Induction of Three New Secondary Metabolites by the Co-Culture of Endophytic Fungi Phomopsis asparagi DHS-48 and Phomopsis sp. DHS-11 Isolated from the Chinese Mangrove Plant Rhizophora mangle
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phylogenetic Analysis of Fungal Strains DHS-48 and DHS-11
2.2. Structure Elucidation of New Compounds
2.3. Bioactivities of Isolated Compounds
3. Materials and Methods
3.1. General Procedures
3.2. Fungal Material
3.3. Phylogenetic Analysis
3.4. Interaction between Phomopsis asparagi, Phomopsis sp., and Co-Cultivation
3.5. Preparation of Phomopsis asparagi, Phomopsis sp., Co-Cultivation, Large-Scale Fermentation, and Extracts
3.6. Isolation of Compounds
3.7. Theory and Calculation Details
3.8. Cytotoxicity Assay
3.9. Splenocyte Proliferation Assay
3.10. Acetylcholinesterase Inhibitory Activity Studies
3.11. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, W.; Li, G.; Xu, J. Bio-Active Products from Mangrove Ecosystems. Mar. Drugs 2023, 21, 239. [Google Scholar] [CrossRef] [PubMed]
- Xu, J. Biomolecules Produced by Mangrove-Associated Microbes. Curr. Med. Chem. 2011, 18, 5224–5266. [Google Scholar] [CrossRef] [PubMed]
- Xu, J. Bioactive Natural Products Derived from Mangrove-Associated Microbes. RSC Adv. 2015, 5, 841–892. [Google Scholar] [CrossRef]
- Wu, J.; Xiao, Q.; Xu, J.; Li, M.-Y.; Pan, J.-Y.; Yang, M. Natural Products from True Mangrove Flora: Source, Chemistry and Bioactivities. Nat. Prod. Rep. 2008, 25, 955. [Google Scholar] [CrossRef] [PubMed]
- Thatoi, H.; Behera, B.C.; Mishra, R.R.; Dutta, S.K. Biodiversity and Biotechnological Potential of Microorganisms from Mangrove Ecosystems: A Review. Ann. Microbiol. 2013, 63, 1–19. [Google Scholar] [CrossRef]
- Chen, S.; Cai, R.; Liu, Z.; Cui, H.; She, Z. Secondary Metabolites from Mangrove-Associated Fungi: Source, Chemistry and Bioactivities. Nat. Prod. Rep. 2022, 39, 560–595. [Google Scholar] [CrossRef] [PubMed]
- Ancheeva, E.; Daletos, G.; Proksch, P. Lead Compounds from Mangrove-Associated Microorganisms. Mar. Drugs 2018, 16, 319. [Google Scholar] [CrossRef]
- Yin, S.; Fan, C.-Q.; Wang, X.-N.; Lin, L.-P.; Ding, J.; Yue, J.-M. Xylogranatins A−D: Novel Tetranortriterpenoids with an Unusual 9,10- s Eco Scaffold from Marine Mangrove Xylocarpus g Ranatum. Org. Lett. 2006, 8, 4935–4938. [Google Scholar] [CrossRef]
- Gong, K.-K.; Li, P.-L.; Qiao, D.; Zhang, X.-W.; Chu, M.-J.; Qin, G.-F.; Tang, X.-L.; Li, G.-Q. Cytotoxic and Antiviral Triterpenoids from the Mangrove Plant Sonneratia Paracaseolaris. Molecules 2017, 22, 1319. [Google Scholar] [CrossRef]
- Zhang, Q.; Satyanandamurty, T.; Shen, L.; Wu, J. Krishnolides A–D: New 2-Ketokhayanolides from the Krishna Mangrove, Xylocarpus Moluccensis. Mar. Drugs 2017, 15, 333. [Google Scholar] [CrossRef]
- Tiwari, P.; Bae, H. Endophytic Fungi: Key Insights, Emerging Prospects, and Challenges in Natural Product Drug Discovery. Microorganisms 2022, 10, 360. [Google Scholar] [CrossRef] [PubMed]
