan island, Vietnam | MW015802 | – | [15] |
Sclerotiamide C (13) | A. sclerotiorum LZDX-33-4 | Marine gorgonian, South China Sea | OK012383.1 | IC50 (cytotoxicity) 1.5–1.8 μM | [16] |
Sclerotiamides D-E (14–15) | A. sclerotiorum LZDX-33-4 | Marine gorgonian, South China Sea | OK012383.1 | – | [16] |
Sclerotiamide F (16) | A. sclerotiorum LZDX-33-4 | Marine gorgonian, South China Sea | OK012383.1 | IC50 (cytotoxicity) 0.05–0.07 μM | [16] |
Sclerotiamides G-H (17–18) | A. sclerotiorum LZDX-33-4 | Marine gorgonian, South China Sea | OK012383.1 | – | [16] |
Fumindoline A–C (19–21) | A. fumigatus H22 | Seawater, Western Pacific | NRRL 163 s | – | [17] |
Aspercarbolines A–B (22–23) | Aspergillus sp. XBB-4 | Inner tissue of geoduck Panopea abbreviate, South China Sea | MK863524 | – | [18] |
Aspercarboline C (24) | Aspergillus. sp. XBB-4 | Inner tissue of geoduck Panopea abbreviate, South China Sea | MK863524 | IC50 (cytotoxicity) 16.29–50.85 μM | [18] |
Flavonoid A (25) | A. flavipes DS720 | Deep seawater, Mariana Trench | ON340751 | Inhibition rates of (cytotoxicity) (90.83 ± 3.31)%–(99.49 ± 0.50)%, at the concentration of 20 µM | [19] |
Flavonoid B (26) | A. flavipes DS720 | Deep seawater, the Mariana Trench | ON340751 | – | [19] |
Secofumitremorgins A and B (27a and 27b) | A. fumigatus SD-406 | Deep-sea sediment, the East China Sea | MT635279 | MIC (antimicrobial) 4–64 µg/mL | [20] |
Aspergillipeptides H–I (28–29) | Aspergillus sp. SCSIO 41501 | Marine gorgonian Melitodes squamata Nutting, the South China Sea, Sanya, Hainan | JN851015 | – | [21] |
Ascandinines A–B (30–31) | A. candidus HDN15-152 | Sponge, Pulitzer bay, Antarctica | MH430037 | – | [22] |
Ascandinine C (32) | A. candidus HDN15-152 | Sponge, Pulitzer bay, Antarctica | MH430037 | IC50 (anti-influenza virus) 26 μM | [22] |
Ascandinine D (33) | A. candidus HDN15-152 | Sponge, Pulitzer bay, Antarctica | MH430037 | IC50 (cytotoxicity) 7.8 μM | [22] |
Aspergillspins A-B (34–35) | Aspergillus sp. SCSIO 41501 | Marine gorgonian Melitodes squamata Nutting, the South China Sea, Sanya, Hainan | JN851015 | – | [23] |
Asterriquinone I (36) | Aspergillus sp. SCSIO 41018 | Sponge, Xuwen, Guangdong Province | MH109740.1 | IC50 (cytotoxicity) | [24] |
17.9 ± 0.62–29.2 ± 0.32 μM | |||||
Asterriquinone J (37) | Aspergillus sp. SCSIO 41018 | Sponge, Xuwen, Guangdong Province | MH109740.1 | IC50 (cytotoxicity) | [24] |
8.5 ± 0.17–18.7 ± 0.45 μM | |||||
Asterriquinone K (38) | Aspergillus sp. SCSIO 41018 | Sponge, Xuwen, Guangdong Province | MH109740.1 | IC50 (cytotoxicity) | [24] |
13.0 ± 0.36–26.2 ± 0.13 μM | |||||
Asterriquinols G–I (39–41) | Aspergillus sp. SCSIO 41018 | Sponge, Xuwen, Guangdong Province | MH109740.1 | – | [24] |
Aspergillamides C-D (42–43) | A. terreus SCSIO 41008 | Marine sponge Callyspongia sp., Xuwen County, Guangdong Province, China | MF536093 | – | [25] |
(±)-7,8-epoxy-brevianamide Q ((±)-44) | A. versicolor MF180151 | Marine sediment, Bohai Sea, China. | MK680178 | – | [28] |
(±)-8-hydroxy-brevianamide R ((±)-45) | A. versicolor MF180151 | Marine sediment, Bohai Sea, China. | MK680178 | – | [28] |
(±)-8-epihydroxy-brevianamide R ((±)-46) | A. versicolor MF180151 | Marine sediment, Bohai Sea, China. | MK680178 | – | [28] |
(-)-5-isopentenyl-cryptoechinuline D (47a) | A. ruber TX-M4-1 | Marine moss, Weizhou Island | OL989330 | IC50 (inhibits TrxR activity) | [29] |
6.2 μM | |||||
