Next Article in Journal
Stress-Induced Production of Bioactive Oxylipins in Marine Microalgae
Next Article in Special Issue
The Cytochalasins and Polyketides from a Mangrove Endophytic Fungus Xylaria arbuscula QYF
Previous Article in Journal
Light Spectra, a Promising Tool to Modulate Ulva lacinulata Productivity and Composition
Previous Article in Special Issue
Identification of Penexanthone A as a Novel Chemosensitizer to Induce Ferroptosis by Targeting Nrf2 in Human Colorectal Cancer Cells
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Marine Microorganism Molecules as Potential Anti-Inflammatory Therapeutics

1
Group Bioactivities of Natural Compounds and Derivatives (BIONA), Institut Pasteur of New Caledonia, Member of the Pasteur Network, Noumea 98845, New Caledonia
2
Ifremer, Institut de Recherche pour le Développement (IRD), Centre Nationale de la Recherche Scientifique (CNRS), Université de la Réunion, Université de la Nouvelle-Calédonie, UMR 9220 ENTROPIE, 101 Promenade Roger Laroque, Noumea 98897, New Caledonia
3
Team Neuroimmunology and Peptide Therapy, Biotechnologie et Signalisation Cellulaire, UMR 7242, University of Strasbourg, 67085 Strasbourg, France
*
Author to whom correspondence should be addressed.
Mar. Drugs 2024, 22(9), 405; https://doi.org/10.3390/md22090405
Submission received: 10 July 2024 / Revised: 7 August 2024 / Accepted: 13 August 2024 / Published: 3 September 2024
(This article belongs to the Special Issue Pharmacological Potential of Marine Natural Products)

Abstract

:
The marine environment represents a formidable source of biodiversity, is still largely unexplored, and has high pharmacological potential. Indeed, several bioactive marine natural products (MNPs), including immunomodulators, have been identified in the past decades. Here, we review how this reservoir of bioactive molecules could be mobilized to develop novel anti-inflammatory compounds specially produced by or derived from marine microorganisms. After a detailed description of the MNPs exerting immunomodulatory potential and their biological target, we will briefly discuss the challenges associated with discovering anti-inflammatory compounds from marine microorganisms.

1. Introduction

Chronic inflammatory diseases (CIDs) have emerged as a significant global concern, with a prevalence of 5 to 7% of Western society in 2010 [1]. These illnesses, such as psoriasis, rheumatoid arthritis (RA), inflammatory bowel disease (IBD), Crohn’s disease (CD), or ulcerative colitis (UC), can be debilitating, leading to a reduced quality of life and, in the most severe cases, premature death [2].
Conventional treatments based on corticoids and non-steroidal anti-inflammatory drugs (NSAIDs) often lead to severe side effects, including gastrointestinal ulceration and bleeding, osteoporosis, hypertension, and glaucoma. Drug development more recently has focused on monoclonal antibodies targeting inflammatory cytokines such as tumor necrosis factor-α (TNF-α) or interleukins (e.g., IL-6) [3], or inhibitors of pathways activated by inflammatory cytokines, such as Janus Kinase inhibitors (Jakinibs) [4]. Although these therapies have shown considerable clinical efficacy, many patients remain unresponsive, and others may develop resistance to monoclonal antibody treatment. Furthermore, the use of such immunomodulatory molecules carries a limited but notable risk of developing opportunistic infections, such as Herpes Zoster Virus [5].
As life expectancy increases, there is an increased likelihood of developing CIDs, and therefore, managing these diseases has become more challenging. Hence, continuing to explore innovative treatment exploration and improving their response to these debilitating diseases is crucial. In this regard, the discovery of bioactive molecules from marine microorganisms represents a groundbreaking pharmaceutical development that could promote the identification of novel therapeutic compounds to treat CIDs.
Here, we aim to review marine microorganisms that produce molecules with potential pharmaceutical relevance, categorizing them based on producing genus and species, compounds’ molecular structures, and their mechanism of action on immune signaling pathways. Additionally, we will provide a brief overview of the difficulties related to identifying anti-inflammatory compounds derived from marine microorganisms.
While previous reviews have primarily centered on symbiotic bacteria, to the best of our knowledge, none have yet highlighted the anti-inflammatory properties of these microorganisms. For this review, we selected 208 articles published from 2000 to 2024. One anterior reference was retained for the historical aspect of a specific molecule. The search engines Google Scholar, Science Direct, PubMed, and MarinLit databases were used with the keywords “marine natural products” combined with “anti-inflammatory”, “macro-organisms”, “microorganisms”, “clinical pipeline”, “clinical use”, and “bioactivities.” The database Worms (https://www.marinespecies.org/, accessed on 17 January 2024) was used to identify the species of marine organisms.

2. The Link between the Inflammation and CIDs

Harmful stimuli such as pathogens, toxic compounds, injuries, or irradiation induce cell damage and trigger an inflammatory response, a crucial component of our innate immune system [6]. This process involves the detection of danger signals that are recognized by dedicated immune receptors [7], enabling the elimination of such unwanted signals and the initiation of the healing process, thereby maintaining tissue homeostasis and a healthy condition. However, this process requires strict control and must be initiated locally and temporarily. In fact, systemic and chronic inflammations are associated with most human diseases and mortality [2]. Although some features of inflammatory responses may vary depending on the initial stimulus and its location in the body, they are characterized by dedicated signaling pathways and transcriptional signatures.

2.1. Inflammatory Pathways

Deciphering the regulatory pathways and mediators involved in inflammation is crucial for developing effective treatments against various diseases. A central player in inflammation is the NF-κB transcription factor, which controls the production of pro-inflammatory cytokines and, subsequently, the recruitment of immune cells. The nuclear translocation of NF-κB is regulated by IκB, which, once phosphorylated by upstream kinases in response to innate immune receptor engagement, is degraded by the proteasome (reviewed in [8]). In the case of IBD, the overactivation of this pathway directly causes an increase in the production of pro-inflammatory cytokines such as TNF-α, IL-1, and IL-6, consequently fueling chronic inflammation [9].
Similarly, Mitogen-activated Protein Kinases (MAPKs) are a family of protein kinases that respond to various stimuli, including inflammatory cytokines. They influence cell proliferation, differentiation, survival, and apoptosis. The activation of MAPKs leads to the phosphorylation and activation of p38 transcription factors, which also activate inflammatory response genes [10]. In the joint tissue of RA patients, the mentioned pathway regulates the production of pro-inflammatory cytokines. Also, it has a crucial role in the signaling cascade downstream of interleukin (IL-1), IL-17, and TNF-α, leading to cartilage destruction [11].
The JAK-STAT pathway is another highly conserved signaling mechanism significantly regulating inflammatory gene expression. Upon ligands (which are primarily cytokines, such as interferons) binding to their cognate receptors, intracellular receptor-associated Janus-activated kinases (JAKs) phosphorylate each other and dimerize, creating docking sites for Signal Transducers and Activators of Transcription (STATs), which are latent, cytoplasmic transcription factors. The cytoplasmic STATs undergo phosphorylation and subsequent dimerization, enabling their translocation to the nucleus, where they modulate immune-related gene expression [12]. Under normal conditions, this pathway is governed by negative regulators of JAK/STAT, including the suppressor of cytokine signaling and protein inhibitor of activated STAT. However, in the context of rheumatoid arthritis (RA), the malfunction of these regulators leads to joint damage commonly observed in affected patients [13].
Finally, inflammasome (among which is the NOD-like receptor family, the pyrin domain containing three signaling, or NLRP3 is the best described) signaling is also activated during many inflammatory responses. Inflammasomes require a sensor, an adaptor, and a pro-caspase that, following puncta formation, leads to IL-1β secretion, an important player in several (auto) inflammatory disorders, such as gouty arthritis [14].
Because dysregulation of NF-κB, MAPKs, JAK-STAT, or inflammasomes activity is often associated with inflammatory, autoimmune, or metabolic diseases, a thorough investigation of the corresponding pathways offers tremendous opportunities to develop more effective treatments for these diseases and improve patient outcomes.