- Rutledge, P.J.; Challis, G.L. Discovery of Microbial Natural Products by Activation of Silent Biosynthetic Gene Clusters. Nat. Rev. Microbiol. 2015, 13, 509–523. [Google Scholar] [CrossRef] [PubMed]
- Knowles, S.L.; Raja, H.A.; Roberts, C.D.; Oberlies, N.H. Fungal–Fungal Co-Culture: A Primer for Generating Chemical Diversity. Nat. Prod. Rep. 2022, 39, 1557–1573. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Chen, D.; Li, Q.; Feng, T.; Xu, J. Metabolomics-Guided Discovery of New Dimeric Xanthones from Co-Cultures of Mangrove Endophytic Fungi Phomopsis asparagi DHS-48 and Phomopsis Sp. DHS-11. Mar. Drugs 2024, 22, 102. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Yang, R.; Guo, Z.; She, Z.; Lin, Y. A New Naphtho-γ-Pyrone from Mangrove Endophytic Fungus ZSU-H26. Chem. Nat. Compd. 2010, 46, 15–18. [Google Scholar] [CrossRef]
- Ouyang, M.-A. A New Adenosyl-Alkaloid from Ostrea rivularis. Nat. Prod. Res. 2006, 20, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Kimura, A.; Osawa, T.; Hari, Y. Photoredox-Catalyzed Deformylative 1,4-Addition of 2′-Deoxy-5′- O -Phthalimidonucleosides for Synthesis of 5′-Carba Analogs of Nucleoside 5′-Phosphates. J. Org. Chem. 2018, 83, 10701–10708. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.-L.; Li, X.-J.; Gao, J.-M.; Wang, D.-S.; Yan, Y.; Xue, Q.-H. Isolation and Identification of Endophytic Bacteria from Root Tissues of Salvia Miltiorrhiza Bge. and Determination of Their Bioactivities. Ann. Microbiol. 2013, 63, 1501–1512. [Google Scholar] [CrossRef]
- Venkateswarlu, V.; Aravinda Kumar, K.A.; Gupta, S.; Singh, D.; Vishwakarma, R.A.; Sawant, S.D. DMSO/I2 Mediated C–C Bond Cleavage of α-Ketoaldehydes Followed by C–O Bond Formation: A Metal-Free Approach for One-Pot Esterification. Org. Biomol. Chem. 2015, 13, 7973–7978. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.-X.; Li, Z.; Chen, Y.; Yang, Y.-H.; Li, G.-H.; Zhao, P.-J. Four New Steroids from the Endophytic Fungus Chaetomium Sp. M453 Derived of Chinese Herbal Medicine Huperzia Serrata. Fitoterapia 2017, 117, 41–46. [Google Scholar] [CrossRef]
- Gao, L.; Xu, X.; Yang, J. Chemical Constituents of the Roots of Rheum Officinale. Chem. Nat. Compd. 2013, 49, 603–605. [Google Scholar] [CrossRef]
- Li, W.-S.; Hu, H.-B.; Huang, Z.-H.; Yan, R.-J.; Tian, L.-W.; Wu, J. Phomopsols A and B from the Mangrove Endophytic Fungus Phomopsis Sp. Xy21: Structures, Neuroprotective Effects, and Biogenetic Relationships. Org. Lett. 2019, 21, 7919–7922. [Google Scholar] [CrossRef] [PubMed]
- Watanadilok, R.; Sonchaeng, P.; Kijjoa, A.; Damas, A.M.; Gales, L.; Silva, A.M.S.; Herz, W. Tetillapyrone and Nortetillapyrone, Two Unusual Hydroxypyran-2-Ones from the Marine Sponge Tetilla japonica. J. Nat. Prod. 2001, 64, 1056–1058. [Google Scholar] [CrossRef] [PubMed]
- Ying, Y.-M.; Zhang, L.-W.; Shan, W.-G.; Zhan, Z.-J. Secondary Metabolites of Peyronellaea Sp. XW-12, an Endophytic Fungus of Huperzia Serrata. Chem. Nat. Compd. 2014, 50, 723–725. [Google Scholar] [CrossRef]