(+)-5-isopentenyl-cryptoechinuline D (47b) | A. ruber TX-M4-1 | Marine moss, Weizhou Island | OL989330 | – | [29] |
(±)-dibrevianamide Q1 ((±)-48) | Aspergillus sp. ZA-01 | Marine sediment, Bohai Sea | – | IC50 (anti-H1N1 virus activity, (+)-44) 12.6 μM; MIC (anti-bacterium) 10.2 μg/mL | [30] |
(±)-dibrevianamide Q2 ((±)-49) | Aspergillus sp. ZA-01 | Marine sediment, Bohai Sea | – | IC50 (anti-H1N1 virus activity, (−)-45) 19.5 μM | [30] |
Versicolamide C (50) | Aspergillus sp. SCSIO 41036 | Soft coral, Beihai, Guangxi, China | OM441922 | – | [31] |
Emestrins L-M (51–52) | A. terreus RA2905 | Sea hare Aplysia pulmonica, Weizhou, South China Sea | MK611650 | – | [32] |
(±)-brevianamide Z ((±)-53) | A. versicolor HBU-7 | Sea mud, Bohai, China | KY814754 | – | [33] |
(±)-brevianamide Z1 ((±)-54) | A. versicolor HBU-7 | Sea mud, Bohai, China | KY814754 | – | [33] |
Pyranamides A-D (55–58) | A. versicolor SCSIO 41016 | Marine sponge Callyspongia sp., Xuwen County, Guangdong Province, China | MH244341 | – | [34] |
Secopyranamide C (59) | A. versicolor SCSIO 41016 | Marine sponge Callyspongia sp., Xuwen County, Guangdong Province, China | MH244341 | – | [34] |
Protuboxepins F-J (60–64) | A. versicolor SCSIO 41016 | Marine sponge Callyspongia sp., Xuwen County, Guangdong Province, China | MH244341 | – | [34] |
Sclerotioloid A (65) | A. sclerotiorum ST0501 | Sponge, Guangdong, China | MT534582 | – | [35] |
Sclerotioloid C (66) | A. sclerotiorum ST0501 | Sponge, Guangdong, China | MT534582 | – | [35] |
Oxepinamide L (67) | A. puniceus FAHY0085 | Marine coral, South China Sea | OQ825098 | – | [36] |
Asperindopiperazines A–C (68–70) | Aspergillus sp. SY2601 | Mariana-Trench sediments | OR646740 | – | [37] |
12β,13β-hydroxy-asperfumigatin (71) | A. fumigatus H22 | Seawater, Western Pacific | NRRL 163 s | – | [17] |
(+)- and (-)-brevianamide X ((±)-72) | A. versicolor OUCMDZ-2738 | Enteromorpha prolifera, Shilaoren beach, Qingdao, China | MH150818 | – | [38] |
Asperflocin (73) | A. versicolor 16F-11 | Sponge, Yongxing Island, South China Sea, China | KM605199 | IC50 (cytotoxicity) 10.29 ± 2.37 μM | [39] |
Aspechinulins A-B (74–75) | Aspergillus sp. FS445 | Deep-Sea sediment, Indian Ocean | MW386823 | – | [40] |
Aspechinulin C (76) | Aspergillus sp. FS445 | Deep-Sea sediment, Indian Ocean | MW386823 | IC50 (inhibition against NO production) 23.7 μM | [40] |
Aspechinulin D (77) | Aspergillus sp. FS445 | Deep-Sea sediment, Indian Ocean | MW386823 | – | [40] |
5-prenylcryptoechinulin A (78) | A. chevalieri MCCC M23426 | Deep-Sea | NR_135340 | Inhibition rate (antibacterial) of over 90% at the concentration of 250 µM | [41] |
9-epi-didehydroechinulin (79) | A. chevalieri MCCC M23426 | Deep-Sea | NR_135340 | – | [41] |
Asperdione A (80) | Aspergillus sp. XBB-4 | Inner tissue of geoduck Panopea abbreviate, South China Sea | MK863524 | IC50 (cytotoxicity) 10.72–22.00 μM | [18] |
(+) and (-)19-epi-sclerotiamide | A. versicolor CGF 9-1-2 | Soft coral, South China Sea | MG827180.1 | – | [42] |
(81 and 82) | |||||
Didethio-11α-methylthioemestrin (83) | A. nidulans SD-531 | Deep-Sea cold-seep sediment, South China Sea | MN901610.1 | – | [43] |
7′-epi-didethio-11α-methylthioemestrin (84) | A. nidulans SD-531 | Deep-Sea cold-seep sediment, South China Sea | MN901610.1 | IC50 (antimicrobial) 0.5–16.0 μM | [43] |
2′′-desmethyl-MPC1001F (85) | A. nidulans SD-531 | Deep-Sea cold-seep sediment, South China Sea | MN901610.1 | IC50 (cytotoxicity) 8.0 μM | [43] |
