Mixotrophic Cultivation of Arthrospira platensis (Spirulina) under Salt Stress: Effect on Biomass Composition, FAME Profile and Phycocyanin Content
Abstract
:1. Introduction
2. Results
2.1. BWW Characterization
2.2. Growth Profile and Biomass Composition of A. platensis in BWW and SW
2.3. Phycobiliproteins Production by A. platensis under Mixotrophy and Salt Stress
2.4. FAME Profile by A. platensis under Mixotrophy
3. Materials and Methods
3.1. Inoculums and Culture Media Preparation
3.2. Cultivation Conditions and Experimental Setup
3.3. Cell Growth and Dry Weight Determination
3.4. Phycobilinproteins Extraction and Spectrophotometric Determination
3.5. FAMEs Determination
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barbosa, M.J.; Janssen, M.; Südfeld, C.; D’Adamo, S.; Wijffels, R.H. Hypes, Hopes, and the Way Forward for Microalgal Biotechnology. Trends Biotechnol. 2023, 41, 452–471. [Google Scholar] [CrossRef]
- Usai, A.; Theodoropoulos, C.; Di Caprio, F.; Altimari, P.; Cao, G.; Concas, A. Structured Population Balances to Support Microalgae-Based Processes: Review of the State-of-Art and Perspectives Analysis. Comput. Struct. Biotechnol. J. 2023, 21, 1169–1188. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chang, H.; Zhang, S.; Ho, S.H. Production of Sustainable Biofuels from Microalgae with CO2 Bio-Sequestration and Life Cycle Assessment. Environ. Res. 2023, 227, 115730. [Google Scholar] [CrossRef] [PubMed]
- Lutzu, G.A.; Parsaeimehr, A.; Ozbay, G.; Ciurli, A.; Bacci, L.; Rao, A.R.; Ravishankar, G.A.; Concas, A. Microalgae and Cyanobacteria Role in Sustainable Agriculture: From Wastewater Treatment to Biofertilizer Production. Algae Mediat. Bioremed. Ind. Prospect. 2024, 2, 565–618. [Google Scholar]
- Concas, A.; Lutzu, G.A.; Turgut Dunford, N. Experiments and Modeling of Komvophoron sp. Growth in Hydraulic Fracturing Wastewater. Chem. Eng. J. 2021, 426, 131299. [Google Scholar] [CrossRef]
- Fernandes, T.; Cordeiro, N. Microalgae as Sustainable Biofactories to Produce High-Value Lipids: Biodiversity, Exploitation, and Biotechnological Applications. Mar. Drugs 2021, 19, 573. [Google Scholar] [CrossRef]
- Lutzu, G.A.; Marin, M.A.; Concas, A.; Dunford, N.T. Growing Picochlorum oklahomensis in Hydraulic Fracturing Wastewater Supplemented with Animal Wastewater. Water. Air. Soil Pollut. 2020, 231, 457. [Google Scholar] [CrossRef]
- Baunach, M.; Guljamow, A.; Miguel-Gordo, M.; Dittmann, E. Harnessing the Potential: Advances in Cyanobacterial Natural Product Research and Biotechnology. Nat. Prod. Rep. 2024, 41, 347–369. [Google Scholar] [CrossRef]
- Citi, V.; Torre, S.; Flori, L.; Usai, L.; Aktay, N.; Dunford, N.T.; Lutzu, G.A.; Nieri, P. Nutraceutical Features of the Phycobiliprotein C-Phycocyanin: Evidence from Arthrospira platensis (Spirulina). Nutrients 2024, 16, 1752. [Google Scholar] [CrossRef]
- Xiao, S.; Lu, Z.; Yang, J.; Shi, X.; Zheng, Y. Phycocyanobilin from Arthrospira platensis: A Potential Photodynamic Anticancer Agent. Dye. Pigment. 2023, 219, 111516. [Google Scholar] [CrossRef]
- Fernandes, R.; Campos, J.; Serra, M.; Fidalgo, J.; Almeida, H.; Casas, A.; Toubarro, D.; Barros, A.I.R.N.A. Exploring the Benefits of Phycocyanin: From Spirulina Cultivation to Its Widespread Applications. Pharmaceuticals 2023, 16, 592. [Google Scholar] [CrossRef]