- Li, J.-T.; Yin, B.-L.; Liu, Y.; Wang, L.-Q.; Chen, Y.-G. Mono-Aromatic Constituents of Dendrobium longicornu. Chem. Nat. Compd. 2009, 45, 234–236. [Google Scholar] [CrossRef]
- Weber, D.; Gorzalczany, S.; Martino, V.; Acevedo, C.; Sterner, O.; Anke, T. Metabolites from Endophytes of the Medicinal Plant Erythrina crista-galli. Z. Für Naturforschung C 2005, 60, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M. A Simple Method for Estimating Evolutionary Rates of Base Substitutions through Comparative Studies of Nucleotide Sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v4: Recent Updates and New Developments. Nucleic Acids Res. 2019, 47, W256–W259. [Google Scholar] [CrossRef]
- Feng, T.; Wei, C.; Deng, X.; Chen, D.; Wen, Z.; Xu, J. Epigenetic Manipulation Induced Production of Immunosuppressive Chromones and Cytochalasins from the Mangrove Endophytic Fungus Phomopsis asparagi DHS-48. Mar. Drugs 2022, 20, 616. [Google Scholar] [CrossRef]
Position | 1 | 9 | ||||
---|---|---|---|---|---|---|
δC Type | δH Mult (J in Hz) | HMBC (H to C) | δC Type | δH Mult (J in Hz) | HMBC (H to C) | |
1 | ||||||
2 | 152.6, C | C-5, 10, 11, 13 | 168.3, C | |||
3 | 157.0, C | C-5, 10, 13, 14 | 101.2, C | |||
4 | 169.1, C | |||||
5 | 141.5, CH | 8.23, s | C-2, 3, 7, 10, 13 | 95.8, CH | 6.43, s | C-3, 4, 6, 7 |
6 | 154.5, C | C-5, 7, 8 | 169.2, C | |||
7 | 31.7, CH2 | 3.02, t, 7.5 | C-5, 6, 8, 9 | 36.6, CH | 2.86, m | C-6, 8, 9, 12 |
8 | 36.2, CH2 | 2.64, t, 7.5 | C-6, 7, 9 | 38.2, CH2 | 1.90, m 1.73, m | C-6, 7, 9, 12 |
9 | 179.0, C | C-7, 8, 10, 11 | 60.3, CH2 | 3.53, m | C-7, 8 | |
10 | 30.4, CH2 | 3.08, t, 7.5 | C-2, 3, 11, 12 | 8.4, CH3 | 1.84, s | C-2, 3, 4, 5 |
11 | 35.3, CH2 | 2.66, t, 7.5 | C-2, 10, 12 | 57.3, CH3 | 3.94, s | C-4 |
12 | 179.1, C | 18.8, CH3 | 1.26, d, 7.0 | C-6, 7, 8 | ||
13 | 28.2, CH2 | 2.87, q, 7.5 | C-2, 3, 14 | |||
14 | 13.2, CH3 | 1.28, t, 7.5 | C-3, 13 |
Position | 7 | 8 | |||
---|---|---|---|---|---|
δC Type | δH Mult (J in Hz) | HMBC | δC Type | δH Mult (J in Hz) | |
1 | 26.6, CH2 | Ha 2.29, dt, 14.5, 4.5 | C-2, 3, 5, 9, 10, 19 | 26.6, CH2 | Ha 2.20, dt, 1.5, 13.4 |
Hb 1.50, m | Hb 1.39, m | ||||
2 | 31.0, CH2 | Ha 1.87, m | C-1, 3, 4, 10 | 31.0, CH2 | Ha 1.78, m |
Hb 1.46, m | Hb 1.36, m | ||||
3 | 67.8, CH | 3.92, m | C-1, 2, 4, 5 | 67.8, CH | 3.83, m |
4 | 37.2, CH2 | Ha 2.02, m | 37.1, CH2 | Ha 1.92, m | |
Hb 1.63, m | C-2, 3, 5, 10 | Hb 1.52, m | |||
5 | 80.2, C | C-1, 3, 4, 6, 7, 19 | 80.2, C | ||
6 | 200.2, C | 200.1, C | |||
7 | 120.9, CH | 5.58, d, 2.0 | C-5, 6, 8, 9, 14 | 120.9, CH | 5,49, s |
8 | 165.1, C | 165.0, C | |||
9 | 76.2, C | 76.1, C | |||
10 | 42.8, C | 42.8, C | |||
11 | 29.3, CH2 | Ha 1.97, m Hb 1.76, m | C-8, 9, 10, 12, 13 | 29.1, CH2 | Ha 1.70, m |
Hb 1.64, m | |||||
12 | 36.2, CH2 | Ha 1.89, m Hb 1.72, m | C-9, 11, 13, 14, 18 | 36.2, CH2 | Ha 1.80, m |
Hb 1.62, m | |||||
13 | 46.2, C | 46.2, C | |||
14 | 52.8, CH | 2.75, ddd, 11.6, 9.8, 2.6 | C-7, 8, 9, 12, 13, 15, 18 | 52.8, CH | 2.66, dd, 11.5, 7.6 |
15 | 23.4, CH2 | Ha 1.60, m Hb 1.52, m | C-19, 25, 24 | 23.4, CH2 | Ha 1.52, m Hb 1.42, m |