2.2. Therapeutic Strategies to Target Inflammation

Until the end of the 20th century, CIDs therapeutics relied essentially on glucocorticoids and other small chemicals (non-steroidal) based on their anti-inflammatory, immunomodulatory, or anti-proliferative properties. Over the past 20 years, the management of patients who have rheumatoid arthritis (RA), one of the most frequent CIDs, witnessed significant improvements with the development and marketing of biologic and targeted-synthetic disease-modifying antirheumatic drugs (b/tsDMARDs). These molecules are designed to target and neutralize cytokines (such as TNF-α) and their receptors, to deplete specific cell populations (such as B lymphocytes with the anti-CD20 antibody), to modulate T cells activation (using the CTLA4-Ig) or to impact signaling pathways (with JAK inhibitors for instance) [15].
In this regard, TNF-α inhibitors completely changed the therapeutic strategy of RA patients, moving from relieving their symptoms to complete remission, which is the goal of the current therapy.
However, despite that considerable progress, many unmet clinical needs persist for CID patients. Indeed, even in the case of RA, a significant proportion of patients remain refractory to available therapies, and others develop resistance to effective drugs (as can be observed following anti-TNF-α treatment) [16]. For IBD patients, ~10% to 30% of patients resist the anti-TNF-α agent (primary non-responder), and 20% to 50% of responding patients (secondary loss of response) develop a resistance to the treatment within one year [17]. In addition, many chronic inflammatory syndromes (like scleroderma or Sjögren syndrome) are still without any reference treatment [18]. Therefore, the search for alternative therapeutic options remains current.
Table 1. MNPs with anti-inflammatory activity. ?: no species identified.
Table 1. MNPs with anti-inflammatory activity. ?: no species identified.
Macro-Organisms
OrganismsClassification
(Phylum)
SpeciesType of MoleculesMoleculesTarget/Mode of ActionRef(s).
SpongePoriferaFasciospongia cavernosaTerpene lactoneCavernolide TNF-α, NO, and PGE2 inhibition in RAW 264.7 cells[19]
SpongePoriferaDysidea spp.SesquiterpeneDysidotronic acidTNF-α, IL-1, NO, PGE2 inhibition in RAW 264.7 cells[20]
SpongePoriferaPlakortis spp.α-exomethylene-γ-lactonePlakolide AiNOS inhibition in RAW 264.7 cells[21]
SpongePoriferaLuffariella variabilisSesterterpeneManoalideEicosanoids synthesis inhibition in human polymorphonuclear leukocytes[22]
Caribbean spongePoriferaCacospongia linteiformisSesterterpeneCyclolinteinoneiNOS and COX-2 inhibition in LPS-stimulated J774 macrophages[23]
SpongePoriferaDysidea sp. and
Petrosaspongia nigra
Merosesquiterpene
& Sesterterpene
Bolinaquinone and petrosaspongiolide MProtection against TNBS-induced colitis in BALB/c mice[24]
SpongePoriferaPetrosia spp.PolyacetylenesPetrocortyne D,
Petrocortyne E,
Petrocortyne F,
Petrocortyne G,
Petrocortyne H
Inhibition of PLA2 activity in K-562 cell line[25]
SpongePoriferaPetrosia spp.Polyacetylenic alcoholPetrocortyne A TNF-α inhibition in LPS-activated RAW 264.7 and PMA/LPS-treated U937 cells and NO inhibition in LPS- or IFNγ-treated RAW 264.7 cells[26]
SpongePoriferaTheonella swinhoeSteroidSolomonsterol A Reduction in arthritic score in anti-type II collagen antibody-induced arthritis murine model[27]
SpongePoriferaGeodia barrettiAlpha amino acids and derivativesBarettinTNF-α and IL-1β inhibition in LPS-stimulated THP-1 cells[28]
SpongePoriferaGeodia barrettiAlkaloids6-bromoindole derivatives geobarettin B,
6-bromoindole derivatives geobarettin C,
6-bromoindole alkaloids 6-bromoconicamin,
barettin
IL-12 p40 inhibition and IL-10 increasing in dendritic cells[29]
SpongePoriferaHalichondria okadaiAlkaloidHalichlorine VCAM-1, ICAM-1, and E-selectin inhibition in LPS-stimulated aortic endothelial cells, inhibition of macrophage adhesion to cultured cell monolayers, an anti-inflammatory effect associated with NF-κB pathway [30]
SpongePoriferaStylissaAlkaloidPyrrole alkaloid (10Z)-debromohymenialdisineIL-1β, IL-6, TNF-α, iNOS, COX-2, NO and PGE2 inhibition in co-cultures of LPS-stimulated Caco-2 and THP-1 cells[31]
SpongePoriferaStylissa flabellataAlkaloidsStylissadine A,
Stylissadine B
Antagonistic effect on P2X7 receptors in THP-1 cells[32]
Soft coralCnidariaSinularia dissectaDiterpeneSeco-sethukarailinInhibition of pro-inflammatory cytokines in bone marrow-derived dendritic cells[33]
Soft coralCnidariaPseudopterogorgia elisabethaeDiterpenesPseudopterosin E,
Pseudopterosin A
Reduction of PMA-induced mouse ear edema; PGE2 and LCT4 inhibition in zymosan-stimulated murine peritoneal macrophages[34]
Soft coralCnidariaSinularia gibberosaSteroidGibberoketosterol Inhibition of pro-inflammatory iNOS and COX-2 proteins in LPS-stimulated RAW264.7 cells[35]
Okinawan soft coralCnidariaSinularia spp.DiterpenesNorcembranolide and sinuleptolide TNF-α and NO inhibition in LPS-stimulated RAW 264.7 cells[36]
Soft coralCnidariaSinularia lochmodesSesquiterpeneLochmolins A,
Lochmolins B
Inhibition of COX-2 expression in LPS-activated RAW 264.7 cells[37]
Lochmolins CInhibition of COX-2 expression in LPS-activated RAW 264.7 cells[38]
Lochmolins DInhibition of COX-2 expression in LPS-activated RAW 264.7 cells[37]
Soft coralCnidariaLemnalia cervicorniSesquiterpeneLemnalol Inhibition of iNOS and COX-2 expression in LPS-activated RAW 264.7 cells; inhibition of iNOS and COX-2 expression in carrageenan-activated rat paws[39]
Soft coralCnidariaLemnalia flavaSesquiterpeneFlavalin A iNOS and COX-2 inhibition in RAW 264.7 cells[40]
Soft coralCnidariaLobophytum crassumDiterpenesCrassumol E
1R,4R,2E,7E,11E-cembra-2,7,11-trien-4-ol
Inhibition of NF-κB activation in TNF-α-activated HepG2 cells[41]
DiterpenesLobocrasol A,
Lobocrasol B
Inhibition of NF-κB activation in TNF-α-activated HepG2 cells[42]
Soft coralCnidariaScleronephthya gracillimumSteroidSclerosteroid JInhibition of iNOS and COX-2 expression in LPS-activated RAW 264.7 cells[43]
OctocoralCnidariaPseudopterogorgia acerosaDiterpenePseudopterane Inhibition of NO, TNF-α, IL-1β and IFNγ-induced protein production in LPS-activated peritoneal macrophages[44]
CoralCnidariaRumphella antipathies (classification rhumphella antipathes Linnaeus 1758)SesquiterpeneClovane compound 1Inhibition of superoxide anions generation and elastase release[45]
SesquiterpeneClovane compound 2Inhibition of elastase release in fMLP/CB-activated human neutrophils[45]
SesquiterpeneRumphellaone CInhibition of superoxide anion generation and elastase release in human neutrophils[46]
SesquiterpeneRumphellol AInhibition of superoxide generation and elastase release in human neutrophils [47]
SesquiterpeneRumpheloll B
CoralCnidariaBriareum excavatumDiterpeneExcavatolide BInhibition of iNOS expression in carrageenan-activated rat paws[48]
CoralCnidariaBriareum excavatumDiterpeneExcavatolide BInhibition of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced vascular permeability; inhibition of TPA-induced matrix metalloproteinase-9 expression in mouse skin; inhibition of IL-6 expression of LPS-activated mouse bone marrow-derived dendritic cells[49]
AnemoneCnidariaZoanthus kuroshioAlkaloid5α-iodozoanthenamineAnti-inflammatory effect on—neutrophils, reduction of superoxide anion generation, and elastase by cells[50]
AnemoneCnidariaZoanthus pulchellusAlkaloids3-hydroxinorzoanthamine
Norzoanthine
Roanthamine
ROS and NO inhibition in LPS-stimulated BV-2 cells[51]
StarfishEchinodermata Marthasterias glacialisSteroidErgosta-7,22-dien-3-ol Inhibition of iNOS protein level in LPS-activated RAW 264.7 cells[52]
StarfishEchinodermata Astropecten polycanthusSteroidSteroid compound 5 Inhibition of IL-12 p40, IL-6, and TNF-α production in LPS-activated mice bone marrow-derived dendritic cells[53]
StarfishEchinodermata Asterias amurensisFatty acidFatty acidsInhibition of the expression of inflammatory genes via NF-κB and MAPK pathways in LPS-stimulated RAW 264.7 cells[54]
StarfishEchinodermata Marthasterias glacialisFatty acidCis 11-eicosenoic and cis 11,14 eicosadienoic acidsInhibition of iNOS, COX-2, IκBα, and NF-κB gene expression in LPS-stimulated RAW 264.7 cells[52]
StarfishEchinodermata Protoreaster nodosusSteroidOxygenated steroid derivativesIL-12 p40, IL-6, and TNF-α inhibition in bone marrow-derived dendritic cells[55]
StarfishEchinodermata Protoreaster linckiSteroidsProtolinckioside A,
Protolinckioside B,
Protolinckioside C,
Protolinckioside D
Reduction of ROS formation and NO production in LPS-stimulated RAW 264.7 cells[56]
StarfishEchinodermata Anthenea asperaSteroidAnthenoside O [57]
StarfishEchinodermata Pentaceraster regulusSteroidPentareguloside C,
Pentareguloside D,
Pentareguloside E
Reduction of ROS formation and NO production in LPS-stimulated RAW 264.7 cells[58]
StarfishEchinodermata Acanthaster planciPyrrole oligoglycosidePlancipyrroside A,
Plancipyrroside B
Reduction of ROS formation and NO production in LPS-stimulated RAW 264.7 cells[59]
StarfishEchinodermata Asterina batheriPyrrole oligoglycosideAstebatherioside B,
Astebatherioside C,
Astebatherioside D
IL-12 p40 inhibition in LPS-stimulated bone marrow-derived dendritic cells[60]
Sea cucumberEchinodermata Holothuria griseaProteinLectin Inhibition of neutrophil migration to the peritoneal cavity in carrageenan-activated rats; reduction of myeloperoxidase activity in carrageenan-activated rats[61]
Sea cucumberEchinodermata Apostichopus japonicus and Stichopus chloronotusSulfated polysaccharideFucosylated chondroitin sulfateReduction of neutrophil migration, inhibition of paw edema in carrageenan-induced paw edema in rats[62]
Sea cucumberEchinodermata Isostichopus badionotusSulfated polysaccharideFucosylated chondroitin sulfateSuppression of TPA-mediated up-regulation of TNF-α, IL-6, NF-κB, iNOS, IL-10, IL-11, COX-2 and STAT3 genes in mouse ear tissue[63]
Sea cucumberEchinodermata Isostichopus badionotusSulfated polysaccharideFucoidanRegulation of serum inflammatory cytokines (TNF-α, CRP, MIP-1, IL-1β, IL-6, and IL-10) and their mRNA expression, inactivation of JNK and IκB/NF-κB pathways[64]
Sea cucumberEchinodermata Holothuria albiventer and Cucumaria frondosaSulfated polysaccharideSulfated fucan/FCSSuppression of TNF-α and IL-6 production[65]
Sea cucumberEchinodermata Holothuria tomasiTriterpenes glycoside Inhibition of IL-6, TNF-α levels in STZ-induced diabetic rats[66]
Sea cucumberEchinodermata Pearsonothuria graeffeiTriterpenes glycosideHolothurin A and Echinoside A Inhibition of IL-1β, TNF-α, IL-6 and infiltration of macrophages in obese mice via p-ERK/cPLA2/COX-1 pathway and reduction of the PGE2 levels[67]
Sea cucumberEchinodermata Aspostichopus japonicus and Acaudina leucoproctaPeptideOligopeptidesDownregulation of pro-inflammatory cytokines transcription, upregulation of anti-inflammatory cytokines, and inhibition of TLR4/MyD88/NF-κB signaling pathway[68]
Sea cucumberEchinodermata Cucumaria frondosaFatty acidEicosapentaenoic acidInhibition of TNF-α, IL-6, and MCP1 expression, attenuation of macrophage infiltration in the liver in mice, attenuation of the phosphorylation of NF-κB in RAW 264.7 cells [69]
Sea cucumberEchinodermata Cucumaria frondosaLipidFrondanolReduction of inflammation-associated changes in the colon in mice, reduction of cytokine content at the protein and mRNA level[70]
Sea cucumberEchinodermata Cucumaria frondosaLipidSphingolipidsInhibition of pro-inflammatory cytokines IL-1β, IL-6 TNF-α and increasing anti-inflammatory IL-10 via inhibition of phosphorylation of JNK and translocation of NF-κB[71]
Sea cucumberEchinodermata Cucumaria frondosaLipidFrondaol A5Attenuation of circulating inflammatory cytokines and suppression of mRNA expression of inflammatory markers such as 5-LOX and FLAP[72]
Sea urchinsEchinodermata Scaphechinus mirabilisDark red pigmentEchAAttenuation of macrophage activation and infiltration (neutrophils), inhibition of TNF-α and IFNγ in bleomycin-induced scleroderma mouse model[73]
Sea urchinsEchinodermata ?Dark red pigmentEchADecreasing DIA, improvement of colon length and suppression of tissue damage, suppression of macrophage activation[74]
Sea urchinsEchinodermata ?Dark red pigmentEchATNF-α and NF-κB inhibition in Lewis rats[75]
Sea urchinsEchinodermata Paracentrotus lividusDark red pigmentEchAPotent stabilizing effect on the human red blood cells, suppression of the production of IL-6 and TNF-α in septic rats[76]
Sea urchinsEchinodermata Scaphechinus mirabilisPigmentSpinochrome A Reduction of chronic inflammation in cotton-pellet granuloma rat model[77]
Sea urchinsEchinodermata Scaphechinus mirabilisPigmentSpinochrome B [77]
Sea urchinsEchinodermata Echinometra mathaei, diadema savignyi, tripneustes gratilla and Toxopneustes pileolusPigmentSpinochromes TNF-α inhibition in J774 macrophages[78]
Sea urchinsEchinodermata Echinometra mathaei, diadema savignyi, tripneustes gratilla and Toxopneustes pileolusPigmentEchA
Sea urchinsEchinodermata Strongylocentrotus droebachiensisPeptideCentrocin 1 (CEN1HC-Br)IL-12 p40, IL-6, IL-1β and TNF-α inhibition in THP-1 cells[79,80]
Sea urchinsEchinodermata Salmacis bicolorIsochroman derived polyketideSalmachromanCOX-2 and 5-LOX inhibition by using the 2, 7-dichlorofluorescein method[81]
Sea urchinsEchinodermata Salmacis bicolorPolyoxygenated furanocembranoid derivativesSalmacembrane A
Salmacembrane B
COX-1, COX-2, and 5-LOX inhibition by the 2, 7-dichlorofluorescein method [82]
Sea urchinsEchinodermata Stomopneustes variolarisCembrane type of diterpene4-hydroxy-1-(16methoxyprop-16-en-15-yl)-8-methyl-21,22-dioxatricyclo[11.3.1.15,8]octadecane-3,19-dioneInhibition of 5-LOX, COX-1 and COX-2 inhibition by the 2, 7-dichlorofluorescein method[83]
Sea urchinsEchinodermata Stomopneustes variolarisMacrocyclic lactoneStomopneulactones DCOX-2, 5-LOX, iNOS inhibition in RAW 264.7 cells[84]
Sea urchinsEchinodermata Brisaster latifronsSulfonic acid(Z)-4-methylundeca-1,9-diene-6-sulfonic acidInhibition of proinflammatory cytokines by the inactivation of JNK/p38 MAPK and NF-kB pathways[85]
Sea urchinsEchinodermata Hemicentrotus pulcherrimus and Diadema setosumLipidHp-s1 gangliosideInhibition of iNOS, COX-2, and cytokines, downregulation of the NF-κB and JNK/P38 MAPK signaling pathway[86]
AscidianChordata Aplidium orthiumAlkaloidsAlkaloid tubastrine,
Orthidine A,
Orthidine B,
Orthidine C,
Orthidine E,
Orthidine F
Reduction of the superoxide synthesis in PMA-stimulated neutrophils in vitro and in in vivo models[87]
AscidianChordata Aplidium spp.AlkaloidsAscidiathiazone A,
Ascidiathiazone B
Reduction of the superoxide production by PMA-stimulated neutrophils in vitro and in vivo in murine gout model[88]
AscidianChordata Pycnoclavella kottaeAlkaloidKottamide DReduction of superoxide synthesis by PMA and N-formylmethionyl-leucyl-phenylalanine (fMLP)-activated neutrophils in vitro[89]
Red algaeRhodophytaGracilaria opuntiaAlkaloidAzocinyl morpholinoneInhibition of the carrageenan-induced paw edema[90]
Green algaeChlorophytaEnteromorpha proliferaChlorophyllPheophytinSuppression of the production of superoxide anion in mouse macrophages [91]
Green algaeChlorophytaUlva lactucaSterol3-0-B-D-glucopyranosil-stigmata-5,25,-dien sterolTopical anti-inflammatory activity in mouse edema[92]