- Miotti, T.; Pivetti, L.; Lolli, V.; Sansone, F.; Concas, A.; Lutzu, G.A. On the Use of Agro-Industrial Wastewaters to Promote Mixotrophic Metabolism in Chlorella vulgaris: Effect on FAME Profile and Biodiesel Properties. Chem. Eng. Trans. 2022, 92, 55–60. [Google Scholar] [CrossRef]
- Proietti Tocca, G.; Agostino, V.; Menin, B.; Tommasi, T.; Fino, D.; Di Caprio, F. Mixotrophic and Heterotrophic Growth of Microalgae Using Acetate from Different Production Processes. Rev. Environ. Sci. Biotechnol. 2024, 23, 93–132. [Google Scholar] [CrossRef]
- Shayesteh, H.; Laird, D.W.; Hughes, L.J.; Nematollahi, M.A.; Kakhki, A.M.; Moheimani, N.R. Co-Producing Phycocyanin and Bioplastic in Arthrospira platensis Using Carbon-Rich Wastewater. BioTech 2023, 12, 49. [Google Scholar] [CrossRef] [PubMed]
- Pereira, I.; Rangel, A.; Chagas, B.; de Moura, B.; Urbano, S.; Sassi, R.; Camara, F.; Castro, C. Microalgae Growth under Mixotrophic Condition Using Agro-Industrial Waste: A Review. In Biotechnological Applications of Biomass; Intechopen: London, UK, 2021. [Google Scholar]
- Cavallini, A.; Torre, S.; Usai, L.; Casula, M.; Fais, G.; Nieri, P.; Concas, A.; Lutzu, G.A. Effect of Cheese Whey on Phycobiliproteins Production and FAME Profile by Arthrospira platensis (Spirulina): Promoting the Concept of a Circular Bio-Economy. Sustain. Chem. Pharm. 2024, 40, 101625. [Google Scholar] [CrossRef]
- Varandas, R.C.R.; Pereira, A.C.; da Silva Araújo, V.B.; de Moura Andrade, P.; da Silva Nonato, N.; da Costa, M.H.J.; de Pina, L.C.C.; Handam, V.P.T.; da Costa Sassi, C.F.; da Conceição, M.M. Utilização Do Resíduo de Malte Da Indústria Cervejeira Como Meio Alternativo Para o Cultivo Da Spirulina platensis e Spirulina maxima. Res. Soc. Dev. 2022, 11, e451111638249. [Google Scholar] [CrossRef]
- Mirhosseini, N.; Davarnejad, R.; Hallajisani, A.; Cano-Europa, E.; Tavakoli, O. Sugarcane Molasses as a Cost-Effective Carbon Source on Arthrospira maxima Growth by Taguchi Technique. Int. J. Eng. Trans. B Appl. 2022, 35, 510–516. [Google Scholar] [CrossRef]
- Al Mahrouqi, H.; Dobretsov, S.; Avilés, A.; Díaz, R.T.A. Spirulina Optimization Using Cane Molasses as the Cost-Effective Alternative of Sodium Bicarbonate. Biol. Bull. 2022, 49, S60–S68. [Google Scholar] [CrossRef]
- Uzlasir, T.; Isik, O.; Uslu, L.H.; Selli, S.; Kelebek, H. Impact of Different Salt Concentrations on Growth, Biochemical Composition and Nutrition Quality of Phaeodactylum tricornutum and Spirulina platensis. Food Chem. 2023, 429, 136843. [Google Scholar] [CrossRef]
- Markou, G.; Kougia, E.; Arapoglou, D.; Chentir, I.; Andreou, V.; Tzovenis, I. Production of Arthrospira platensis: Effects on Growth and Biochemical Composition of Long-Term Acclimatization at Different Salinities. Bioengineering 2023, 10, 233. [Google Scholar] [CrossRef]
- Yu, C.; Hu, Y.; Zhang, Y.; Luo, W.; Zhang, J.; Xu, P.; Qian, J.; Li, J.; Yu, J.; Liu, J.; et al. Concurrent Enhancement of Biomass Production and Phycocyanin Content in Salt-Stressed Arthrospira platensis: A Glycine Betaine- Supplementation Approach. Chemosphere 2024, 353, 141387. [Google Scholar] [CrossRef]