Asperthrins E–F (86–87) | Aspergillus sp. YJ191021 | Soil, Zhoushan, Zhejiang, China | – | – | [44] |
Asperthrin A (88) | Aspergillus sp. YJ191021 | Soil, Zhoushan, Zhejiang, China | – | MIC (antimicrobial) 8–25 µg/mL; IC50 (anti-inflammatory) 1.46 ± 0.21 µM | [44] |
Asperthrins B–D (89–91) | Aspergillus sp. YJ191021 | Soil, Zhoushan, Zhejiang, China | – | – | [44] |
Stereoisomers (92–93) | Aspergillus sp. Z3 | Marine isopod Ligia exotica, Dinghai, Zhoushan, Zhejiang, China | – | – | [45] |
3-hydroxyprotuboxepin K (94) | A. creber EN-602 | Red algal Rhodomela confervoides, Qingdao, China | MW186501 | IC50 (enzyme-inhibitory activity) 22.4 μM | [46] |
3,15-dehydroprotuboxepin K (95) | A. creber EN-602 | Red algal Rhodomela confervoides, Qingdao, China | MW186501 | MIC (antimicrobial) 8–64 µM | [46] |
Versiamide A (96) | A. creber EN-602 | Red algal Rhodomela confervoides, Qingdao, China | MW186501 | MIC (antimicrobial) 16–64 µM; | [46] |
Waikikiamide A (97) | Aspergillus sp. FM242 | soil, Waikiki beach of Oahu, Honolulu, Hawaii | MH879469 | IC50 (cytotoxicity) 0.591–1.855 μM | [47] |
Waikikiamide B (98) | Aspergillus sp. FM242 | soil, Waikiki beach of Oahu, Honolulu, Hawaii | MH879469 | – | [47] |
Waikikiamide C (99) | Aspergillus sp. FM242 | soil, Waikiki beach of Oahu, Honolulu, Hawaii | MH879469 | IC50 (cytotoxicity) 1.127–1.805 μM | [47] |
Aspamides A-D (100–103) | A. versicolor DY180635 | Sea crab (Chiromantes haematocheir), Zhoushan, Zhejiang, China | MT361076 | – | [48] |
Aspamides F-G (104–105) | A. versicolor DY180635 | Sea crab (Chiromantes haematocheir), Zhoushan, Zhejiang, China | MT361076 | – | [48] |
Sclerotiamide I (106) | A. sclerotiorum LZDX-33-4 | Marine gorgonian, South China Sea | OK012383.1 | – | [49] |
Sclerotiamide J (107) | A. sclerotiorum LZDX-33-4 | Marine gorgonian, South China Sea | OK012383.1 | Inhibited NLRP3 inflammasome activation | [49] |
Sclerotiamide K (108) | A. sclerotiorum LZDX-33-4 | Marine gorgonian, South China Sea | OK012383.1 | MIC (antimicrobial) 4–16 µM | [49] |
Sclerotiamides L–R (109–115) | A. sclerotiorum LZDX-33-4 | Marine gorgonian, South China Sea | OK012383.1 | – | [49] |
11-methylneoechinulin E (116) | Aspergillus sp. EGF 15-0-3 | Soft coral, South China Sea | FJ941865.1 | – | [50] |
Variecolorin M (117) | Aspergillus sp. EGF 15-0-3 | Soft coral, South China Sea | FJ941865.1 | – | [50] |
(+)-variecolorin G (118) | Aspergillus sp. EGF 15-0-3 | Soft coral, South China Sea | FJ941865.1 | – | [50] |
Versicomide E (119) | A. versicolor AS-212 | Deep-sea coral Hemicorallium cf. imperiale, Magellan Seamounts | OP009765.1 | – | [51] |
Cottoquinazoline H (120) | A. versicolor AS-212 | Deep-sea coral Hemicorallium cf. imperiale, Magellan Seamounts | OP009765.1 | MIC (antimicrobial) 9.0–18.1 µM | [51] |
Versicoxepines A–D (121–124) | A. versicolor AS-212 | Deep-sea coral Hemicorallium cf. imperiale, Magellan Seamounts | OP009765.1 | – | [52] |
Asperopiperazine A (125) | Aspergillus sp. DY001 | Sea tunicate Didemnum sp., Jizan, Saudi Red Sea coast | MN818770 | MIC (antimicrobial) 8 µM; IC50 (cytotoxicity) 15.1 ± 0.1–24.3 ± 0.2 μM | [53] |
Asperopiperazine B (126) | Aspergillus sp. DY001 | Sea tunicate Didemnum sp., Jizan, Saudi Red Sea coast | MN818770 | MIC (antimicrobial) 4–8 µM; IC50 (cytotoxicity) 16.2 ± 0.1–26.3 ± 0.3 μM | [53] |
Aspergiamide A (127) | Aspergillus sp. 16-5c | Leaves of S. apetala, a mangrove, Hainan Island, China | JX993829 | IC50 (α-glucosidase-inhibitory) 18.2 Μm | [54] |