Green algaeChlorophytaCaulerpa racemosaAlkaloidCaulerpin//Sulfated polysaccharidesInhibition of capsaicin-induced ear edema model and significant reduction of the number of recruited cells; reduction in neutrophil counts in the peritoneal cavity and paws of carrageenan-treated rats; reduction of edema volume in carrageenan and dextran-activated mouse paws[93,94]
Green algaeChlorophytaEnteromorpha proliferaChlorophyllPheophytin ASignificant suppression of TPA-induced inflammatory reactions such as edema formation in BALB/c mouse ears[91]
Green algaeChlorophytaCaulerpa mexicanaSulfated polysaccharidesSulfated polysaccharidesReduction of edema volume and neutrophilic infiltration in carrageenan-activated raw paws; Reduction of edema volume in dextran and histamine-activated rat paws[95]
Green algaeChlorophytaCaulerpa cupressoidsProteinLectin Reduction of leukocyte counts and myeloperoxidase activity in rat temporomandibular joint synovial lavage fluid in zymosan-activated rats[96]
Brown algaeHeterokontophytaEcklonia cavaPholorotanninDieckolInhibition of NO, PGE2, and the expression of iNOS production in murine BV2 microglia[97]
Brown algaeHeterokontophytaUndaria pinnatifidaFatty acidΩ-3 polyunsaturated fatty acidsInhibition of the mouse ear inflammation induced by PMA[98]
Brown algaeHeterokontophytaLaminaria japonicaSulfated polysaccharideFucoidan NO and IL-6 inhibition in Caco-2 cells[99]
Brown algaeHeterokontophytaFucus vesiculosusSulfated polysaccharideFucoidan Reduction of NO, PGE2, TNF-α and IL-1β production in RAW 264.7 cells[100]
Microorganisms
OrganismsClassification
(Phylum)
SpeciesType of MoleculesMoleculesTarget/Mode of ActionRef(s).
Dinoflagellate (microalgae)Dinoflagellata Symbiodinium spp.Amphoteric iminium 6,6,6-tricyclic iminium ring and aryl sulfate moietyInhibition of the COX-2 activity in RAW 264.7 cells[101]
Haptophyte (microalgae)Haptophyta Isochrysis galbanaGalactolipidsMonogalactosyldiacylglycerols
Digalactosyldiacylglycerol
Inhibition of the synthesis of TNF-α, IL-1β, IL-6, IL-17 in THP-1 cells[102]
Green microalgae ChlorophytaChlorella vulgarisPolyunsaturated fatty acidLinoleic acid and α-linolenic Inhibition of TNF-α, IL-6, PGE2, and NO production in RAW 264.7 cells[103]
Red microalgaeRhodophytaPorphyridium cruentumFatty acidsFatty acidsInhibition of superoxide anion production by peritoneal leukocytes primed with PMA[104]
Red microalgaeRhodophytaPorphyridium cruentumExopolysaccharide (EPS)EPSInhibition of 77% of COX-2 in human keratinocytes and murine fibroblasts Balb/c-3T3[105]
PigmentPhycoerythrinInhibition of COX-2 in human keratinocytes and murine fibroblasts Balb/c-3T3[105]
CyanobacteriaCyanobacteriaSpirulina subsalsaLipids (glycophospholipids, phospholipids)Sulfoquinovosyl diacylglycerols, monogalactosylodiglycerides, cerebrosides; ceramides, phosphatidylcholines, phosphatidylethanolaminesInhibitory effects on platelet-activating factor and thrombin-induced platelet aggregation[106]
CyanobacteriaCyanobacteriaLyngbya majusculaMalyngamideMalyngamide F acetateInhibition of the NO production in RAW 264.7 cells[107]
CyanobacteriaCyanobacteriaCaldora sp.Azirine Dysidazirine carboxylic acidInhibition of the NO production by almost 50% at 50 µM in RAW 264.7 cells[108]
FungiAscomycota Chaetomium globosum QEN-14AlkaloidChaetoglobosin Fex Inhibition of TNF-α and IL-6 production in LPS-activated RAW 264.7 cells[109]
FungiAscomycota Stachybotrys sp. HH1 ZSDS1F1-2 (isolated from a sponge from Xisha Island, China, in April 2012)XanthonneXanthone derivatives 3 (others),Inhibition of COX-2[110]
Xanthone derivatives 4 (others),
Xanthone derivatives 11 (others)
FungiAscomycota Aspergillus spp.Diketopiperazine alkaloids5-prenyl-dihydrovariecolorin F Inhibition of iNOS and COX-2 activity, reduction of NO and PGE2 levels in LPS-stimulated RAW 264.7 and BV2 cells[111]
FungiAscomycota Aspergillus spp.Diketopiperazine alkaloids5-prenyl-dihydrorubrumazine A
FungiAscomycota Aspergillus sp. SF-6354PolyketideTMC-256C1 NO and PGE2 inhibition in LPS-activated BV2 cells[112]
FungiAscomycota Aspergillus sp. SCSIO Ind09F01PolyketidesDiorcinol,
Cordyol C,
3,7-dihydroxy-1,9-dimethyldibenzofuran
Inhibition of COX-2 (IC50 = 2.4–10.6 µM) [113]
FungiAscomycota Aspergillus sp. SF-5974 and Aspergillus sp. SF-5976PolyketidesCladosporin 8-0-α-ribofuranoside,
Cladosporin,
Asperentin 6-O-methyl ether
Cladosporin 8-O-methyl ether,
4′-hydroxyasperentin,
5′-hydroxyasperentin
Inhibition of NO and PGE2 expression, (IC50 = 20–65 µM) in LPS-activated microglial cells[114]
FungiAscomycota Aspergillus sp. SF-5044PolyketideAsperlin Inhibition of NO and PGE2 expression in LPS-activated murine macrophages[115]
FungiAscomycota Aspergillus sp.PeptideAurantiamide acetate Inhibition of NO and PGE2 expression in LPS-activated BV2 cells[116]
FungiAscomycota A.europaeus WZXY-SX-4-1PolyketidesEurobenzophenone B,
Euroxanthone A,
3-de-O-methylsulochrin,
Yicathin B,
Dermolutein,
Methylemodin
Inhibition of NF-κB activation and NO expression in LPS-activated SW480 cells[117]
FungiAscomycota Aspergillus sp. ZLO-1b14TerpenesAspertetranone A,
Aspertetranone B,
Aspertetranone C,
Aspertetranone D
Inhibition of IL-6 expression in LPS-activated RAW 264.7 cells[118]
FungiAscomycota A.sydowii J05B-7F-4PolyketideViolaceol II, Cordyol E Inhibition of NO (IC50 = 73 µM) expression in LPS-activated RAW 264.7 cells[119]
FungiAscomycota A.niger SCSIO Jcsw6F30PolyketidesAurasperone F,
Aurasperone C,
Asperpyrone A
Inhibition of COX-2 expression (IC50 = 11.1, 4.2, and 6.4 µM for F, C, and A, respectively) in LPS-activated RAW 264.7 cells[120]
FungiAscomycota A. flocculosus 16D-1AlkaloidsPreussin C,
Preussin D,
Preussin E,
Preussin F,
Preussin G,
Preussin H,
Preussin I,
Preussin J,
Preussin K
Inhibition of IL-6 expression in LPS-activated THP-1 cells[121]
FungiAscomycota A.versicolorAlkaloidsAsperversiamide B,
Asperversiamide C,
Asperversiamide F,
Asperversiamide G
Inhibition of iNOS expression in LPS-activated RAW 264.7 cells[122]
FungiAscomycota A.terreusAlkaloidLuteoride E Inhibition of NO in LPS-activated RAW 264.7 cells[123]
FungiAscomycota A.terreusTerpeneLovastatinInhibition of NO production in LPS-activated RAW 264.7 cells[123]
FungiAscomycota A.terreus CFCC 81836TerpeneBrasilanone A Inhibition NO production in LPS-activated RAW 264.7 cells[124]
FungiAscomycota A.terreus CFCC 81836TerpeneBrasilanone E [124]
FungiAscomycota (phylum) A.terreusPolyketideVersicolactone GInhibition of NO production (IC50 = 15.72 and 29.34 µM for G and A, respectively) in LPS-activated RAW 264.7 cells[123]
FungiAscomycota A.terreusPolyketideTerritrem A
FungiAscomycota A.terreusPeptideMethyl 3,4,5-trimethoxy-2-(2-(nicotinamido)benzamido)benzoate Inhibition of NO production in LPS-activated RAW 264.7 cells[123]
FungiAscomycota A. terreus (isolated from the coral Sarcophyton subviride)Aliphatic alcohol(3E,7E)-4,8-dimethyl-undecane-3,7-diene-1,11-diol, 14α-hydroxyergosta-4,7,22-triene-3,6-dioneInhibition of NO expression in LPS-activated RAW 264.7 cells[123]
FungiAscomycota Aspergillus sp. SCSIOW2TerpenesDihydrobipolaroxins B-D
Dihydrobipolaroxin
NO inhibition in RAW 264.7 cells[125]
FungiAscomycota Eurotium sp., SF-5989AlkaloidNeoechinulin B Inhibition of NO production in amyloid-β 1-42-activated BV-2 cells[126]
FungiAscomycota Eurotium sp. SF-5989PolyketideFlavoglaucin Isotecrahydroauroglaucin Inhibition of NO and PGE2 expression in LPS-activated RAW 264.7 cells[127]
FungiAscomycota Eurotium spp.Indolic alkaloidNeoechinulin A Reduction of NO and PGE2 production by inhibiting iNOS and COX-2 expression and reduced the production of IL-1β, TNF-α in LPS-stimulated RAW 264.7 cells[126]
FungiAscomycota Eurotium sp. SF-5989AlkaloidNeocechinulin A Inhibition of NO and PGE2 in LPS-stimulated RAW 264.7 macrophages[126]
FungiAscomycota E.amstelodamiPolyketideAsperflavin Inhibition of 4.6% and 55.9% of NO and PGE2 expression, respectively, in LPS-activated RAW 264.7 cells[128]
FungiAscomycota E.amstelodamiPolyketideQuestinol Inhibition of 73% and 43.5% of NO and PGE2 expression, respectively, in LPS-stimulated RAW 264.7 cells[129]
FungiAscomycota Penicillium sp. SF-5859 (isolated from a sponge)PolyketidesCurvularin,
(11R,15S)-11-hydroxycurvularin,
(11S,15S)-11-hydroxycurvularin,
(11R,15S)-11-methoxycurvularin,
(11S,15S)-11-methoxycurvularin,
(10E,15S)-10,11-dehydrocurvularin,
(10Z,15S)-10,11-dehydrocurvularin
Inhibition of NO and PGE2 expression (IC50 values ranging from 1.9 to 18.7 µM) in LPS-stimulated RAW 264.7 cells[130]
FungiAscomycota Graphostroma sp. MCCC 3A00421TerpeneGraphostromane FInhibition of NO in LPS-activated RAW 264.7 cells[131]
FungiAscomycota Graphostroma sp. MCCC 3A00421TerpeneKhusinol BInhibition of NO expression in LPS-activated RAW 264.7 cells[132]
FungiAscomycota P.chrysogenum SCSIO41001AlkaloidChrysamide C Inhibition of IL-17 expression in mice T-cells[133]
FungiAscomycota Penicillium sp. SF-5295AlkaloidViridicaol Inhibition of NO and PGE2 expression in LPS-activated RAW 264.7 and in LPS-activated BV2 cells[134]
Fungi
Fungi
Ascomycota Penicillium sp.AlkaloidsBrevicompanine E,
Brevicompanine H
Inhibition of NO production in LPS-activated RAW 264.7 cells[135]
FungiAscomycota Penicillium sp. SF-5995AlkaloidMethylpenicinoline Inhibition of NO, PGE2, iNOS and COX-2 expression in LPS-induced RAW 264.7 cells and BV2 microglia[136]
FungiAscomycota Penicillium sp. SF-5497Terpenes7-acetoxydehydroaustinol,
Austinolide,
7-acetoxydehydroaustin,
11-hydroxyisoaustinone,
11-acetoxyisoaustinone
Inhibition of NO expression in LPS-activated BV-2 cells[137]
FungiAscomycota Penicillium sp. SF 6013Terpenes2E,4Z-tanzawaic acid D,
Tanzawaicacids A,
Tanzawaicacids E
Inhibition of NO expression in LPS-activated RAW 264.7 cells[138]
FungiAscomycota Penicillium sp. SF-5629PolyketideCitrinin H1 Inhibition of NO and prostaglandin E2 expression (IC50 = 8.1 and 8.0 µM) in LPS-activated BV2 cells [139]
FungiAscomycota Penicillium sp. SF-5292PolyketidePenicillospirone Inhibition of NO and PGE2 expression (with IC50 values of 21.9–27.6 µM) in LPS-activated RAW 264.7 and BV2 cells[134]
FungiAscomycota Penicillium sp. SF-5292PolyketidePenicillinolide A Inhibition of NO, PGE2, TNF-α, IL-1β, and IL-6 expression (IC50 = 20.47, 17.54, 8.63, 11.32, and 20.92 µM, respectively) in LPS-activated RAW 264.7 and BV2 cells[140]
FungiAscomycota Penicillium sp. J05B-3-F-1Hexylitaconic acid derivatives Methyl 8 -hydroxy-3-methoxycarbonyl-2-methylenenonanoate, (3S)-Methyl 9-hydroxy-3-methoxycarbonyl-2-methylenenonanoateInhibition of pro-inflammatory cytokines and NO expression in LPS-activated RAW 264.7 cells[141]
FungiAscomycota P. atrovenetumTerpeneCitreohybridonol Anti-neuroinflammatory activity[142]
FungiAscomycota P.steckii 108YD142TerpenesTanzawaic acid Q,
Tanzawaic acid A,
Tanzawaic acid C,
Tanzawaic acid D,
Tanzawaic acid K
Inhibition of NO expression in LPS-activated RAW 264.7 cells[143]
FungiAscomycota P.paxililliPolyketidePyrenocine AInhibition of TNF-α and PGE2 expression in LPS-activated RAW 264.7 cells[144]
FungiAscomycota P.thomii KMM 4667TerpeneThomimarine EInhibition of 22.5% of NO production in LPS-activated RAW 264.7 cells[145]
FungiAscomycota P.thomii KMM 4667PolyketideGuaiadiol A, 4,10,11 trihydroxyguaiane Inhibition of 24.1% and 36.6% of NO production at 10 µM in LPS-activated RAW 264.7 cells[145]
FungiAscomycota P.citrinum SYP-F-2720Peptide(S)-2-(2-hydroxypropanamido)benzoic acid Reduction of the inflammation in xylene-induced mouse ear edema model[146]
FungiAscomycota Hypocreales sp. HLS-104Terpene1R,6R,7R,10S-10-hydroxy-4(5)-cadinen-3-oneInhibition of NO expression in LPS-activated RAW 264.7 cells with Emax value of 26.46% at 1 µM[147]
FungiAscomycota Hypocreales sp. HLS-104Polyketide(R)-5,6-dihydro-6-pentyl-2H-pyran-2-one
FungiAscomycota F.heterosporum CNC-477Sesterpene polyolMangicol A Inhibition of PMA-induced mouse ear edema assay[148]
FungiAscomycota F.heterosporum CNC-477Sesterpene polyolMangicol B
FungiBasidiomycota Chondrostereum sp. NTOU4196SesquiterpenesChondroterpene A,
Chondroterpene B,
Chondroterpene H,
Hirsutanol A,
Chondrosterin A,
Chondrosterin B
Inhibition of NO expression in LPS-activated BV-2 cells[149]
FungiAscomycota Pleosporales sp.TerpenesPleosporallin A,
Pleosporallin B,
Pleosporallin C
Inhibition of IL-6 expression in LPS-activated RAW 264.7 cells[150]
FungiAscomycota Phoma sp. NTOU4195PolyketidePhomaketides A-C, FR-111142 Inhibition of NO expression (IC50 values ranging from 8.8 to 19.3 µM) in LPS-activated RAW 264.7 cells[151]
FungiAscomycota Stachybotrys chartarum 952TerpenesStachybotrysin C,
Stachybonoid F,
Stachybotylactone
Inhibition of NO expression in LPS-activated RAW 264.7 cells[152]
FungiAscomycota Leptosphaerulina chartarum 3608Polyketide(4R,10S,4′S)-leptothalenone B Inhibition of NO in LPS-activated RAW 264.7 cells (IC50 = 44.5 µM)[153]
FungiAscomycota Glimastix sp. ZSDS1-F11PolyketidesExpansol A,
Expansol B,
Expansol C,
Expansol D,
Expansol E,
Expansol F
Inhibition of COX-1 (IC50 = 5.3, 16.2, 30.2, 41 and 56.8 µM, for A, B, C, E, F respectively) and COX-2 (IC50 = 3.1, 5.6, 3, 5.1, 3.2 and 3.7 µM, for A, B, C, D, E, F, respectively)[154]
FungiAscomycota Diaporthe sp. HLY-1PolyketideMycoepoxydiene Inhibition of NO and TNF-α, IL-6, and IL-1β expression in LPS-activated macrophages[155]
FungiAscomycota Aspergillus violaceofuscusPeptidesViolaceotide A, diketopiperazine dimer Inhibition of IL-10 expression in LPS-activated THP1 cells[156]
FungiAscomycota Acremonium sp.PeptideOxepinamide A Inhibition of RTX-activated mouse ear edema assay[157]
FungiAscomycota Alternaria sp.PeptideAlternaramide Inhibition NO and PGE2 expression in LPS-activated RAW 264.7 and BV2 cells[158]
FungiAscomycota Trichoderma citrinoviride (isolated from green alga Cladophora)SorbicillinoidTrichodermanone CInhibitory effect on nitrite levels in LPS-activated J774A.1 macrophages[159]
FungiAscomycota Paraconiothyrium sp. VK-13Polyketide1-(2,5-dihydroxyphenyl)-3-hydroxybutan-1-one, 1-(2,5-dihydroxyphenyl)-2-buten-1-one Inhibition of NO and PGE2 expression in LPS-activated RAW 264.7 cells (IC50 = 3.9–12.5 µM).[160]
FungiBasidiomycota Cystobasidium larynges IV17-028Phenazine derivatives6-[1-(2-aminobenzoyloxy)ethyl]-1-phenazinecarboxylic acid,
Saphenol,
(R)-saphenic acid,
Phenazine-1-carboxylic acid,
6-(1-hydroxyethyl)phenazine-1-carboxylic acid,
6-acetyl-phenazine-1-carboxylic acid
Inhibition of NO production in RAW 264.7 cells[161]
FungiAscomycota Penicillium sp JF-55 (polyketide)PhenylpropanoidPenstyrylpyroneInhibition of NO, PGE2, TNF-α, IL-1β in LPS-activated murine peritoneal macrophages[162]
BacteriaActinobacteria Streptomyces spp.AlkaloidActinoquinoline A Inhibition of COX-1 and COX-2[163]
Actinoquinoline B
BacteriaActinobacteria Streptomyces caniferusMacrolide Caniferolide AInhibition of NF-κB p65 translocation and pro-inflammatory cytokines expression in BV2 microglial cells[164]
BacteriaActinobacteria Nocardiopsis sp.MacrolideFijiolide AReduction of TNF-α-induced NF-κB in human embryonic kidney cells 293 (IC50 = 0.57 µM)[165]
BacteriaActinobacteria Kocuria sp. strain AG5ExopolysaccharideEPS5Inhibition of LOX-5 and COX-2 (IC50 = 15.39 ± 0.82 µg/mL and 28.06 ± 1.1 µg/mL, respectively) [166]
BacteriaBacillota Bacillus subtilis B5Macrolactin derivative7,13-epoxyl-macrolactin A;
7-O-2′E-butenoyl macrolactin A
Inhibition of inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), and interleukin-6 (IL-6) expression in LPS-stimulated RAW 264.7 macrophages[167]