- Nosratimovafagh, A.; Fereidouni, A.E.; Krujatz, F. Modeling and Optimizing the Effect of Light Color, Sodium Chloride and Glucose Concentration on Biomass Production and the Quality of Arthrospira platensis Using Response Surface Methodology (RSM). Life 2022, 12, 371. [Google Scholar] [CrossRef]
- Amenorfenyo, D.K.; Huang, X.; Zhang, Y.; Zeng, Q.; Zhang, N.; Ren, J.; Huang, Q. Microalgae Brewery Wastewater Treatment: Potentials, Benefits and the Challenges. Int. J. Environ. Res. Public Health 2019, 16, 1910. [Google Scholar] [CrossRef]
- Budgen, J.; Le-Clech, P. Assessment of Brewery Wastewater Treatment by an Attached Growth Bioreactor. H2Open J. 2020, 3, 32–45. [Google Scholar] [CrossRef]
- Jaiyeola, A.T.; Bwapwa, J.K. Treatment Technology for Brewery Wastewater in a Water-Scarce Country: A Review. S. Afr. J. Sci. 2016, 112, 8. [Google Scholar] [CrossRef] [PubMed]
- Dias, C.; Santos, J.A.L.; Reis, A.; Lopes da Silva, T. The Use of Oleaginous Yeasts and Microalgae Grown in Brewery Wastewater for Lipid Production and Nutrient Removal: A Review. Waste Biomass Valorization 2023, 14, 1799–1822. [Google Scholar] [CrossRef]
- Lutzu, G.A.; Zhang, W.; Liu, T. Feasibility of Using Brewery Wastewater for Biodiesel Production and Nutrient Removal by Scenedesmus dimorphus. Environ. Technol. 2016, 37, 1568–1581. [Google Scholar] [CrossRef] [PubMed]
- Lois-Milevicich, J.; Casá, N.; Alvarez, P.; Mateucci, R.; Busto, V.; de Escalada Pla, M. Chlorella vulgaris Biomass Production Using Brewery Wastewater with High Chemical Oxygen Demand. J. Appl. Phycol. 2020, 32, 2773–2783. [Google Scholar] [CrossRef]
- He, Y.; Lian, J.; Wang, L.; Su, H.; Tan, L.; Xu, Q.; Wang, H.; Li, Y.; Li, M.; Han, D.; et al. Enhanced Brewery Wastewater Purification and Microalgal Production through Algal-Bacterial Synergy. J. Clean. Prod. 2022, 376, 134361. [Google Scholar] [CrossRef]
- Su, H.; Wang, K.; Lian, J.; Wang, L.; He, Y.; Li, M.; Han, D.; Hu, Q. Advanced Treatment and Resource Recovery of Brewery Wastewater by Co-Cultivation of Filamentous Microalga Tribonema aequale and Autochthonous Bacteria. J. Environ. Manage. 2023, 348, 119285. [Google Scholar] [CrossRef]
- Akhere, M.A.; Ngbonyebi, E.C. Comparative study of the influence of brewery effluent on the growth of two marine microalgae. Afr. J. Health Saf. Environ. 2023, 4, 101–114. [Google Scholar] [CrossRef]
- Miotti, T.; Sansone, F.; Lolli, V.; Concas, A.; Lutzu, G.A. Mixotrophic and Heterotrophic Metabolism in Brewery Wastewater by Chlorella vulgaris: Effect on Growth, FAME Profile and Biodiesel Properties. Chem. Eng. Trans. 2024, 109, 97–102. [Google Scholar]
- Villaró, S.; García-Vaquero, M.; Morán, L.; Álvarez, C.; Cabral, E.M.; Lafarga, T. Effect of Seawater on the Biomass Composition of Spirulina Produced at a Pilot-Scale. New Biotechnol. 2023, 4, 101–114. [Google Scholar] [CrossRef]
- Sassano, C.E.N.; Gioielli, L.A.; Almeida, K.A.; Sato, S.; Perego, P.; Converti, A.; Carvalho, J.C.M. Cultivation of Spirulina platensis by Continuous Process Using Ammonium Chloride as Nitrogen Source. Biomass Bioenergy 2007, 31, 593–598. [Google Scholar] [CrossRef]
- Pavan, M.; Reinmets, K.; Garg, S.; Mueller, A.P.; Marcellin, E.; Köpke, M.; Valgepea, K. Advances in Systems Metabolic Engineering of Autotrophic Carbon Oxide-Fixing Biocatalysts towards a Circular Economy. Metab. Eng. 2022, 71, 117–141. [Google Scholar] [CrossRef]