Aspergiamide B (128) | Aspergillus sp. 16-5c | Leaves of S. apetala, a mangrove, Hainan Island, China | JX993829 | – | [54] |
Aspergiamide C (129) | Aspergillus sp. 16-5c | Leaves of S. apetala, a mangrove, Hainan Island, China | JX993829 | IC50 (α-glucosidase-inhibitory) 83.9 μM | [54] |
Aspergiamides D-F (130–132) | Aspergillus sp. 16-5c | Leaves of S. apetala, a mangrove, Hainan Island, China | JX993829 | – | [54] |
24,25-dihydroxyvariecolorin G (133) | A. chevalieri CS-122 | Deep-sea cold-seep sediment, South China Sea | OM304365.1 | MIC (anti-E. coli) 4 µg/mL | [55] |
25-hydroxyrubrumazine B (134) | A. chevalieri CS-122 | Deep-sea cold-seep sediment, South China Sea | OM304365.1 | MIC (antibacterial) 16–32 µg/mL | [55] |
22-chloro-25-hydroxyrubrumazine B (135) | A. chevalieri CS-122 | Deep-sea cold-seep sediment, South China Sea | OM304365.1 | MIC (anti-V. harveyi) 8 µg/mL | [55] |
25-hydroxyvariecolorin F (136) | A. chevalieri CS-122 | Deep-sea cold-seep sediment, South China Sea | OM304365.1 | MIC (antimicrobial) 32 µg/mL | [55] |
27-epi-aspechinulin D (137) | A. chevalieri CS-122 | Deep-sea cold-seep sediment, South China Sea | OM304365.1 | Potent broad-spectrum antibacterial activity | [55] |
Asterripeptides A–C (138–140) | A. terreus LM.5.2 | Mangrove tree leaves Kandelia candelcoast, Hoa province, Vietnam, South China Sea | MN788658.1 | – | [56] |
19S,20-epoxy-18-oxotryprostatin A (141) | A. fumigatus MF071 | Marine sediment, Bohai Sea, China | MN700176 | – | [57] |
20-hydroxy-18-oxotryprostatin A (142) | A. fumigatus MF071 | Marine sediment, Bohai Sea, China | MN700176 | – | [57] |
Nigerpiperazine A (143) | A. niger JX-5 | Mangrove plant Ceriops tagal, Dongzhaigang, Hainan, China | MK234873 | IC50 (insecticidal activity) 200 μg/mL | [58] |
Oxepinamides H–J (144–146) | A. puniceus SCSIO z021 | Deep-sea sediment, Okinawa Trough | KX258801 | EC50 (transcriptional activation on LXRα) 15–16 μM | [59] |
Oxepinamide K (147) | A. puniceus SCSIO z021 | Deep-sea sediment, Okinawa Trough | KX258801 | – | [59] |
Chevalinulins A (148) | A. chevalieri CS-122 | Deep-sea cold seep, South China Sea | OM304365 | Proangiogenic activity at the concentrations of 40 μg/mL | [60] |
Chevalinulins B (149) | A. chevalieri CS-122 | Deep-sea cold seep, South China Sea | OM304365 | Proangiogenic activity at the concentration of 80 μg/mL | [60] |
Sclerotiotide M (150) | A. ochraceopetaliformis | Seawater, Dongshan Island, Fujian, China | MW047023 | – | [63] |
DSW-2 | |||||
JG002CPA (151) | A. allahabadii JG002 | Underwater sediment, the coast of Jeju-do, Korea | MK424488 | – | [64] |
JG002CPB (152) | A. allahabadii JG002 | Underwater sediment, the coast of Jeju-do, Korea | MK424488 | IC50 (antimicrobial) 47.8–104.3 μM | [64] |
FJ120DPA (153) | A. ochraceopetaliformis FJ120 | Underwater sediment, the coast of Jeju-do, Korea | KF384187 | – | [64] |
FJ120DPB (154) | A. ochraceopetaliformis FJ120 | Underwater sediment, the coast of Jeju-do, Korea | KF384187 | – | [64] |
Aspertides A–C (155–157) | co-culture of A. tamarii MA-21 and A. insuetus SD-512 | Mangrove plant S. paracaseolaris, Wenchang, Hainan, China and deep-sea sediment, South China Sea | HQ891663 and MN696202 | – | [65] |
Aspertide D (158) | co-culture of A. tamarii MA-21 and A. insuetus SD-512 | Mangrove plant S. paracaseolaris, Wenchang, Hainan, China and deep-sea sediment, South China Sea | HQ891663 and MN696202 | MIC (antibacterial) 8–32 µg/mL | [65] |