3. Marine Microorganisms vs. Macro-Organisms: Who Are the Actual Producers of Metabolites?

Oceans are a vast and unexplored world, teeming with life and diversity. Recent advancements in bioprospecting and molecular technologies foster the identification of new marine organisms, from macroscopic to microscopic biota, in this fascinating ecosystem [168]. However, the number of unknown marine species is estimated between 60,000 and 1,950,000, depending on the literature [169]. In the early days, bioprospecting campaigns focused on larger species like cnidarians, sponges, or soft corals due to technical limitations [170]. Between the 1990s and the 2010s, marine invertebrates have been found to produce almost 10,000 new marine natural products (MNPs) [171]. These discoveries have revealed the immense potential of marine organisms for developing innovative compounds for therapeutic and industrial applications. Many metabolites produced by marine macro-organisms have shown promising biological properties, such as anti-inflammatory activity for 43.7% of compounds (Figure 1a). These metabolites belong to different classes of molecules like terpenes (26%), alkaloids (20%), lipids (20%), pigments (8%), polysaccharides (6%) as shown in Figure 1b. Among macro-organisms, those belonging to the phylum Echinodermata produce the most anti-inflammatory molecules (Table 1), inhibiting pro-inflammatory cytokines and the NF-κB pathway but also reducing inflammation in vivo (Table 1). Since then, the possibility of further exploring and leveraging marine ecosystems has been genuinely exciting as it could unlock countless benefits for human health.
An ongoing exploration of marine ecosystems has extended to extreme environments such as deep ocean trenches, geographical poles, or hydrothermal vents; furthermore, technological improvement of microorganisms conservation during collects prompted bioprospecting campaigns to focus on microorganisms such as microalgae, marine fungi, cyanobacteria, and other groups of marine microorganisms. These microscopic life forms represent over 90% of the marine biomass and play a critical role in geochemical processes necessary for terrestrial life [172]. They are also remarkable for their ability to thrive, even in the harshest environments, producing rare and unique compounds that cannot be found in terrestrial biotopes. Furthermore, marine microorganisms are highly metabolically efficient, producing large amounts of metabolites while consuming limited energy [173]. Over the past year, MNPs obtained from marine bacteria, fungi, and cyanobacteria increased by 22%, 85%, and 61%, respectively, between 2018 and 2020, underscoring the impact of marine microorganisms on scientific research [174]. Yet, macro-organisms such as sponges and cnidarians have also been shown to produce MNPs [175]. The identification of these sources has led to inquiries and discussions about the actual producers of these metabolites.
Recent studies have uncovered that certain compounds previously thought to be specifically produced by marine macro-organisms are actually the metabolic byproducts of associated microorganisms [176], as illustrated by bryostatin, which has been confirmed to originate from microbes. The discovery of this metabolite has been made through the identification of polyketide synthase genes involved in its biosynthesis and found in the genome of the bryozoan bacterial symbiont Candidatus Endobugula sertula [177]. Another striking example is the fungus Penicilium canescens found in the ascidian Styela plicata, which exhibited anti-inflammatory activity. Furthermore, the findings presented in Figure 1a indicate that 58.3% of common anti-inflammatory classes of molecules are produced by both marine macro-organisms and microorganisms. This suggests that microorganisms may play a crucial role in producing these compounds, as many microorganisms live in symbiosis with macro-organisms.
In comparison with macro-organisms, microorganisms represent a significant source of anti-inflammatory molecules, contributing a noteworthy 56% of these compounds (Figure 1a). Moreover, the diversity of their metabolites is astounding, including terpenes (27%), alkaloids (18%), peptides (4%), lipids (2%), and pigments (1%) as indicated in Figure 1C. However, the most intriguing aspect is the specific type of molecules, such as polyketides (32%) and phenazine derivatives (4%) produced by marine fungi that target pro-inflammatory cytokines like TNF-α or IL-6, as well as inflammatory markers like NO (Table 1, Figure 2). Given that these mediators are produced upon activation of the NF-kB pathway or are involved in the activation of the JAK-STAT pathway, it is plausible that the MNPs derived from fungi may inhibit these pathways. Additionally, marine microorganisms, particularly bacteria, can produce specific compounds that are not found in macro-organisms. These compounds, such as exopolysaccharides, macrolides, and azirine, can target inflammatory mediators such as cyclooxygenases, NO, TNF-α, and the NF-κB pathway (Table 1, Figure 2). It is worth noting that among microorganisms, most of the compounds are produced by fungi, particularly those belonging to the Ascomycota phylum (Table 1). In addition, they are the major producers of polyketides, one of the specific molecules mentioned above. Furthermore, although most specific molecules targeted the NF-κB pathway (Table 1), their structural characteristics prompt consideration of whether their modes of action could reveal new pathways and targets for modulating inflammation, thus extending our understanding of the interplay between marine compounds and the inflammatory process. These results suggest that fungi could potentially serve as valuable sources of anti-inflammatory molecules.
Considering the vast potential of microorganisms in the production of anti-inflammatory compounds, further research must be conducted to unlock their full potential and develop new treatments for inflammatory diseases.

4. Challenges and Future Directions

Exploring the potential of marine microorganisms as anti-inflammatory agents presents a myriad of challenges and promising future opportunities. One significant challenge lies in the development of anti-inflammatory drugs derived from marine sources, which may encounter barriers impacting the speed and efficiency of the process. Additionally, regulatory hurdles could potentially impede the approval and commercialization of marine-derived pharmaceuticals for anti-inflammatory purposes. Scaling up the production of bioactive compounds from marine microorganisms to meet demand poses a significant challenge, while ensuring the cost-effectiveness of extracting and utilizing these compounds for anti-inflammatory therapies is a critical consideration. The intricate complexity of marine ecosystems and the vast diversity of microorganisms further address the challenges in identifying and isolating effective anti-inflammatory compounds.
Looking towards the future, the quest for potent and effective anti-inflammatory natural products from marine organisms requires ongoing and rigorous research. It is essential to explore innovative approaches in marine drug discovery to uncover new and promising anti-inflammatory compounds. In the future, efforts should be focused on optimizing the drug development process from marine sources to enhance its efficacy and speed. Collaboration among researchers, industry members, and regulatory bodies is crucial for advancing marine-based anti-inflammatory therapies. Furthermore, emphasizing sustainable harvesting practices for marine microorganisms intended for anti-inflammatory purposes is vital for ensuring long-term viability.
By addressing these challenges and focusing on future directions, we can unlock marine microorganisms’ full potential as valuable sources of anti-inflammatory agents, leading to significant advancements in healthcare and therapeutic treatments.

5. Conclusions

The inter-relations between microorganisms and macro-organisms are complex, ranging from parasitic to symbiotic systems. In this regard, metagenomic analysis offers major insights to decipher the complexity of a micro-environment comprising a macro-organism and its hosts without providing any clues as to which among the various interacting, living species is actually responsible for the synthesis of the bioactive metabolites (Figure 3). On the other hand, microbiota identification and microbial isolation from a macro-organism is an attractive alternative, enabling the isolation and identification of specific bacterial species, their culture, and, ultimately, the demonstration of their ability to produce compounds of pharmaceutical interest. Indeed, microorganisms have emerged as a promising avenue for drug discovery, offering a solution to the challenges posed by low quantities of secondary metabolites and the difficulty of obtaining sufficient biomass necessary for pharmaceutical companies to perform clinical trials. Bacterial or microalgal cultures can provide a continuous source of biomass production within a subsequent purification of bioactive metabolites. These steps could revolutionize drug discovery by making it also more environmentally friendly by reducing the exploitation of marine resources.

Author Contributions

Conceptualization, M.L., P.G. and M.M.; writing—original draft preparation, M.L.; writing—review and editing, M.L., P.G., T.J. and M.M; supervision, M.M. All authors have read and agreed to the published version of the manuscript.

Funding

This study is supported by the French National Research Agency (ANR; project CHARM N°ANR-21-CE43-0015-01). ML and MM positions are financed by the ANR and by the Government of New Caledonia, respectively.

Data Availability Statement

All data in this review are openly available without any restrictions.