- Papadopoulos, K.P.; Economou, C.N.; Markou, G.; Nicodemou, A.; Koutinas, M.; Tekerlekopoulou, A.G.; Vayenas, D.V. Cultivation of Arthrospira platensis in Brewery Wastewater. Water 2022, 14, 1547. [Google Scholar] [CrossRef]
- Bezerra, P.Q.M.; Moraes, L.; Cardoso, L.G.; Druzian, J.I.; Morais, M.G.; Nunes, I.L.; Costa, J.A.V. Spirulina Sp. LEB 18 Cultivation in Seawater and Reduced Nutrients: Bioprocess Strategy for Increasing Carbohydrates in Biomass. Bioresour. Technol. 2020, 316, 123883. [Google Scholar] [CrossRef]
- Coelho, R.S.; Vidotti, A.D.S.; Reis, É.M.; Franco, T.T. High Cell Density Cultures of Microalgae under Fed-Batch and Continuous Growth. Chem. Eng. Trans. 2014, 38, 313–318. [Google Scholar] [CrossRef]
- Sujatha, K.; Nagarajan, P. Effect of Salinity on Biomass and Biochemical Constituents of Spirulina platensis (Geitler). Int. J. Plant Prot. 2014, 7, 71–73. [Google Scholar]
- Castillo, T.; Ramos, D.; García-Beltrán, T.; Brito-Bazan, M.; Galindo, E. Mixotrophic Cultivation of Microalgae: An Alternative to Produce High-Value Metabolites. Biochem. Eng. J. 2021, 176, 108183. [Google Scholar] [CrossRef]
- Nur, M.M.A.; Rahmawati, S.D.; Sari, I.W.; Achmad, Z.; Setyoningrum, T.M.; Jaya, D.; Murni, S.W.; Djarot, I.N. Enhancement of Phycocyanin and Carbohydrate Production from Spirulina platensis Growing on Tofu Wastewater by Employing Mixotrophic Cultivation Condition. Biocatal. Agric. Biotechnol. 2023, 47, 102600. [Google Scholar] [CrossRef]
- Occhipinti, P.S.; Del Signore, F.; Canziani, S.; Caggia, C.; Mezzanotte, V.; Ferrer-Ledo, N. Mixotrophic and Heterotrophic Growth of Galdieria sulphuraria Using Buttermilk as a Carbon Source. J. Appl. Phycol. 2023, 35, 2631–2643. [Google Scholar] [CrossRef]
- Katari, J.K.; Uz Zama Khan, M.R.; Trivedi, V.; Das, D. Extraction, Purification, Characterization and Bioactivity Evaluation of High Purity C-Phycocyanin from Spirulina sp. NCIM 5143. Process Biochem. 2023, 130, 322–333. [Google Scholar] [CrossRef]
- Khandual, S.; Sanchez, E.O.L.; Andrews, H.E.; de la Rosa, J.D.P. Phycocyanin Content and Nutritional Profile of Arthrospira platensis from Mexico: Efficient Extraction Process and Stability Evaluation of Phycocyanin. BMC Chem. 2021, 15, 24. [Google Scholar] [CrossRef]
- Chini Zittelli, G.; Lauceri, R.; Faraloni, C.; Silva Benavides, A.M.; Torzillo, G. Valuable Pigments from Microalgae: Phycobiliproteins, Primary Carotenoids, and Fucoxanthin. Photochem. Photobiol. Sci. 2023, 22, 1733–1789. [Google Scholar] [CrossRef]
- Fratelli, C.; Bürck, M.; Silva-Neto, A.F.; Oyama, L.M.; De Rosso, V.V.; Braga, A.R.C. Green Extraction Process of Food Grade C-Phycocyanin: Biological Effects and Metabolic Study in Mice. Processes 2022, 10, 1793. [Google Scholar] [CrossRef]
- da Silva Figueira, F.; Moraes, C.C.; Kalil, S.J. C-Phycocyanin Purification: Multiple Processes for Different Applications. Brazilian J. Chem. Eng. 2018, 35, 1117–1128. [Google Scholar] [CrossRef]
- Meticulous Research Phycocyanin Market to Be Worth $279.6 Million by 2030. Available online: https://www.meticulousresearch.com/pressrelease/30/phycocyanin-market-2030 (accessed on 26 June 2024).