Aspertide E (159) | co-culture of A. tamarii MA-21 and A. insuetus SD-512 | Mangrove plant S. paracaseolaris, Wenchang, Hainan, China and deep-sea sediment, South China Sea | HQ891663 and MN696202 | MIC (antibacterial) 8–16 µg/mL | [65] |
Japonamides A–B (160–161) | A. japonicus MCCC 3A00261 | Marine sponge, Arctic 6700-4 sea area | HM573340 | – | [66] |
Pseudoviridinutans A–E (162–166) | A. pseudoviridinutans TW58-5 | Marine sediment, Kueishantao, Taiwan | OQ405296 | – | [67] |
Pseudoviridinutan F (167) | A. pseudoviridinutans TW58-5 | Marine sediment, Kueishantao, Taiwan | OQ405296 | Inhibited LPS and stimulated NO production | [67] |
Pseudoviridinutan G (168) | A. pseudoviridinutans TW58-5 | Marine sediment, Kueishantao, Taiwan | OQ405296 | – | [67] |
Petrosamides A-C (169–171) | Aspergillus sp. 151304 | Marine sponge Petrosia sp., Yongxing Island, China | SUB7318612 | IC50 (PL-inhibitory activities) 0.5 ± 0.1–7.6 ± 1.5 μM | [68] |
Cotteslosin C (172) | co-culture of A. versicolor 8.1.3a and B. subtilis 168 trpC2 | Sponge and laboratory strain | KY174984 | – | [69] |
Asperhiratide (173) | A. hiratsukae SCSIO 5Bn1003 | Soft coral, South China Sea | KY806121.1 | – | [70] |
Versicolide A (174) | A. versicolor PS108-62 | Marine sediment, Arctic Ocean | OP807024 | – | [71] |
Maribasin C (175) | Aspergillus sp. SCSIO 41501 | Marine gorgonian Melitodes squamata Nutting, the South China Sea, Sanya, Hainan | JN851015 | MIC (antifungal) 6.25–50 µg/disc | [21] |
Maribasin D (176) | Aspergillus sp. SCSIO 41501 | Marine gorgonian Melitodes squamata Nutting, the South China Sea, Sanya, Hainan | JN851015 | MIC (antifungal) 3.12–25 µg/disc | [21] |
Maribasin E (177) | Aspergillus sp. SCSIO 41501 | Marine gorgonian Melitodes squamata Nutting, the South China Sea, Sanya, Hainan | JN851015 | MIC (antifungal) 12.5–50 µg/disc | [21] |
Sclerotiotide M (178) | A. insulicola HDN151418 | Sponge, Prydz Bay, Antarctica | MT898544 | MIC (antimicrobial) 1.56–12.5 µM | [72] |
Sclerotiotide N (179) | A. insulicola HDN151418 | Sponge, Prydz Bay, Antarctica | MT898544 | MIC (antimicrobial) 1.56–25.0 µM | [72] |
Sclerotiotide O (180) | A. insulicola HDN151418 | Sponge, Prydz Bay, Antarctica | MT898544 | – | [72] |
Caletasin (181) | Aspergillus sp. MEXU 27854 | Mairne sand, Caleta Bay, Mexico | KY406733 | – | [73] |
Chaetominine A (182) | A. fumigatus MF029 | Marine sponge Hymeniacidon perleve, Bohai Sea, China | MH974808 | – | [75] |
Aspertoryadins H-J (183–185) | Aspergillus sp. HNMF114 | Sanguinolaria chinensi, Haikou Bay | MK732953 | – | [76] |
Chaetominines A (186) and B (187) | A. versicolour SCSIO XWS04 F52 | Marine sponge Callyspongia sp., Xuwen County, Guangdong Province, China | MN788648 | IC50 (cytotoxicity) 7.5–24.5 µM | [77] |
Puniceloid E (188) | A. puniceus FAHY0085 | Marine coral, South China Sea | OQ825098 | – | [36] |
Puniceloid F (189) | A. puniceus FAHY0085 | Marine coral, South China Sea | OQ825098 | EC50 (transcriptional activation on LXRα) 2 µM | [36] |
Puniceloid G (190) | A. puniceus FAHY0085 | Marine coral, South China Sea | OQ825098 | – | [36] |
2-(4-hydroxybenzyl)-4-(3-acetyl) | A. sydowii SW9 | Seawater, Yangma Island, Yantai, China | MN696205 | MIC (antibacterial) 8–16 µg/mL | [78] |
quinazolin-one (191) | |||||
Aspertoryadins A–E (192–196) | Aspergillus sp. HNMF114 | Sanguinolaria chinensi, Haikou Bay | MK732953 | – | [79] |