Acknowledgments

We are thankful to Catherine Vonthron-Sénéchau and to Cyril Antheaume (University of Strasbourg) for a critical reading of the first version of the manuscript.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. El-Gabalawy, H.; Guenther, L.C.; Bernstein, C.N. Epidemiology of immune-mediated inflammatory diseases: Incidence, prevalence, natural history, and comorbidities. J. Rheumatol. Suppl. 2010, 85, 2–10. [Google Scholar] [CrossRef] [PubMed]
  2. Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef]
  3. Castelli, M.S.; McGonigle, P.; Hornby, P.J. The pharmacology and therapeutic applications of monoclonal antibodies. Pharmacol. Res. Perspect. 2019, 7, e00535. [Google Scholar] [CrossRef]
  4. Alexander, M.; Luo, Y.; Raimondi, G.; O’shea, J.J.; Gadina, M. Jakinibs of All Trades: Inhibiting Cytokine Signaling in Immune-Mediated Pathologies. Pharmaceuticals 2021, 15, 48. [Google Scholar] [CrossRef] [PubMed]
  5. Choi, S.R.; Shin, A.; Ha, Y.J.; Lee, Y.J.; Lee, E.B.; Kang, E.H. Comparative risk of infections between JAK inhibitors versus TNF inhibitors among patients with rheumatoid arthritis: A cohort study. Arthritis Res. Ther. 2023, 25, 129. [Google Scholar] [CrossRef]
  6. Medzhitov, R. The spectrum of inflammatory responses. Science 2021, 374, 1070–1075. [Google Scholar] [CrossRef] [PubMed]
  7. Gong, T.; Liu, L.; Jiang, W.; Zhou, R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol. 2020, 20, 95–112. [Google Scholar] [CrossRef]
  8. Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef]
  9. Laurindo, L.F.; Santos, A.R.D.O.D.; Carvalho, A.C.A.D.; Bechara, M.D.; Guiguer, E.L.; Goulart, R.D.A.; Vargas Sinatora, R.; Araújo, A.C.; Barbalho, S.M. Phytochemicals and Regulation of NF-kB in Inflammatory Bowel Diseases: An Overview of In Vitro and In Vivo Effects. Metabolites 2023, 13, 96. [Google Scholar] [CrossRef]
  10. Awasthi, A.; Raju, M.B.; Rahman, M.A. Current Insights of Inhibitors of p38 Mitogen-Activated Protein Kinase in Inflammation. Med. Chem. 2021, 17, 555–575. [Google Scholar] [CrossRef] [PubMed]
  11. Liu, S.; Ma, H.; Zhang, H.; Deng, C.; Xin, P. Recent advances on signaling pathways and their inhibitors in rheumatoid arthritis. Clin. Immunol. 2021, 230, 108793. [Google Scholar] [CrossRef] [PubMed]
  12. Philips, R.L.; Wang, Y.; Cheon, H.; Kanno, Y.; Gadina, M.; Sartorelli, V.; Horvath, C.M.; Darnell, J.E.; Stark, G.R.; O’shea, J.J. The JAK-STAT pathway at 30: Much learned, much more to do. Cell 2022, 185, 3857–3876. [Google Scholar] [CrossRef] [PubMed]
  13. Malemud, C.J. The role of the JAK/STAT signal pathway in rheumatoid arthritis. Ther. Adv. Musculoskelet. Dis. 2018, 10, 117–127. [Google Scholar] [CrossRef] [PubMed]
  14. Prakash, A.V.; Park, I.-H.; Park, J.W.; Bae, J.P.; Lee, G.S.; Kang, T.J. NLRP3 Inflammasome as Therapeutic Targets in Inflammatory Diseases. Biomol. Ther. 2023, 31, 395–401. [Google Scholar] [CrossRef] [PubMed]
  15. Sparks, J.A.; Harrold, L.R.; Simon, T.A.; Wittstock, K.; Kelly, S.; Lozenski, K.; Khaychuk, V.; Michaud, K. Comparative effectiveness of treatments for rheumatoid arthritis in clinical practice: A systematic review. Semin. Arthritis Rheum. 2023, 62, 152249. [Google Scholar] [CrossRef] [PubMed]
  16. Cush, J.J. Rheumatoid Arthritis: Early Diagnosis and Treatment. Rheum. Dis. Clin. N. Am. 2022, 48, 537–547. [Google Scholar] [CrossRef] [PubMed]
  17. Kim, K.U.; Kim, J.; Kim, W.-H.; Min, H.; Choi, C.H. Treatments of inflammatory bowel disease toward personalized medicine. Arch. Pharm. Res. 2021, 44, 293–309. [Google Scholar] [CrossRef] [PubMed]
  18. Longhino, S.; Chatzis, L.G.; Dal Pozzolo, R.; Peretti, S.; Fulvio, G.; La Rocca, G.; Navarro Garcia, I.C.; Orlandi, M.; Quartuccio, L.; Baldini, C. Sjögren’s syndrome: One year in review 2023. Clin. Exp. Rheumatol. 2023, 41, 2343–2356. [Google Scholar] [CrossRef] [PubMed]
  19. Posadas, I.; Terencio, M.C.; De Rosa, S.; Payá, M. Cavernolide: A new inhibitor of huma, sPLA2 sharing unusual chemical features. Life Sci. 2000, 67, 3007–3014. [Google Scholar] [CrossRef]
  20. Posadas, I.; Terencio, M.C.; Giannini, C.; D’Auria, M.V.; Payá, M. Dysidotronic acid, a new sesquiterpenoid, inhibits cytokine production and the expression of nitric oxide synthase. Eur. J. Pharmacol. 2001, 415, 285–292. [Google Scholar] [CrossRef]
  21. Gunasekera, S.P.; Isbrucker, R.A.; Longley, R.E.; Wright, A.E.; Pomponi, S.A.; Reed, J.K. Plakolide a, a new gamma-lactone from the marine sponge Plakortis sp. J. Nat. Prod. 2004, 67, 110–111. [Google Scholar] [CrossRef]
  22. Cabré, F.; Carabaza, A.; Suesa, N.; García, A.M.; Rotllan, E.; Gómez, M.; Tost, D.; Mauleón, D.; Carganico, G. Effect of manoalide on human 5-lipoxygenase activity. Inflamm. Res. 1996, 45, 218–223. [Google Scholar] [CrossRef]
  23. D’Acquisto, F.; Lanzotti, V.; Carnuccio, R. Cyclolinteinone, a sesterterpene from sponge Cacospongia linteiformis, prevents inducible nitric oxide synthase and inducible cyclo-oxygenase protein expression by blocking nuclear factor-kappaB activation in J774 macrophages. Biochem. J. 2000, 346 Pt 3, 793–798. [Google Scholar] [CrossRef] [PubMed]
  24. Busserolles, J.; Payá, M.; D’Auria, M.V.; Gomez-Paloma, L.; Alcaraz, M.J. Protection against 2,4,6-trinitrobenzenesulphonic acid-induced colonic inflammation in mice by the marine products bolinaquinone and petrosaspongiolide M. Biochem. Pharmacol. 2005, 69, 1433–1440. [Google Scholar] [CrossRef]
  25. Shin, J.; Seo, Y.; Cho, K.W. Five new polyacetylenes from a sponge of the genus petrosia. J. Nat. Prod. 1998, 61, 1268–1273. [Google Scholar] [CrossRef]
  26. Hong, S.; Kim, S.H.; Rhee, M.H.; Kim, A.R.; Jung, J.H.; Chun, T.; Yoo, E.S.; Cho, J.Y. In vitro anti-inflammatory and pro-aggregative effects of a lipid compound, petrocortyne A, from marine sponges. Naunyn Schmiedebergs Arch. Pharmacol. 2003, 368, 448–456. [Google Scholar] [CrossRef]
  27. Mencarelli, A.; D’Amore, C.; Renga, B.; Cipriani, S.; Carino, A.; Sepe, V.; Perissutti, E.; D’Auria, M.V.; Zampella, A.; Distrutti, E.; et al. Solomonsterol A, a marine pregnane-X-receptor agonist, attenuates inflammation and immune dysfunction in a mouse model of arthritis. Mar. Drugs 2013, 12, 36–53. [Google Scholar] [CrossRef] [PubMed]
  28. Lind, K.F.; Hansen, E.; Østerud, B.; Eilertsen, K.-E.; Bayer, A.; Engqvist, M.; Leszczak, K.; Jørgensen, T.; Andersen, J.H. Antioxidant and anti-inflammatory activities of barettin. Mar. Drugs 2013, 11, 2655–2666. [Google Scholar] [CrossRef] [PubMed]
  29. Di, X.; Rouger, C.; Hardardottir, I.; Freysdottir, J.; Molinski, T.F.; Tasdemir, D.; Omarsdottir, S. 6-Bromoindole Derivatives from the Icelandic Marine Sponge Geodia barretti: Isolation and Anti-Inflammatory Activity. Mar. Drugs 2018, 16, 437. [Google Scholar] [CrossRef]
  30. Tsubosaka, Y.; Murata, T.; Yamada, K.; Uemura, D.; Hori, M.; Ozaki, H. Halichlorine reduces monocyte adhesion to endothelium through the suppression of nuclear factor-kappaB activation. J. Pharmacol. Sci. 2010, 113, 208–213. [Google Scholar] [CrossRef]
  31. Lee, S.M.; Kim, N.H.; Lee, S.; Kim, Y.N.; Heo, J.D.; Rho, J.R.; Jeong, E.J. (10Z)-Debromohymenialdisine from Marine Sponge Stylissa sp. Regulates Intestinal Inflammatory Responses in Co-Culture Model of Epithelial Caco-2 Cells and THP-1 Macrophage Cells. Molecules 2019, 24, 3394. [Google Scholar] [CrossRef] [PubMed]
  32. Buchanan, M.S.; Carroll, A.R.; Addepalli, R.; Avery, V.M.; Hooper, J.N.; Quinn, R.J. Natural products, stylissadines A and B, specific antagonists of the P2X7 receptor, an important inflammatory target. J. Org. Chem. 2007, 72, 2309–2317. [Google Scholar] [CrossRef] [PubMed]
  33. Nguyen, P.T.; Nguyen, H.N.; Nguyen, X.C.; Bui, H.T.; Tran, H.Q.; Nguyen, T.T.N.; Bui, T.T.L.; Yang, S.Y.; Choi, C.H.; Kim, S.; et al. Steroidal Constituents from the Soft Coral Sinularia dissecta and Their Inhibitory Effects on Lipopolysaccharide-Stimulated Production of Pro-inflammatory Cytokines in Bone Marrow-Derived Dendritic Cells. Bull. Korean Chem. Soc. 2013, 34, 949–952. [Google Scholar] [CrossRef]
  34. Mayer, A.M.; Jacobson, P.B.; Fenical, W.; Jacobs, R.S.; Glaser, K.B. Pharmacological characterization of the pseudopterosins: Novel anti-inflammatory natural products isolated from the Caribbean soft coral, Pseudopterogorgia elisabethae. Life Sci. 1998, 62, Pl401–Pl407. [Google Scholar] [CrossRef]
  35. Ahmed, A.F.; Hsieh, Y.-T.; Wen, Z.-H.; Wu, Y.-C.; Sheu, J.-H. Polyoxygenated sterols from the Formosan soft coral Sinularia gibberosa. J. Nat. Prod. 2006, 69, 1275–1279. [Google Scholar] [CrossRef] [PubMed]
  36. Takaki, H.; Koganemaru, R.; Iwakawa, Y.; Higuchi, R.; Miyamoto, T. Inhibitory Effect of Norditerpenes on LPS-Induced TNF-α Production from the Okinawan Soft Coral, Sinularia sp. Biol. Pharm. Bull. 2003, 26, 380–382. [Google Scholar]
  37. Tseng, Y.J.; Shen, K.P.; Lin, H.L.; Huang, C.Y.; Dai, C.F.; Sheu, J.H. Lochmolins A-G, new sesquiterpenoids from the soft coral Sinularia lochmodes. Mar. Drugs 2012, 10, 1572–1581. [Google Scholar] [CrossRef]
  38. Chen, K.J.; Tseng, C.-K.; Chang, F.-R.; Yang, J.-I.; Yeh, C.-C.; Chen, W.-C.; Wu, S.-F.; Chang, H.-W.; Lee, J.-C. Aqueous extract of the edible Gracilaria tenuistipitata inhibits hepatitis C viral replication via cyclooxygenase-2 suppression and reduces virus-induced inflammation. PLoS ONE 2013, 8, e57704. [Google Scholar] [CrossRef]
  39. Lee, H.P.; Huang, S.-Y.; Lin, Y.-Y.; Wang, H.-M.; Jean, Y.-H.; Wu, S.-F.; Duh, C.-Y.; Wen, Z.-H. Soft coral-derived lemnalol alleviates monosodium urate-induced gouty arthritis in rats by inhibiting leukocyte infiltration and iNOS, COX-2 and c-Fos protein expression. Mar. Drugs 2013, 11, 99–113. [Google Scholar] [CrossRef]
  40. Lu, Y.; Li, P.-J.; Hung, W.-Y.; Su, J.-H.; Wen, Z.-H.; Hsu, C.-H.; Dai, C.-F.; Chiang, M.Y.; Sheu, J.-H. Nardosinane sesquiterpenoids from the Formosan soft coral Lemnalia flava. J. Nat. Prod. 2011, 74, 169–174. [Google Scholar] [CrossRef] [PubMed]
  41. Cuong, N.X.; Thao, N.P.; Luyen, B.T.T.; Ngan, N.T.T.; Thuy, D.T.T.; Song, S.B.; Nam, N.H.; Van Kiem, P.; Kim, Y.H.; Van Minh, C. Cembranoid diterpenes from the soft coral Lobophytum crassum and their anti-inflammatory activities. Chem. Pharm. Bull. 2014, 62, 203–208. [Google Scholar] [CrossRef]
  42. Thao, N.P.; Luyen, B.T.T.; Ngan, N.T.T.; Song, S.B.; Cuong, N.X.; Nam, N.H.; Van Kiem, P.; Kim, Y.H.; Van Minh, C. New anti-inflammatory cembranoid diterpenoids from the Vietnamese soft coral Lobophytum crassum. Bioorg. Med. Chem. Lett. 2014, 24, 228–232. [Google Scholar] [CrossRef]
  43. Fang, H.Y.; Hsu, C.-H.; Chao, C.-H.; Wen, Z.-H.; Wu, Y.-C.; Dai, C.-F.; Sheu, J.-H. Cytotoxic and anti-inflammatory metabolites from the soft coral Scleronephthya gracillimum. Mar. Drugs 2013, 11, 1853–1865. [Google Scholar] [CrossRef] [PubMed]