16 | 28.5, CH2 | Ha 1.87, m Hb 1.30, m | C-13, 14, 15, 17, 20 | 29.3, CH2 | Ha 1.89, m Hb 1.36, m |
17 | 58.2, CH | 1.46, m | C-13, 14, 15, 16, 20, 21, 22 | 57.4, CH | 1.34, m |
18 | 12.7, CH3 | 0.68, s | C-12, 13, 14, 17 | 20.6, CH3 | 0.90, s |
19 | 20.6, CH3 | 0.99, s | C-1, 5, 9, 10 | 12.6, CH3 | 0.57, s |
20 | 35.9, CH | 2.41, m | C-13, 16, 17, 21, 22, 23 | 41.7, CH | 1.97, m |
21 | 21.2, CH3 | 0.98, d, 6.8 | C-17, 20, 22 | 21.6, CH3 | 0.96, d, 6.6 |
22 | 132.5, CH | 4.94, d, 9.6 | C-17, 20, 21, 23, 24, 29 | 133.6, CH | 5.13, dd, 15.2, 8.2 |
23 | 137.3, C | C-20, 22, 24, 25, 28 | 136.7, CH | 5.19, dd, 15.2, 7.6 | |
24 | 51.8, CH | 1.68, m | C-22, 23, 25, 26, 27, 28, 29 | 44.4, CH | 1.76, m |
25 | 32.0, CH | 1.55, m | C-23, 24, 26, 27, 28 | 34.4, CH | 1.39, m |
26 | 22.2, CH3 | 0.8, d, 6.6 | C-24, 25, 27 | 20.5, CH3 | 0.77, d, 6.8 |
27 | 20.6, CH3 | 0.87, d, 6.6 | C-24, 25, 26 | 20.1, CH3 | 0.75, d, 6.8 |
28 | 17.5, CH3 | 0.97, d, 6.8 | C-23, 24, 25 | 18.2, CH3 | 0.85, d, 6.8 |
29 | 13.4, CH3 | 1.53, s | C-22, 23, 24 |
Compound | IC50 (µM) a | |
---|---|---|
HepG2 | Hela | |
7 | 65.97 ± 2.56 | 72.34 ± 2.03 |
8 | 77.41 ± 4.12 | 72.02 ± 2.89 |
14 | 73.37 ± 2.25 | 87.30 ± 0.74 |
1–6, 9–13 | - | - |
Adriamycin b | \ | 0.88 ± 0.71 |
Fluorouracil c | 179.03 ± 25.82 | \ |
Compound | IC50 (µM) a | |
---|---|---|
ConA-Induced T-Cell Proliferation | LPS-Induced B-Cell Proliferation | |
1 | 125.1 ± 1.12 | 133.87 ± 3.43 |
2–7 | - | - |
8 | 35.75 ± 1.09 | 47.65 ± 1.21 |
9 | 108.21 ± 1.32 | 112.76 ± 2.11 |
10 | 111.01 ± 1.02 | 123.84 ± 1.25 |
11–14 | - | - |
cyclosporin A b | 4.39 ± 0.02 | 25.11 ± 0.43 |
Compound | IC50 (µM) a |
---|---|
11 | 86.11 ± 1.56 |
1–10, 12–14 | - |
Donepezil b | 0.25 ± 0.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Ye, J.; Cen, J.; Chen, Y.; Xu, J. Induction of Three New Secondary Metabolites by the Co-Culture of Endophytic Fungi Phomopsis asparagi DHS-48 and Phomopsis sp. DHS-11 Isolated from the Chinese Mangrove Plant Rhizophora mangle. Mar. Drugs 2024, 22, 332. https://doi.org/10.3390/md22080332
Wu J, Ye J, Cen J, Chen Y, Xu J. Induction of Three New Secondary Metabolites by the Co-Culture of Endophytic Fungi Phomopsis asparagi DHS-48 and Phomopsis sp. DHS-11 Isolated from the Chinese Mangrove Plant Rhizophora mangle. Marine Drugs. 2024; 22(8):332. https://doi.org/10.3390/md22080332
Chicago/Turabian StyleWu, Jingwan, Jingjing Ye, Juren Cen, Yuanjie Chen, and Jing Xu. 2024. "Induction of Three New Secondary Metabolites by the Co-Culture of Endophytic Fungi Phomopsis asparagi DHS-48 and Phomopsis sp. DHS-11 Isolated from the Chinese Mangrove Plant Rhizophora mangle" Marine Drugs 22, no. 8: 332. https://doi.org/10.3390/md22080332
APA StyleWu, J., Ye, J., Cen, J., Chen, Y., & Xu, J. (2024). Induction of Three New Secondary Metabolites by the Co-Culture of Endophytic Fungi Phomopsis asparagi DHS-48 and Phomopsis sp. DHS-11 Isolated from the Chinese Mangrove Plant Rhizophora mangle. Marine Drugs, 22(8), 332. https://doi.org/10.3390/md22080332