Aspertoryadin F (197) | Aspergillus sp. HNMF114 | Sanguinolaria chinensi, Haikou Bay | MK732953 | MIC (antifungal) 32 µg/well | [79] |
Aspertoryadin G (198) | Aspergillus sp. HNMF114 | Sanguinolaria chinensi, Haikou Bay | MK732953 | MIC (antifungal) 32 µg/well | [79] |
2-epi-tryptoquivaline F (199) | A. fumigatus H22 | Seawater, Western Pacific | NRRL 163 s | – | [17] |
Protuboxepin K (200) | Aspergillus sp. BFM-0085 | Sediment, Tokyo Bay, Tokyo, Japan | – | IC50 (cytotoxicity) 4.7 µM | [80] |
Felicarnezolines A–B (201–202) | co-culture of Amphichorda sp. KMM 4639 and A. carneus KMM 4638 | Van Phong Bay, the South China Sea, Vietnam, and Brown alga Laminaria sachalinensis, Kunashir Island | OQ344667 | – | [81] |
Felicarnezoline C (203) | co-culture of Amphichorda sp. KMM 4639 and A. carneus KMM 4638 | Van Phong Bay, the South China Sea, Vietnam, and Brown alga Laminaria sachalinensis, Kunashir Island | OQ344667 | IC50 (cytotoxicity) 92.5 ± 3.1 µM | [81] |
Felicarnezoline D (204) | co-culture of Amphichorda sp. KMM 4639 and A. carneus KMM 4638 | Van Phong Bay, the South China Sea, Vietnam, and Brown alga Laminaria sachalinensis, Kunashir Island | OQ344667 | IC50 (cytotoxicity) 68.7 ± 1.6–72.9 ± 2.8 µM | [81] |
Felicarnezoline E (205) | co-culture of Amphichorda sp. KMM 4639 and A. carneus KMM 4638 | Van Phong Bay, the South China Sea, Vietnam, and Brown alga Laminaria sachalinensis, Kunashir Island | OQ344667 | IC50 (cytotoxicity) 83.8 ± 5.5–86.3 ± 2.3 µM | [81] |
(-)-isoversicomide A (206) | A. versicolor PS108-62 | Marine sediment, Arctic Ocean | OP807024 | – | [71] |
29-hydroxyfumiquinazoline C (207) | A. fumigatus SD-406 | Deep-sea sediment, the East China Sea | MT635279 | – | [20] |
(±)-17-hydroxybrevianamide N (208) | Aspergillus sp. CHNSCLM-0151 | Soft coral, South China Sea | KY235298 | – | [82] |
(±)-N1-methyl-17-hydroxybrevianamide N (209) | Aspergillus sp. CHNSCLM-0151 | Soft coral, South China Sea | KY235298 | – | [82] |
Puniceloids A–D (210–213) | A. puniceus SCSIO z021 | Deep-sea sediment, Okinawa Trough | KX258801 | EC50 (transcriptional activation on LXRα) 1.7–5.3 µM | [59] |
Novobenzomalvin D (214) | A. terreus SCAU011 | Mangrove plant Rhizophora stylosa, Techeng Isle, China | KY827341 | COX-2 inhibition rate of 91.1% at 20 nM | [83] |
Tryptoquivaline Y (215) | A. felis FM324 | Hawaiian beach soil | MZ227547 | – | [84] |
2-methyl-versiquinazoline C (216) | A. flavipes PJ03-11 | Wetland mud, Panjin Red Beach National Nature Reserve, Liaoning Province, China | KT809365 | – | [85] |
Fumigatosides G-H (217–218) | A. fumigatus SAl12 | Leaves of mangrove plant Sonneratia apetala Buch.-Ham., Dongzhaigang National Nature Reserve, south China’s Hainan Province | – | – | [86] |
Puniceusine O (219) | A. puniceus SCSIO z021 | Deep-sea sediment, Okinawa Trough | KX258801 | – | [88] |
(±)-puniceusine P (220) | A. puniceus SCSIO z021 | Deep-sea sediment, Okinawa Trough | KX258801 | – | [88] |
Puniceusines A-B (221–222) | A. puniceus SCSIO z021 | Deep-sea sediment, Okinawa Trough | KX258801 | – | [89] |
Puniceusine C (223) | A. puniceus SCSIO z021 | Deep-sea sediment, Okinawa Trough | KX258801 | IC50 (CD45-inhibitory activities) 8.4 µM | [89] |
Puniceusine D (224) | A. puniceus SCSIO z021 | Deep-sea sediment, Okinawa Trough | KX258801 | IC50 (CD45-inhibitory activities) 5.6 μM; IC50 (cytotoxicity) 11.0 µM; MIC (anti-E. coli) 100 µg/mL | [89] |