  44. Gonzalez, Y.; Doens, D.; Santamaría, R.; Ramos, M.; Restrepo, C.M.; de Arruda, L.B.; Lleonart, R.; Gutiérrez, M.; Fernández, P.L. A pseudopterane diterpene isolated from the octocoral Pseudopterogorgia acerosa inhibits the inflammatory response mediated by TLR-ligands and TNF-alpha in macrophages. PLoS ONE 2013, 8, e84107. [Google Scholar] [CrossRef]
  45. Chung, H.M.; Wang, W.-H.; Hwang, T.-L.; Wu, Y.-C.; Sung, P.-J. Natural clovanes from the gorgonian coral Rumphella antipathies. Nat. Prod. Commun. 2013, 8, 1037–1040. [Google Scholar] [CrossRef]
  46. Chung, H.M.; Wang, W.H.; Hwang, T.L.; Li, J.J.; Fang, L.S.; Wu, Y.C.; Sung, P.J. Rumphellaones B and C, new 4,5-seco-caryophyllane sesquiterpenoids from Rumphellan antipathies. Molecules 2014, 19, 12320–12327. [Google Scholar] [CrossRef]
  47. Chung, H.M.; Wang, W.-H.; Hwang, T.-L.; Chen, J.-J.; Fang, L.-S.; Wen, Z.-H.; Wang, Y.-B.; Wu, Y.-C.; Sung, P.-J. Rumphellols A and B, new caryophyllene sesquiterpenoids from a Formosan gorgonian coral, Rumphella antipathies. Int. J. Mol. Sci. 2014, 15, 15679–15688. [Google Scholar] [CrossRef] [PubMed]
  48. Lin, Y.Y.; Lin, S.-C.; Feng, C.-W.; Chen, P.-C.; Su, Y.-D.; Li, C.-M.; Yang, S.-N.; Jean, Y.-H.; Sung, P.-J.; Duh, C.-Y.; et al. Anti-Inflammatory and Analgesic Effects of the Marine-Derived Compound Excavatolide B Isolated from the Culture-Type Formosan Gorgonian Briareum excavatum. Mar. Drugs 2015, 13, 2559–2579. [Google Scholar] [CrossRef]
  49. Wei, W.C.; Lin, S.-Y.; Chen, Y.-J.; Wen, C.-C.; Huang, C.-Y.; Palanisamy, A.; Yang, N.-S.; Sheu, J.-H. Topical application of marine briarane-type diterpenes effectively inhibits 12-O-tetradecanoylphorbol-13-acetate-induced inflammation and dermatitis in murine skin. J. Biomed. Sci. 2011, 18, 94. [Google Scholar] [CrossRef] [PubMed]
  50. Hsu, Y.M.; Chang, F.R.; Lo, I.W.; Lai, K.H.; El-Shazly, M.; Wu, T.Y.; Du, Y.C.; Hwang, T.L.; Cheng, Y.B.; Wu, Y.C. Zoanthamine-Type Alkaloids from the Zoanthid Zoanthus kuroshio Collected in Taiwan and Their Effects on Inflammation. J. Nat. Prod. 2016, 79, 2674–2680. [Google Scholar] [CrossRef]
  51. Guillen, P.O.; Gegunde, S.; Jaramillo, K.B.; Alfonso, A.; Calabro, K.; Alonso, E.; Rodriguez, J.; Botana, L.M.; Thomas, O.P. Zoanthamine Alkaloids from the Zoantharian Zoanthus cf. pulchellus and Their Effects in Neuroinflammation. Mar. Drugs 2018, 16, 242. [Google Scholar] [CrossRef] [PubMed]
  52. Pereira, D.M.; Correia-da-Silva, G.; Valentão, P.; Teixeira, N.; Andrade, P.B. Anti-inflammatory effect of unsaturated fatty acids and Ergosta-7,22-dien-3-ol from Marthasterias glacialis: Prevention of CHOP-mediated ER-stress and NF-kappaB activation. PLoS ONE 2014, 9, e88341. [Google Scholar] [CrossRef]
  53. Thao, N.P.; Cuong, N.X.; Luyen, B.T.T.; Van Thanh, N.; Nhiem, N.X.; Koh, Y.-S.; Ly, B.M.; Nam, N.H.; Van Kiem, P.; Van Minh, C.; et al. Anti-inflammatory asterosaponins from the starfish Astropecten monacanthus. J. Nat. Prod. 2013, 76, 1764–1770. [Google Scholar] [CrossRef]
  54. Monmai, C.; Go, S.H.; Shin, I.S.; You, S.; Kim, D.O.; Kang, S.; Park, W.J. Anti-Inflammatory Effect of Asterias amurensis Fatty Acids through NF-kappaB and MAPK Pathways against LPS-Stimulated RAW264.7 Cells. J. Microbiol. Biotechnol. 2018, 28, 1635–1644. [Google Scholar] [CrossRef]
  55. Thao, N.P.; Luyen, B.T.T.; Koo, J.E.; Kim, S.; Koh, Y.S.; Cuong, N.X.; Nam, N.H.; Van Kiem, P.; Kim, Y.H.; Van Minh, C. Anti-inflammatory components of the Vietnamese starfish Protoreaster nodosus. Biol. Res. 2015, 48, 12. [Google Scholar] [CrossRef]
  56. Malyarenko, T.V.; Kicha, A.A.; Kalinovsky, A.I.; Ivanchina, N.V.; Popov, R.S.; Pislyagin, E.A.; Menchinskaya, E.S.; Padmakumar, K.P.; Stonik, V.A. Four New Steroidal Glycosides, Protolinckiosides A-D, from the Starfish Protoreaster lincki. Chem. Biodivers. 2016, 13, 998–1007. [Google Scholar] [CrossRef]
  57. Malyarenko, T.V.; Kharchenko, S.D.; Kicha, A.A.; Ivanchina, N.V.; Dmitrenok, P.S.; Chingizova, E.A.; Pislyagin, E.A.; Evtushenko, E.V.; Antokhina, T.I.; Minh, C.V.; et al. Anthenosides L-U, Steroidal Glycosides with Unusual Structural Features from the Starfish Anthenea aspera. J. Nat. Prod. 2016, 79, 3047–3056. [Google Scholar] [CrossRef] [PubMed]
  58. Kicha, A.A.; Kalinovsky, A.I.; Ivanchina, N.V.; Malyarenko, T.V.; Dmitrenok, P.S.; Kuzmich, A.S.; Sokolova, E.V.; Stonik, V.A. Furostane Series Asterosaponins and Other Unusual Steroid Oligoglycosides from the Tropical Starfish Pentaceraster regulus. J. Nat. Prod. 2017, 80, 2761–2770. [Google Scholar] [CrossRef]
  59. Vien, L.T.; Hanh, T.T.H.; Huong, P.T.T.; Dang, N.H.; Van Thanh, N.; Lyakhova, E.; Cuong, N.X.; Nam, N.H.; Van Kiem, P.; Kicha, A.; et al. Pyrrole Oligoglycosides from the Starfish Acanthaster planci Suppress Lipopolysaccharide-Induced Nitric Oxide Production in RAW264.7 Macrophages. Chem. Pharm. Bull. 2016, 64, 1654–1657. [Google Scholar] [CrossRef]
  60. Thao, N.P.; Dat, L.D.; Ngoc, N.T.; Tu, V.A.; Hanh, T.T.H.; Huong, P.T.T.; Nhiem, N.X.; Tai, B.H.; Cuong, N.X.; Nam, N.H.; et al. Pyrrole and furan oligoglycosides from the starfish Asterina batheri and their inhibitory effect on the production of pro-inflammatory cytokines in lipopolysaccharide-stimulated bone marrow-derived dendritic cells. Bioorg. Med. Chem. Lett. 2013, 23, 1823–1827. [Google Scholar] [CrossRef] [PubMed]
  61. Moura Rda, M.; Aragão, K.S.; de Melo, A.A.; Carneiro, R.F.; Osório, C.B.; Luz, P.B.; de Queiroz, A.F.; Dos Santos, E.A.; de Alencar, N.M.; Cavada, B.S. Holothuria grisea agglutinin (HGA): The first invertebrate lectin with anti-inflammatory effects. Fundam. Clin. Pharmacol. 2013, 27, 656–668. [Google Scholar] [CrossRef] [PubMed]
  62. Mou, J.; Li, Q.; Qi, X.; Yang, J. Structural comparison, antioxidant and anti-inflammatory properties of fucosylated chondroitin sulfate of three edible sea cucumbers. Carbohydr. Polym. 2018, 185, 41–47. [Google Scholar] [CrossRef]
  63. Olivera-Castillo, L.; Grant, G.; Kantún-Moreno, N.; Barrera-Pérez, H.A.; Montero, J.; Olvera-Novoa, M.A.; Carrillo-Cocom, L.M.; Acevedo, J.J.; Puerto-Castillo, C.; Solís, V.M.; et al. A Glycosaminoglycan-Rich Fraction from Sea Cucumber Isostichopus badionotus Has Potent Anti-Inflammatory Properties In Vitro and In Vivo. Nutrients 2020, 12, 1698. [Google Scholar] [CrossRef] [PubMed]
  64. Wang, J.; Hu, S.; Jiang, W.; Song, W.; Cai, L.; Wang, J. Fucoidan from sea cucumber may improve hepatic inflammatory response and insulin resistance in mice. Int. Immunopharmacol. 2016, 31, 15–23. [Google Scholar] [CrossRef] [PubMed]
  65. Zhu, Q.; Lin, L.; Zhao, M. Sulfated fucan/fucosylated chondroitin sulfate-dominated polysaccharide fraction from low-edible-value sea cucumber ameliorates type 2 diabetes in rats: New prospects for sea cucumber polysaccharide based-hypoglycemic functional food. Int. J. Biol. Macromol. 2020, 159, 34–45. [Google Scholar] [CrossRef]
  66. El Barky, A.R.; Hussein, S.A.; Alm-Eldeen, A.A.; Hafez, Y.A.; Mohamed, T.M. Anti-diabetic activity of Holothuria thomasi saponin. Biomed. Pharmacother. 2016, 84, 1472–1487. [Google Scholar] [CrossRef]
  67. Chen, C.; Han, X.; Dong, P.; Li, Z.; Yanagita, T.; Xue, C.; Zhang, T.; Wang, Y. Sea cucumber saponin liposomes ameliorate obesity-induced inflammation and insulin resistance in high-fat-diet-fed mice. Food Funct. 2018, 9, 861–870. [Google Scholar] [CrossRef] [PubMed]
  68. Wan, H.; Han, J.; Tang, S.; Bao, W.; Lu, C.; Zhou, J.; Ming, T.; Li, Y.; Su, X. Comparisons of protective effects between two sea cucumber hydrolysates against diet induced hyperuricemia and renal inflammation in mice. Food Funct. 2020, 11, 1074–1086. [Google Scholar] [CrossRef]
  69. Tian, Y.; Liu, Y.; Xue, C.; Wang, J.; Wang, Y.; Xu, J.; Li, Z. The exogenous natural phospholipids, EPA-PC and EPA-PE, contribute to ameliorate inflammation and promote macrophage polarization. Food Funct. 2020, 11, 6542–6551. [Google Scholar] [CrossRef]
  70. Subramanya, S.B.; Chandran, S.; Almarzooqi, S.; Raj, V.; Al Zahmi, A.S.; Al Katheeri, R.A.; Al Zadjali, S.A.; Collin, P.D.; Adrian, T.E. Frondanol, a Nutraceutical Extract from Cucumaria frondosa, Attenuates Colonic Inflammation in a DSS-Induced Colitis Model in Mice. Mar. Drugs 2018, 16, 148. [Google Scholar] [CrossRef]
  71. Hu, S.; Wang, J.; Wang, J.; Xue, C.; Wang, Y. Long-chain bases from sea cucumber mitigate endoplasmic reticulum stress and inflammation in obesity mice. J. Food Drug Anal. 2017, 25, 628–636. [Google Scholar] [CrossRef] [PubMed]
  72. Janakiram, N.B.; Mohammed, A.; Bryant, T.; Lightfoot, S.; Collin, P.D.; Steele, V.E.; Rao, C.V. Improved innate immune responses by Frondanol A5, a sea cucumber extract, prevent intestinal tumorigenesis. Cancer Prev. Res. 2015, 8, 327–337. [Google Scholar] [CrossRef] [PubMed]
  73. Park, G.T.; Yoon, J.-W.; Yoo, S.-B.; Song, Y.-C.; Song, P.; Kim, H.-K.; Han, J.; Bae, S.-J.; Ha, K.-T.; Mishchenko, N.P.; et al. Echinochrome A Treatment Alleviates Fibrosis and Inflammation in Bleomycin-Induced Scleroderma. Mar. Drugs 2021, 19, 237. [Google Scholar] [CrossRef]
  74. Oh, S.J.; Seo, Y.; Ahn, J.-S.; Shin, Y.Y.; Yang, J.W.; Kim, H.K.; Han, J.; Mishchenko, N.P.; Fedoreyev, S.A.; Stonik, V.A.; et al. Echinochrome A Reduces Colitis in Mice and Induces In Vitro Generation of Regulatory Immune Cells. Mar. Drugs 2019, 17, 622. [Google Scholar] [CrossRef] [PubMed]
  75. Lennikov, A.; Kitaichi, N.; Noda, K.; Mizuuchi, K.; Ando, R.; Dong, Z.; Fukuhara, J.; Kinoshita, S.; Namba, K.; Ohno, S.; et al. Amelioration of endotoxin-induced uveitis treated with the sea urchin pigment echinochrome in rats. Mol. Vis. 2014, 20, 171–177. [Google Scholar]
  76. Sadek, S.A.; Hassanein, S.S.; Mohamed, A.S.; Soliman, A.M.; Fahmy, S.R. Echinochrome pigment extracted from sea urchin suppress the bacterial activity, inflammation, nociception, and oxidative stress resulted in the inhibition of renal injury in septic rats. J. Food Biochem. 2022, 46, e13729. [Google Scholar] [CrossRef] [PubMed]
  77. Hou, Y.; Carne, A.; McConnell, M.; Bekhit, A.A.; Mros, S.; Amagase, K.; Bekhit, A.E.-D.A. In vitro antioxidant and antimicrobial activities, and in vivo anti-inflammatory activity of crude and fractionated PHNQs from sea urchin (Evechinus chloroticus). Food Chem. 2020, 316, 126339. [Google Scholar] [CrossRef]
  78. Brasseur, L.; Hennebert, E.; Fievez, L.; Caulier, G.; Bureau, F.; Tafforeau, L.; Flammang, P.; Gerbaux, P.; Eeckhaut, I. The Roles of Spinochromes in Four Shallow Water Tropical Sea Urchins and Their Potential as Bioactive Pharmacological Agents. Mar. Drugs 2017, 15, 179. [Google Scholar] [CrossRef]
  79. Han, R.; Blencke, H.-M.; Cheng, H.; Li, C. The antimicrobial effect of CEN1HC-Br against Propionibacterium acnes and its therapeutic and anti-inflammatory effects on acne vulgaris. Peptides 2018, 99, 36–43. [Google Scholar] [CrossRef]
  80. Björn, C.; Håkansson, J.; Myhrman, E.; Sjöstrand, V.; Haug, T.; Lindgren, K.; Blencke, H.-M.; Stensvåg, K.; Mahlapuu, M. Anti-infectious and anti-inflammatory effects of peptide fragments sequentially derived from the antimicrobial peptide centrocin 1 isolated from the green sea urchin, Strongylocentrotus droebachiensis. AMB Express 2012, 2, 67. [Google Scholar] [CrossRef]