- Carvalho, F.; Prazeres, A.R.; Rivas, J. Cheese Whey Wastewater: Characterization and Treatment. Sci. Total Environ. 2013, 445–446, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Yu, S.; Chen, H.; Pei, H. Enhanced Phycocyanin Production from Spirulina subsalsa via Freshwater and Marine Cultivation with Optimized Light Source and Temperature. Bioresour. Technol. 2023, 378, 129009. [Google Scholar] [CrossRef]
- Machalek, K.M.; Davison, I.R.; Falkowski, P.G. Thermal Acclimation and Photoacclimation of Photosynthesis in the Brown Alga Laminaria saccharina. Plant, Cell Environ. 1996, 19, 1005–1016. [Google Scholar] [CrossRef]
- Nur, M.M.A.; Garcia, G.M.; Boelen, P.; Buma, A.G.J. Enhancement of C-Phycocyanin Productivity by Arthrospira platensis When Growing on Palm Oil Mill Effluent in a Two-Stage Semi-Continuous Cultivation Mode. J. Appl. Phycol. 2019, 31, 2855–2867. [Google Scholar] [CrossRef]
- Schipper, K.; Fortunati, F.; Oostlander, P.C.; Al Muraikhi, M.; Al Jabri, H.M.S.J.; Wijffels, R.H.; Barbosa, M.J. Production of Phycocyanin by Leptolyngbya sp. in Desert Environments. Algal Res. 2020, 47, 101875. [Google Scholar] [CrossRef]
- Liu, H.; Chen, H.; Wang, S.; Liu, Q.; Li, S.; Song, X.; Huang, J.; Wang, X.; Jia, L. Optimizing Light Distribution and Controlling Biomass Concentration by Continuously Pre-Harvesting Spirulina platensis for Improving the Microalgae Production. Bioresour. Technol. 2018, 252, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Pagels, F.; Guedes, A.C.; Amaro, H.M.; Kijjoa, A.; Vasconcelos, V. Phycobiliproteins from Cyanobacteria: Chemistry and Biotechnological Applications. Biotechnol. Adv. 2019, 37, 422–443. [Google Scholar] [CrossRef]
- Maki, K.C.; Dicklin, M.R.; Kirkpatrick, C.F. Saturated Fats and Cardiovascular Health: Current Evidence and Controversies. J. Clin. Lipidol. 2021, 15, 765–772. [Google Scholar] [CrossRef]
- Palomino, O.M.; Giordani, V.; Chowen, J.; Alfonso, S.F.; Goya, L. Physiological Doses of Oleic and Palmitic Acids Protect Human Endothelial Cells from Oxidative Stress. Molecules 2022, 27, 5217. [Google Scholar] [CrossRef]
- Maltsev, Y.; Maltseva, K. Fatty Acids of Microalgae: Diversity and Applications. Rev. Environ. Sci. Biotechnol. 2021, 20, 515–547. [Google Scholar] [CrossRef]
- Diraman, H.; Koru, E.; Dibeklioglu, H. Fatty Acid Profile of Spirulina platensis Used as a Food Supplement. Isr. J. Aquac.-Bamidgeh 2009, 61, 134–142. [Google Scholar] [CrossRef]
- Choopani, A.; Poorsoltan, M.; Fazilati, M.; Latifi, A.M.; Salavati, H. Spirulina: A Source of Gamma-Linoleic Acid and Its Applications. J. Appl. Biotechnol. Reports 2016, 3, 483–488. [Google Scholar]