Puniceusines E-M (225–233) | A. puniceus SCSIO z021 | Deep-sea sediment, Okinawa Trough | KX258801 | – | [89] |
Puniceusine N (234) | A. puniceus SCSIO z021 | Deep-sea sediment, Okinawa Trough | KX258801 | MIC (antibacterial) 100 µg/mL | [89] |
2-(quinoline-8-carboxamido) | Aspergillus sp. SCSIO06786 | Deep-sea sediment, Indian Ocean | MN203718 | – | [90] |
benzoic acid (235) | |||||
perinadine B-C (236–237) | Aspergillus sp. LS116 | Marine sponge Haliclona sp., Lingshui, Hainan, China | FJ864703 | MIC (antibacterial) 32–64 µg/mL | [92] |
Ochraceopetalin (238) | A. ochraceopetaliformis FJ120 | Marine sediment, Jeju-do, Korea | KF384187 | IC50 (cytotoxicity) 6.8–9.5 µM | [93] |
Asperorydines N-P (239–241) | A. flavus SCSIO F025 | Deep-sea sediment, the central South China Sea | KF682370 | – | [94] |
Variotin B (242) | A. unguis IV17-109 | Deep-sea shrimp, Indian Ocean | OL700797 | IC50 (anti-inflammatory) 20.0 µM | [95] |
(E)-6-hydroxy-5-(1-propenyl)-1,2-dihydropyrano [3,2-b]pyrrole-3,7-dione (243) | Aspergillus sp. DM94 | Rhizosphere soil of mangrove Bruguiera gymnorrhiza (L.) Poir | M20191003 | – | [96] |
Cephalimysins M–N (244–245) | A. fumigatus CUGBMF170049 | Marine sediment, Bohai Sea, China | MK453215 | – | [97] |
Azaspirenes A–E (246–250) | A. micronesiensis NF666 | Marine mud, South China Sea | – | – | [98] |
10R-15-methylpseurotin A (251) | A. fumigatus SD-406 | Deep-sea sediment, the East China Sea | MT635279 | MIC (antifungal) 16 µM | [20] |
Pseurotin I (252) | A. felis FM324 | Hawaiian beach soil | MZ227547 | IC50 (NF-κB-inhibitory activities) 30.9 µM | [84] |
(±)-asperazepanone A (253) | A. candidus CHNSCLM-0393 | Nansha Islands coral reef, South China | MF681708 | – | [99] |
(+)-asperazepanone B (254) | A. candidus CHNSCLM-0393 | Nansha Islands coral reef, South China | MF681708 | Against nitric oxide (NO) production with an inhibition rate of 43 ± 4% at the concentration of 1 μM | [99] |
Asperorydine Q (255) | A. flavus GXIMD 02503 | Coral Porites lutea, Guangxi Zhuang Autonomous Region, China | MT510157 and MT510158 | IC50 (NF-κB-inhibitory activities) 14.1 ± 1.5 µM | [100] |
pyranonigrin L (256) | A. fumigatus SAS10 | Mangrove, Dongzhai Harbor, Hainan Province, China | – | – | [101] |
Asperalins A–B (257–258) | A. alabamensis SYSU-6778 | Seagrass E. acoroides, Dongzhai Port, Hainan Island, China | ON845600 | – | [102] |
Asperalins C–D (259–260) | A. alabamensis SYSU-6778 | Seagrass E. acoroides, Dongzhai Port, Hainan Island, China | ON845600 | MIC (antimicrobial) 5–10.1 µM | [102] |
Asperalin E (261) | A. alabamensis SYSU-6778 | Seagrass E. acoroides, Dongzhai Port, Hainan Island, China | ON845600 | MIC (antimicrobial) 2.2 µM | [102] |
Asperalin F (262) | A. alabamensis SYSU-6778 | Seagrass E. acoroides, Dongzhai Port, Hainan Island, China | ON845600 | MIC (antimicrobial) 10.9–87.3 µM | [102] |
22-epi-aflaquinolone B (263) | co-culture of A. versicolor 8.1.3a and B. subtilis 168 trpC2 | Sponge and laboratory strain | KY174984 | – | [69] |
Aspergillspins C–E (264–266) | Aspergillus sp. SCSIO 41501 | Marine gorgonian Melitodes squamata Nutting, the South China Sea, Sanya, Hainan | JN851015 | – | [23] |
Citriquinolinones A–B (267–268) | A. versicolor 170217 | Deep-sea whale Mesoplodon densirostris, Ningde, East China Sea | SUB13826338 | – | [103] |
Circumdatin M (269) | Aspergillus sp. FM242 | Soil, Waikiki beach of Oahu, Honolulu, Hawaii | MH879469 | – | [104] |