  81. Francis, P.; Chakraborty, K. An anti-inflammatory salmachroman from the sea urchin Salmacis bicolor: A prospective duel inhibitor of cyclooxygenase-2 and 5-lipoxygenase. Nat. Prod. Res. 2021, 35, 5102–5111. [Google Scholar] [CrossRef] [PubMed]
  82. Francis, P.; Chakraborty, K. Anti-inflammatory polyoxygenated furanocembranoids, salmacembranes A–B from the sea urchin Salmacis bicolor attenuate pro-inflammatory cyclooxygenases and lipoxygenase. Med. Chem. Res. 2020, 29, 2066–2076. [Google Scholar] [CrossRef]
  83. Francis, P.; Chakraborty, K. Antioxidant and anti-inflammatory cembrane-type diterpenoid from Echinoidea sea urchin Stomopneustes variolaris attenuates pro-inflammatory 5-lipoxygenase. Med. Chem. Res. 2020, 29, 656–664. [Google Scholar] [CrossRef]
  84. Chakraborty, K.; Francis, P. Stomopneulactone D from long-spined sea urchin Stomopneustes variolaris: Anti-inflammatory macrocylic lactone attenuates cyclooxygenase-2 expression in lipopolysaccharide-activated macrophages. Bioorg. Chem. 2020, 103, 104140. [Google Scholar] [CrossRef]
  85. Lee, D.S.; Cui, X.; Ko, W.; Kim, K.S.; Kim, I.C.; Yim, J.H.; An, R.B.; Kim, Y.C.; Oh, H. A new sulfonic acid derivative, (Z)-4-methylundeca-1,9-diene-6-sulfonic acid, isolated from the cold water sea urchin inhibits inflammatory responses through JNK/p38 MAPK and NF-kappaB inactivation in RAW 264.7. Arch. Pharm. Res. 2014, 37, 983–991. [Google Scholar] [CrossRef] [PubMed]
  86. Shih, J.H.; Tsai, Y.F.; Li, I.H.; Chen, M.H.; Huang, Y.S. Hp-s1 Ganglioside Suppresses Proinflammatory Responses by Inhibiting MyD88-Dependent NF-kappaB and JNK/p38 MAPK Pathways in Lipopolysaccharide-Stimulated Microglial Cells. Mar. Drugs 2020, 18, 496. [Google Scholar] [CrossRef] [PubMed]
  87. Pearce, A.N.; Chia, E.W.; Berridge, M.V.; Maas, E.W.; Page, M.J.; Harper, J.L.; Webb, V.L.; Copp, B.R. Orthidines A–E, tubastrine, 3,4-dimethoxyphenethyl-β-guanidine, and 1,14-sperminedihomovanillamide: Potential anti-inflammatory alkaloids isolated from the New Zealand ascidian Aplidium orthium that act as inhibitors of neutrophil respiratory burst. Tetrahedron 2008, 64, 5748–5755. [Google Scholar] [CrossRef]
  88. Pearce, A.N.; Chia, E.W.; Berridge, M.V.; Clark, G.R.; Harper, J.L.; Larsen, L.; Maas, E.W.; Page, M.J.; Perry, N.B.; Webb, V.L.; et al. Anti-inflammatory thiazine alkaloids isolated from the New Zealand ascidian Aplidium sp.: Inhibitors of the neutrophil respiratory burst in a model of gouty arthritis. J. Nat. Prod. 2007, 70, 936–940. [Google Scholar] [CrossRef]
  89. Appleton, D.R.; Page, M.J.; Lambert, G.; Berridge, M.V.; Copp, B.R. Kottamides A-D: Novel bioactive imidazolone-containing alkaloids from the New Zealand ascidian Pycnoclavella kottae. J. Org. Chem. 2002, 67, 5402–5404. [Google Scholar] [CrossRef]
  90. Makkar, F.; Chakraborty, K. Previously undescribed antioxidative azocinyl morpholinone alkaloid from red seaweed Gracilaria opuntia with anti-cyclooxygenase and lipoxygenase properties. Nat. Prod. Res. 2018, 32, 1150–1160. [Google Scholar] [CrossRef]
  91. Okai, Y.; Higashi-Okai, K. Potent anti-inflammatory activity of pheophytin a derived from edible green alga, Enteromorpha prolifera (Sujiao-nori). Int. J. Immunopharmacol. 1997, 19, 355–358. [Google Scholar] [CrossRef] [PubMed]
  92. Awad, N.E. Biologically active steroid from the green alga Ulva lactuca. Phytother. Res. 2000, 14, 641–643. [Google Scholar] [CrossRef] [PubMed]
  93. de Souza, E.T.; de Lira, D.P.; de Queiroz, A.C.; Silva, D.J.C.D.; de Aquino, A.B.; Campessato Mella, E.A.; Lorenzo, V.P.; De Miranda, G.E.C.; de Araujo-Junior, J.X.; de Oliveira Chaves, M.C.; et al. The antinociceptive and anti-inflammatory activities of caulerpin, a bisindole alkaloid isolated from seaweeds of the genus Caulerpa. Mar. Drugs 2009, 7, 689–704. [Google Scholar] [CrossRef] [PubMed]
  94. Ribeiro, N.A.; Abreu, T.M.; Chaves, H.V.; Bezerra, M.M.; Monteiro, H.S.A.; Jorge, R.J.B.; Benevides, N.M.B. Sulfated polysaccharides isolated from the green seaweed Caulerpa racemosa plays antinociceptive and anti-inflammatory activities in a way dependent on HO-1 pathway activation. Inflamm. Res. 2014, 63, 569–580. [Google Scholar] [CrossRef]
  95. Carneiro, J.G.; Rodrigues, J.A.G.; Vanderlei, E.d.S.O.; Souza, R.B.; Quinderé, A.L.G.; Coura, C.O.; de Araújo, I.W.F.; Chaves, H.V.; Bezerra, M.M.; Benevides, N.M.B. Peripheral antinociception and anti-inflammatory effects of sulphated polysaccharides from the alga Caulerpa mexicana. Basic Clin. Pharmacol. Toxicol. 2014, 115, 335–342. [Google Scholar] [CrossRef]
  96. da Conceicao Rivanor, R.L.; Chaves, H.V.; Val, D.R.D.; de Freitas, A.R.; Lemos, J.C.; Rodrigues, J.A.G.; Pereira, K.M.A.; de Araújo, I.W.F.; Bezerra, M.M.; Benevides, N.M.B. A lectin from the green seaweed Caulerpa cupressoides reduces mechanical hyper-nociception and inflammation in the rat temporomandibular joint during zymosan-induced arthritis. Int. Immunopharmacol. 2014, 21, 34–43. [Google Scholar] [CrossRef] [PubMed]
  97. Lee, J.-B.; Koizumi, S.; Hayashi, K.; Hayashi, T. Structure of rhamnan sulfate from the green alga Monostroma nitidum and its anti-herpetic effect. Carbohydr. Polym. 2010, 81, 572–577. [Google Scholar] [CrossRef]
  98. Khan, M.N.; Cho, J.-Y.; Lee, M.-C.; Kang, J.-Y.; Park, N.G.; Fujii, H.; Hong, Y.-K. Isolation of two anti-inflammatory and one pro-inflammatory polyunsaturated fatty acids from the brown seaweed Undaria pinnatifida. J. Agric. Food Chem. 2007, 55, 6984–6988. [Google Scholar] [CrossRef]
  99. Yang, H.S.; Haj, F.G.; Lee, M.; Kang, I.; Zhang, G.; Lee, Y. Laminaria japonica Extract Enhances Intestinal Barrier Function by Altering Inflammatory Response and Tight Junction-Related Protein in Lipopolysaccharide-Stimulated Caco-2 Cells. Nutrients 2019, 11, 1001. [Google Scholar] [CrossRef] [PubMed]
  100. Jeong, J.-W.; Hwang, S.J.; Han, M.H.; Lee, D.-S.; Yoo, J.S.; Choi, I.-W.; Cha, H.-J.; Kim, S.; Kim, H.-S.; Kim, G.-Y.; et al. Fucoidan inhibits lipopolysaccharide-induced inflammatory responses in RAW 264.7 macrophages and zebrafish larvae. Mol. Cell. Toxicol. 2017, 13, 405–417. [Google Scholar] [CrossRef]
  101. Kita, M.; Ohishi, N.; Washida, K.; Kondo, M.; Koyama, T.; Yamada, K.; Uemura, D. Symbioimine and neosymbioimine, amphoteric iminium metabolites from the symbiotic marine dinoflagellate Symbiodinium sp. Bioorg. Med. Chem. 2005, 13, 5253–5258. [Google Scholar] [CrossRef] [PubMed]
  102. de Los Reyes, C.; Ortega, M.J.; Rodríguez-Luna, A.; Talero, E.; Motilva, V.; Zubía, E. Molecular Characterization and Anti-inflammatory Activity of Galactosylglycerides and Galactosylceramides from the Microalga Isochrysis galbana. J. Agric. Food Chem. 2016, 64, 8783–8794. [Google Scholar] [CrossRef]
  103. Sibi, G.; Rabina, S. Inhibition of Pro-inflammatory Mediators and Cytokines by Chlorella Vulgaris Extracts. Pharmacogn. Res. 2016, 8, 118–122. [Google Scholar] [CrossRef]
  104. Bergé, J.P.; Debiton, E.; Dumay, J.; Durand, P.; Barthomeuf, C. In vitro anti-inflammatory and anti-proliferative activity of sulfolipids from the red alga Porphyridium cruentum. J. Agric. Food Chem. 2002, 50, 6227–6232. [Google Scholar] [CrossRef]
  105. Liberti, D.; Imbimbo, P.; Giustino, E.; D’elia, L.; Silva, M.; Barreira, L.; Monti, D.M. Shedding Light on the Hidden Benefit of Porphyridium cruentum Culture. Antioxidants 2023, 12, 337. [Google Scholar] [CrossRef] [PubMed]
  106. Shiels, K.; Tsoupras, A.; Lordan, R.; Zabetakis, I.; Murray, P.; Saha, S.K. Anti-inflammatory and antithrombotic properties of polar lipid extracts, rich in unsaturated fatty acids, from the Irish marine cyanobacterium Spirulina subsalsa. J. Funct. Foods 2022, 94, 105124. [Google Scholar] [CrossRef]
  107. Villa, F.A.; Lieske, K.; Gerwick, L. Selective MyD88-dependent pathway inhibition by the cyanobacterial natural product malyngamide F acetate. Eur. J. Pharmacol. 2010, 629, 140–146. [Google Scholar] [CrossRef]
  108. Gunasekera, S.P.; Kokkaliari, S.; Ratnayake, R.; Sauvage, T.; Dos Santos, L.A.; Luesch, H.; Paul, V.J. Anti-Inflammatory Dysidazirine Carboxylic Acid from the Marine Cyanobacterium Caldora sp. Collected from the Reefs of Fort Lauderdale, Florida. Molecules 2022, 27, 1717. [Google Scholar] [CrossRef]
  109. Dou, H.; Song, Y.; Liu, X.; Gong, W.; Li, E.; Tan, R.; Hou, Y. Chaetoglobosin Fex from the marine-derived endophytic fungus inhibits induction of inflammatory mediators via Toll-like receptor 4 signaling in macrophages. Biol. Pharm. Bull. 2011, 34, 1864–1873. [Google Scholar] [CrossRef] [PubMed]
  110. Qin, C.; Lin, X.; Lu, X.; Wan, J.; Zhou, X.; Liao, S.; Tu, Z.; Xu, S.; Liu, Y. Sesquiterpenoids and xanthones derivatives produced by sponge-derived fungus Stachybotry sp. HH1 ZSDS1F1-2. J. Antibiot. 2015, 68, 121–125. [Google Scholar] [CrossRef] [PubMed]
  111. Kwon, J.; Lee, H.; Ko, W.; Kim, D.-C.; Kim, K.-W.; Kwon, H.C.; Guo, Y.; Sohn, J.H.; Yim, J.H.; Kim, Y.-C.; et al. Chemical constituents isolated from Antarctic marine-derived Aspergillus sp. SF-5976 and their anti-inflammatory effects in LPS-stimulated RAW 264.7 and BV2 cells. Tetrahedron 2017, 73, 3905–3912. [Google Scholar] [CrossRef]
  112. Kim, D.C.; Cho, K.H.; Ko, W.; Yoon, C.S.; Sohn, J.H.; Yim, J.H.; Kim, Y.C.; Oh, H. Anti-Inflammatory and Cytoprotective Effects of TMC-256C1 from Marine-Derived Fungus Aspergillus sp. SF-6354 via up-Regulation of Heme Oxygenase-1 in Murine Hippocampal and Microglial Cell Lines. Int. J. Mol. Sci. 2016, 17, 529. [Google Scholar] [CrossRef]
  113. Tian, Y.; Qin, X.; Lin, X.; Kaliyaperumal, K.; Zhou, X.; Liu, J.; Ju, Z.; Tu, Z.; Liu, Y. Sydoxanthone C and acremolin B produced by deep-sea-derived fungus Aspergillus sp. SCSIO Ind09F01. J. Antibiot. 2015, 68, 703–706. [Google Scholar] [CrossRef] [PubMed]
  114. Kim, D.C.; Quang, T.H.; Ngan, N.T.T.; Yoon, C.S.; Sohn, J.H.; Yim, J.H.; Feng, Y.; Che, Y.; Kim, Y.C.; Oh, H. Dihydroisocoumarin Derivatives from Marine-Derived Fungal Isolates and Their Anti-inflammatory Effects in Lipopolysaccharide-Induced BV2 Microglia. J. Nat. Prod. 2015, 78, 2948–2955. [Google Scholar] [CrossRef]
  115. Lee, D.S.; Jeong, G.-S.; Li, B.; Lee, S.U.; Oh, H.; Kim, Y.-C. Asperlin from the marine-derived fungus Aspergillus sp. SF-5044 exerts anti-inflammatory effects through heme oxygenase-1 expression in murine macrophages. J. Pharmacol. Sci. 2011, 116, 283–295. [Google Scholar] [CrossRef]
  116. Yoon, C.S.; Kim, D.C.; Lee, D.S.; Kim, K.S.; Ko, W.; Sohn, J.H.; Yim, J.H.; Kim, Y.C.; Oh, H. Anti-neuroinflammatory effect of aurantiamide acetate from the marine fungus Aspergillus sp. SF-5921: Inhibition of NF-kappaB and MAPK pathways in lipopolysaccharide-induced mouse BV2 microglial cells. Int. Immunopharmacol. 2014, 23, 568–574. [Google Scholar] [CrossRef]