- Barceló-Coblijn, G.; Murphy, E.J. Alpha-Linolenic Acid and Its Conversion to Longer Chain n-3 Fatty Acids: Benefits for Human Health and a Role in Maintaining Tissue n-3 Fatty Acid Levels. Prog. Lipid Res. 2009, 48, 355–374. [Google Scholar] [CrossRef]
- Teixeira, A.; Fernandes, A.; Pereira, E. Fat Content Reduction and Lipid Profile Improvement in Portuguese Fermented Sausages Alheira. Heliyon 2020, 6, e05306. [Google Scholar] [CrossRef]
- Conde, T.A.; Neves, B.F.; Couto, D.; Melo, T.; Neves, B.; Costa, M.; Silva, J.; Domingues, P.; Domingues, M.R. Microalgae as Sustainable Bio-Factories of Healthy Lipids: Evaluating Fatty Acid Content and Antioxidant Activity. Mar. Drugs 2021, 19, 357. [Google Scholar] [CrossRef] [PubMed]
- Matos, Â.P.; Feller, R.; Moecke, E.H.S.; de Oliveira, J.V.; Junior, A.F.; Derner, R.B.; Sant’Anna, E.S. Chemical Characterization of Six Microalgae with Potential Utility for Food Application. JAOCS J. Am. Oil Chem. Soc. 2016, 93, 963–972. [Google Scholar] [CrossRef]
- Herrera, A.; Boussiba, S.; Napoleone, V.; Hohlberg, A. Recovery of C-Phycocyanin from the Cyanobacterium Spirulina maxima. J. Appl. Phycol. 1989, 1, 325–331. [Google Scholar] [CrossRef]
- Bryant, D.A.; Glazer, A.N.; Eiserling, F.A. Characterization and Structural Properties of the Major Biliproteins of Anabaena sp. Arch. Microbiol. 1976, 110, 61–75. [Google Scholar] [CrossRef] [PubMed]
- Breuer, G.; Lamers, P.P.; Martens, D.E.; Draaisma, R.B.; Wijffels, R.H. Effect of Light Intensity, PH, and Temperature on Triacylglycerol ({TAG}) Accumulation Induced by Nitrogen Starvation in Scenedesmus obliquus. Bioresour. Technol. 2013, 143, 1–9. [Google Scholar] [CrossRef]
- Fernández, M.; Ordóñez, J.A.; Cambero, I.; Santos, C.; Pin, C.; Hoz, L. de la Fatty Acid Compositions of Selected Varieties of Spanish Dry Ham Related to Their Nutritional Implications. Food Chem. 2007, 101, 107–112. [Google Scholar] [CrossRef]
Parameter | This Work | [26] | [28] | [29] | [30] | [31] |
---|---|---|---|---|---|---|
TSS | - | 0.2–1 | - | - | - | 0.66–0.77 |
BOD | - | 1.2–3.6 | - | - | - | - |
COD | - | 2–6 | 2.1–5.8 | - | 2 | 2.1–3.54 |
TOC | 11.2 | 25–80 * | - | 16.5 | - | - |
TN | 0.427 | 10–50 * | 5 * | 1.2 | 23 * | 23–69 * |
N-NO32− | - | - | - | - | - | 0.1–9 * |
N-NH4+ | 26.55 * | - | 0.004 * | 11.3 | 18 * | 18–48 * |
TP | 0.1 * | - | 0.44 * | 95.2 * | - | 8.2–18.4 * |
P-PO43− | - | - | - | - | - | 4–6 * |
Fe | 0.1 * | - | - | - | - | - |
Mg | 0.1 * | - | - | - | - | - |
pH | 6.7 | 4.5–1.2 | 6.9 | 6.1 | - | 7.66–7.89 |
FAME | C:N $ | CTRL | JB | JBS |
---|---|---|---|---|
Myristic acid | 14:0 | 1.98 ± 0.30 | 3.14 ± 0.40 **** | 2.70 ± 0.91 ** |