Kipukasins M (270) and N (271) | A. versicolor TJ-LHQ-AV507 | Sea mud, South China Sea | 2081031 | – | [105] |
Asperpteridinate A (272) | A. austroafricanus Y32-2 | Seawater, Indian Ocean | MK267449 | – | [13] |
Pyripyropene U (273) | Aspergillus sp. SCSIO41420 | Marine sponge, Weizhou Island, Guangxi, China | NR_ OP363213 | – | [106] |
Aspernigrin E (274) | A. fumigatus SAS10 | Mangrove, Dongzhai Harbor, Hainan Province, China | – | – | [101] |
(S)-3-hydroxy-2,7-dimethylfuro [3,4-b]pyridin-5(7H)-one (275) | Aspergillus sp. SCSIO41405 | Coral, Luhuitou waters, Sanya Bay, South China Sea | – | – | [107] |
Asperalumazine A (276) | A. alabamensis SYSU-6778 | Seagrass E. acoroides, Dongzhai Port, Hainan Island, China | ON845600 | – | [102] |
Fiscpropionate D (277) | A. fischeri FS452 | Deep-sea sludge, Indian Ocean | KF294264 | IC50 (MptpB-inhibitory activities) 11 μM | [108] |
Fiscpropionate E (278) | A. fischeri FS452 | Deep-sea sludge, Indian Ocean | KF294264 | – | [108] |
Rhizoaspergillin A (279) | Aspergillus sp. A1E3 | Mangrove Rhizophora mucronata, Trang Province | – | – | [109] |
Acremolin D (280) | A. sydowii MCCC 3A00324 | Deep-sea sediment, South Atlantic Ocean | MN918102 | Inhibition rate (cytotoxicity) of 25.1–30.6% at the concentration of 20 µM | [110] |
Phomaligol H (281) | A. flavus BB1 | Marine shellfish Meretrix meretrix, Hailing Island, Yangjiang, China | MT584825 | IC50 (cytotoxicity) 65.53 µM | [111] |
Pyrasplorines A–C (282–284) | A. verisicolor HDN11-84 | Thespesia populnea, Guangxi Province, China | KU950433 | – | [112] |
Deg-pyrasplorine B (285) | A. verisicolor HDN11-84 | Thespesia populnea, Guangxi Province, China | KU950433 | – | [112] |
Versicoloid A (286) | A. verisicolor HDN11-84 | Thespesia populnea, Guangxi Province, China | KU950433 | – | [112] |
Penilumamide K (287) | Aspergillus sp. SCSIO 41029 | Deep-sea sediment, South China Sea | MH591418.1 | IC50 (α-glucosidase inhibitory) 18.61 μM | [113] |
(6-benzyl-1-isopentyl-4-oxo-1,4-dihydropyridin-3-yl)-carboxamide (288) | Aspergillus sp. DM94 | Rhizosphere soil of mangrove Bruguiera gymnorrhiza (L.) Poir | M20191003 | – | [96] |
Flavipesides A–C (289–291) | A. flavipes 164013 | Cyanobacterium Lyngbya majuscula, South China Sea | – | IC50 (PL inhibitory activities) 0.07 ± 0.01–0.23 ± 0.03 μM | [114] |
kipukasins K–L (292–293) | A. versicolor XS-20090066 | Gorgonian Dichotella gemmacea, Xisha Islands coral reef, South China Sea | MN880095 | – | [115] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Yu, M.; Chen, W.; Chen, S.; Qiu, Y.; Xu, Z.; Wang, Y.; Huang, G.; Zheng, C. Recent Discovery of Nitrogen Heterocycles from Marine-Derived Aspergillus Species. Mar. Drugs 2024, 22, 321. https://doi.org/10.3390/md22070321
Shi J, Yu M, Chen W, Chen S, Qiu Y, Xu Z, Wang Y, Huang G, Zheng C. Recent Discovery of Nitrogen Heterocycles from Marine-Derived Aspergillus Species. Marine Drugs. 2024; 22(7):321. https://doi.org/10.3390/md22070321
Chicago/Turabian StyleShi, Jueying, Miao Yu, Weikang Chen, Shiji Chen, Yikang Qiu, Zhenyang Xu, Yi Wang, Guolei Huang, and Caijuan Zheng. 2024. "Recent Discovery of Nitrogen Heterocycles from Marine-Derived Aspergillus Species" Marine Drugs 22, no. 7: 321. https://doi.org/10.3390/md22070321
APA StyleShi, J., Yu, M., Chen, W., Chen, S., Qiu, Y., Xu, Z., Wang, Y., Huang, G., & Zheng, C. (2024). Recent Discovery of Nitrogen Heterocycles from Marine-Derived Aspergillus Species. Marine Drugs, 22(7), 321. https://doi.org/10.3390/md22070321