Palmitic acid | 16:0 | 40.57 ± 2.97 | 43.77 ± 4.00 | 41.48 ± 4.48 |
Hexadecenoic acid | 16:1 | 4.12 ± 0.62 **** | 3.24 ± 0.80 | 3.20 ± 0.45 **** |
Heptadecenoic acid | 17:0 | 0.19 ± 0.06 | 0.27 ± 0.06 | 0.18 ± 0.04 |
cis-10-Heptadecanoic acid | 17:1 | 0.56 ± 0.10 | 0.61 ± 0.14 | 0.54 ± 0.09 |
Stearic acid | 18:0 | 15.16 ± 1.69 | 12.73 ± 6.14 | 13.43 ± 4.59 |
Elaidic acid | 18:1 | 0.71 ± 0.09 | 0.80 ± 0.34 | 0.68 ± 0.15 |
Oleic acid | 18:1 | 3.50 ± 1.65 | 7.85 ± 2.09 | 6.49 ± 2.63 * |
Linoleic acid | 18:2 | 15.18 ± 1.32 | 12.47 ± 1.14 | 14.68 ± 1.61 |
α-Linolenic acid | 18:3 (ω-3) | 1.19 ± 0.21 | 1.43 ± 0.43 | 0.75 ± 0.51 |
y-Linolenic acid | 18:3 (ω-6) | 15.59 ± 1.49 | 12.27 ± 2.57 | 14.57 ± 2.30 |
8,11,14-Eicosatrienoic acid | 20:3 | 0.87 ± 0.10 | 1.04 ± 0.08 | 0.89 ± 0.14 |
13-Docosenoic acid | 22:1 | 0.39 ± 0.05 | 0.38 ± 0.09 | 0.42 ± 0.08 |
Σ SFAs | / | 57.84 | 59.91 | 57.79 |
Σ UFAs | / | 42.11 | 40.09 | 42.22 |
Σ MUFAs | / | 9.28 | 12.88 | 11.33 |
Σ PUFAs | / | 32.83 | 27.21 | 30.89 |
PUFA:SFA | / | 0.57 | 0.45 | 0.53 |
C16-C18 | / | 6.02 | 94.56 | 95.28 |
h/H | / | 0.85 | 0.74 | 0.84 |
JM | BWW | SW | |
---|---|---|---|
CTRL | 2.5 | - | - |
JB | 2.5 | 2 | - |
JBS | 2.5 | 2 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russo, N.P.; Ballotta, M.; Usai, L.; Torre, S.; Giordano, M.; Fais, G.; Casula, M.; Dessì, D.; Nieri, P.; Damergi, E.; et al. Mixotrophic Cultivation of Arthrospira platensis (Spirulina) under Salt Stress: Effect on Biomass Composition, FAME Profile and Phycocyanin Content. Mar. Drugs 2024, 22, 381. https://doi.org/10.3390/md22090381
Russo NP, Ballotta M, Usai L, Torre S, Giordano M, Fais G, Casula M, Dessì D, Nieri P, Damergi E, et al. Mixotrophic Cultivation of Arthrospira platensis (Spirulina) under Salt Stress: Effect on Biomass Composition, FAME Profile and Phycocyanin Content. Marine Drugs. 2024; 22(9):381. https://doi.org/10.3390/md22090381
Chicago/Turabian StyleRusso, Nicola Pio, Marika Ballotta, Luca Usai, Serenella Torre, Maurizio Giordano, Giacomo Fais, Mattia Casula, Debora Dessì, Paola Nieri, Eya Damergi, and et al. 2024. "Mixotrophic Cultivation of Arthrospira platensis (Spirulina) under Salt Stress: Effect on Biomass Composition, FAME Profile and Phycocyanin Content" Marine Drugs 22, no. 9: 381. https://doi.org/10.3390/md22090381
APA StyleRusso, N. P., Ballotta, M., Usai, L., Torre, S., Giordano, M., Fais, G., Casula, M., Dessì, D., Nieri, P., Damergi, E., Lutzu, G. A., & Concas, A. (2024). Mixotrophic Cultivation of Arthrospira platensis (Spirulina) under Salt Stress: Effect on Biomass Composition, FAME Profile and Phycocyanin Content. Marine Drugs, 22(9), 381. https://doi.org/10.3390/md22090381