  117. Du, X.; Liu, D.; Huang, J.; Zhang, C.; Proksch, P.; Lin, W. Polyketide derivatives from the sponge associated fungus Aspergillus europaeus with antioxidant and NO inhibitory activities. Fitoterapia 2018, 130, 190–197. [Google Scholar] [CrossRef]
  118. Wang, Y.; Qi, S.; Zhan, Y.; Zhang, N.; Wu, A.A.; Gui, F.; Guo, K.; Yang, Y.; Cao, S.; Hu, Z.; et al. Aspertetranones A-D, Putative Meroterpenoids from the Marine Algal-Associated Fungus Aspergillus sp. ZL0-1b14. J. Nat. Prod. 2015, 78, 2405–2410. [Google Scholar] [CrossRef] [PubMed]
  119. Liu, S.; Wang, H.; Su, M.; Hwang, G.J.; Hong, J.; Jung, J.H. New metabolites from the sponge-derived fungus Aspergillus sydowii J05B-7F-4. Nat. Prod. Res. 2017, 31, 1682–1686. [Google Scholar] [CrossRef]
  120. Fang, W.; Lin, X.; Wang, J.; Liu, Y.; Tao, H.; Zhou, X. Asperpyrone-Type Bis-Naphtho-gamma-Pyrones with COX-2-Inhibitory Activities from Marine-Derived Fungus Aspergillus niger. Molecules 2016, 21, 941. [Google Scholar] [CrossRef] [PubMed]
  121. Gu, B.B.; Jiao, F.R.; Wu, W.; Jiao, W.H.; Li, L.; Sun, F.; Wang, S.P.; Yang, F.; Lin, H.W. Preussins with Inhibition of IL-6 Expression from Aspergillus flocculosus 16D-1, a Fungus Isolated from the Marine Sponge Phakellia fusca. J. Nat. Prod. 2018, 81, 2275–2281. [Google Scholar] [CrossRef] [PubMed]
  122. Li, H.; Sun, W.; Deng, M.; Zhou, Q.; Wang, J.; Liu, J.; Chen, C.; Qi, C.; Luo, Z.; Xue, Y.; et al. Asperversiamides, Linearly Fused Prenylated Indole Alkaloids from the Marine-Derived Fungus Aspergillus versicolor. J. Org. Chem. 2018, 83, 8483–8492. [Google Scholar] [CrossRef]
  123. Liu, M.; Sun, W.; Wang, J.; He, Y.; Zhang, J.; Li, F.; Qi, C.; Zhu, H.; Xue, Y.; Hu, Z.; et al. Bioactive secondary metabolites from the marine-associated fungus Aspergillus terreus. Bioorg. Chem. 2018, 80, 525–530. [Google Scholar] [CrossRef] [PubMed]
  124. Wu, Z.; Li, D.; Zeng, F.; Tong, Q.; Zheng, Y.; Liu, J.; Zhou, Q.; Li, X.-N.; Chen, C.; Lai, Y.; et al. Brasilane sesquiterpenoids and dihydrobenzofuran derivatives from Aspergillus terreus [CFCC 81836]. Phytochemistry 2018, 156, 159–166. [Google Scholar] [CrossRef]
  125. Wang, L.; Li, M.; Tang, J.; Li, X. Eremophilane Sesquiterpenes from a Deep Marine-Derived Fungus, Aspergillus sp. SCSIOW2, Cultivated in the Presence of Epigenetic Modifying Agents. Molecules 2016, 21, 473. [Google Scholar] [CrossRef]
  126. Kim, K.S.; Cui, X.; Lee, D.S.; Sohn, J.H.; Yim, J.H.; Kim, Y.C.; Oh, H. Anti-inflammatory effect of neoechinulin a from the marine fungus Eurotium sp. SF-5989 through the suppression of NF-small ka, CyrillicB and p38 MAPK Pathways in lipopolysaccharide-stimulated RAW264.7 macrophages. Molecules 2013, 18, 13245–13259. [Google Scholar] [CrossRef] [PubMed]
  127. Kim, K.S.; Cui, X.; Lee, D.-S.; Ko, W.; Sohn, J.H.; Yim, J.H.; An, R.-B.; Kim, Y.-C.; Oh, H. Inhibitory effects of benzaldehyde derivatives from the marine fungus Eurotium sp. SF-5989 on inflammatory mediators via the induction of heme oxygenase-1 in lipopolysaccharide-stimulated RAW264.7 macrophages. Int. J. Mol. Sci. 2014, 15, 23749–23765. [Google Scholar] [CrossRef]
  128. Yang, X.; Kang, M.-C.; Li, Y.; Kim, E.-A.; Kang, S.-M.; Jeon, Y.-J. Asperflavin, an Anti-Inflammatory Compound Produced by a Marine-Derived Fungus, Eurotium amstelodami. Molecules 2017, 22, 1823. [Google Scholar] [CrossRef] [PubMed]
  129. Yang, X.; Kang, M.-C.; Li, Y.; Kim, E.-A.; Kang, S.-M.; Jeon, Y.-J. Anti-inflammatory activity of questinol isolated from marine-derived fungus Eurotium amstelodami in lipopolysaccharide-stimulated RAW 264.7 macrophages. J. Microbiol. Biotechnol. 2014, 24, 1346–1353. [Google Scholar] [CrossRef]
  130. Ha, T.M.; Ko, W.; Lee, S.J.; Kim, Y.C.; Son, J.Y.; Sohn, J.H.; Yim, J.H.; Oh, H. Anti-Inflammatory Effects of Curvularin-Type Metabolites from a Marine-Derived Fungal Strain Penicillium sp. SF-5859 in Lipopolysaccharide-Induced RAW264.7 Macrophages. Mar. Drugs 2017, 15, 282. [Google Scholar] [CrossRef] [PubMed]
  131. Niu, S.; Xie, C.L.; Xia, J.M.; Luo, Z.H.; Shao, Z.; Yang, X.W. New anti-inflammatory guaianes from the Atlantic hydrotherm-derived fungus Graphostroma sp. MCCC 3A00421. Sci. Rep. 2018, 8, 530. [Google Scholar] [CrossRef]
  132. Niu, S.; Xie, C.-L.; Zhong, T.; Xu, W.; Luo, Z.-H.; Shao, Z.; Yang, X.-W. Sesquiterpenes from a deep-sea-derived fungus Graphostroma sp. MCCC 3A00421. Tetrahedron 2017, 73, 7267–7273. [Google Scholar] [CrossRef]
  133. Chen, S.; Wang, J.; Lin, X.; Zhao, B.; Wei, X.; Li, G.; Kaliaperumal, K.; Liao, S.; Yang, B.; Zhou, X.; et al. Chrysamides A-C, Three Dimeric Nitrophenyl trans-Epoxyamides Produced by the Deep-Sea-Derived Fungus Penicillium chrysogenum SCSIO41001. Org. Lett. 2016, 18, 3650–3653. [Google Scholar] [CrossRef]
  134. Ko, W.; Sohn, J.H.; Kim, Y.C.; Oh, H. Viridicatol from Marine-derived Fungal Strain Penicillium sp. SF-5295 Exerts Anti-inflammatory Effects through Inhibiting NF-κB Signaling Pathway on Lipopolysaccharide-induced RAW264.7 and BV2 Cells. Nat. Product. Sci. 2015, 21, 240–247. [Google Scholar] [CrossRef]
  135. Du, L.; Yang, X.; Zhu, T.; Wang, F.; Xiao, X.; Park, H.; Gu, Q. Diketopiperazine alkaloids from a deep ocean sediment derived fungus Penicillium sp. Chem. Pharm. Bull. 2009, 57, 873–876. [Google Scholar] [CrossRef]
  136. Kim, D.C.; Lee, H.S.; Ko, W.; Lee, D.S.; Sohn, J.H.; Yim, J.H.; Kim, Y.C.; Oh, H. Anti-inflammatory effect of methylpenicinoline from a marine isolate of Penicillium sp. (SF-5995): Inhibition of NF-kappaB and MAPK pathways in lipopolysaccharide-induced RAW264.7 macrophages and BV2 microglia. Molecules 2014, 19, 18073–18089. [Google Scholar] [CrossRef]
  137. Park, J.S.; Quang, T.H.; Yoon, C.-S.; Kim, H.J.; Sohn, J.H.; Oh, H. Furanoaustinol and 7-acetoxydehydroaustinol: New meroterpenoids from a marine-derived fungal strain Penicillium sp. SF-5497. J. Antibiot. 2018, 71, 557–563. [Google Scholar] [CrossRef] [PubMed]
  138. Quang, T.H.; Ngan, N.T.T.; Ko, W.; Kim, D.-C.; Yoon, C.-S.; Sohn, J.H.; Yim, J.H.; Kim, Y.-C.; Oh, H. Tanzawaic acid derivatives from a marine isolate of Penicillium sp. (SF-6013) with anti-inflammatory and PTP1B inhibitory activities. Bioorg. Med. Chem. Lett. 2014, 24, 5787–5791. [Google Scholar] [CrossRef] [PubMed]
  139. Ngan, N.T.; Quang, T.H.; Kim, K.-W.; Kim, H.J.; Sohn, J.H.; Kang, D.G.; Lee, H.S.; Kim, Y.-C.; Oh, H. Anti-inflammatory effects of secondary metabolites isolated from the marine-derived fungal strain Penicillium sp. SF-5629. Arch. Pharm. Res. 2017, 40, 328–337. [Google Scholar] [CrossRef]
  140. Lee, D.S.; Ko, W.; Quang, T.H.; Kim, K.-S.; Sohn, J.H.; Jang, J.-H.; Ahn, J.S.; Kim, Y.-C.; Oh, H. Penicillinolide A: A new anti-inflammatory metabolite from the marine fungus Penicillium sp. SF-5292. Mar. Drugs 2013, 11, 4510–4526. [Google Scholar] [CrossRef]
  141. Li, J.L.; Zhang, P.; Lee, Y.M.; Hong, J.; Yoo, E.S.; Bae, K.S.; Jung, J.H. Oxygenated hexylitaconates from a marine sponge-derived fungus Penicillium sp. Chem. Pharm. Bull. 2011, 59, 120–123. [Google Scholar] [CrossRef]
  142. Ozkaya, F.C.; Ebrahim, W.; Klopotowski, M.; Liu, Z.; Janiak, C.; Proksch, P. Isolation and X-ray structure analysis of citreohybridonol from marine-derived Penicillium atrovenetum. Nat. Prod. Res. 2018, 32, 840–843. [Google Scholar] [CrossRef]
  143. Shin, H.J.; Pil, G.B.; Heo, S.-J.; Lee, H.-S.; Lee, J.S.; Lee, Y.-J.; Lee, J.; Won, H.S. Anti-Inflammatory Activity of Tanzawaic Acid Derivatives from a Marine-Derived Fungus Penicillium steckii 108YD142. Mar. Drugs 2016, 14, 14. [Google Scholar] [CrossRef]
  144. Toledo, T.R.; Dejani, N.N.; Monnazzi, L.G.S.; Kossuga, M.H.; Berlinck, R.G.; Sette, L.D.; Medeiros, A.I. Potent anti-inflammatory activity of pyrenocine A isolated from the marine-derived fungus Penicillium paxilli Ma(G)K. Mediat. Inflamm. 2014, 2014, 767061. [Google Scholar] [CrossRef] [PubMed]
  145. Afiyatullov, S.S.; Leshchenko, E.V.; Sobolevskaya, M.P.; Antonov, A.S.; Denisenko, V.A.; Popov, R.S.; Khudyakova, Y.V.; Kirichuk, N.N.; Kuz’mich, A.S.; Pislyagin, E.A.; et al. New Thomimarine E from Marine Isolate of the Fungus Penicillium thomii. Chem. Nat. Compd. 2017, 53, 290–294. [Google Scholar] [CrossRef]
  146. Li, L.; Zhang, Y.; Li, Z.; Yu, Z.; Sun, T. Stereochemical Investigation of a Novel Biological Active Substance from the Secondary Metabolites of Marine Fungus Penicillium chrysogenum SYP-F-2720. J. Mex. Chem. Soc. 2017, 59, 53–58. [Google Scholar]
  147. Zhu, H.; Hua, X.-X.; Gong, T.; Pang, J.; Hou, Q.; Zhu, P. Hypocreaterpenes A and B, cadinane-type sesquiterpenes from a marine-derived fungus, Hypocreales sp. Phytochem. Lett. 2013, 6, 392–396. [Google Scholar] [CrossRef]
  148. Renner, M.K.; Jensen, P.R.; Fenical, W. Mangicols: Structures and biosynthesis of A new class of sesterterpene polyols from a marine fungus of the genus Fusarium. J. Org. Chem. 2000, 65, 4843–4852. [Google Scholar] [CrossRef] [PubMed]
  149. Hsiao, G.; Chi, W.C.; Pang, K.L.; Chen, J.J.; Kuo, Y.H.; Wang, Y.K.; Cha, H.J.; Chou, S.C.; Lee, T.H. Hirsutane-Type Sesquiterpenes with Inhibitory Activity of Microglial Nitric Oxide Production from the Red Alga-Derived Fungus Chondrostereum sp. NTOU4196. J. Nat. Prod. 2017, 80, 1615–1622. [Google Scholar] [CrossRef]
  150. Chen, C.J.; Zhou, Y.Q.; Liu, X.X.; Zhang, W.J.; Hu, S.S.; Lin, L.P.; Huo, G.M.; Jiao, R.H.; Tan, R.X.; Ge, H.M. Antimicrobial and anti-inflammatory compounds from a marine fungus Pleosporales sp. Tetrahedron Lett. 2015, 56, 6183–6189. [Google Scholar] [CrossRef]
  151. Lee, M.S.; Wang, S.W.; Wang, G.J.; Pang, K.L.; Lee, C.K.; Kuo, Y.H.; Cha, H.J.; Lin, R.K.; Lee, T.H. Angiogenesis Inhibitors and Anti-Inflammatory Agents from Phoma sp. NTOU4195. J. Nat. Prod. 2016, 79, 2983–2990. [Google Scholar] [CrossRef] [PubMed]
  152. Zhang, P.; Li, Y.; Jia, C.; Lang, J.; Niaz, S.I.; Li, J.; Yuan, J.; Yu, J.; Chen, S.; Liu, L. Antiviral and anti-inflammatory meroterpenoids: Stachybonoids A–F from the crinoid-derived fungus Stachybotrys chartarum 952. RSC Adv. 2017, 7, 49910–49916. [Google Scholar] [CrossRef]
  153. Zhang, P.; Jia, C.; Lang, J.; Li, J.; Luo, G.; Chen, S.; Yan, S.; Liu, L. Mono- and Dimeric Naphthalenones from the Marine-Derived Fungus Leptosphaerulina chartarum 3608. Mar. Drugs 2018, 16, 173. [Google Scholar] [CrossRef]
  154. Wang, J.F.; Qin, X.; Xu, F.Q.; Zhang, T.; Liao, S.; Lin, X.; Yang, B.; Liu, J.; Wang, L.; Tu, Z.; et al. Tetramic acid derivatives and polyphenols from sponge-derived fungus and their biological evaluation. Nat. Prod. Res. 2015, 29, 1761–1765. [Google Scholar] [CrossRef]
  155. Chen, Q.; Chen, T.; Li, W.; Zhang, W.; Zhu, J.; Li, Y.; Huang, Y.; Shen, Y.; Yu, C. Mycoepoxydiene inhibits lipopolysaccharide-induced inflammatory responses through the suppression of TRAF6 polyubiquitination [corrected]. PLoS ONE 2012, 7, e44890. [Google Scholar]
  156. Liu, J.; Gu, B.; Yang, L.; Yang, F.; Lin, H. New Anti-inflammatory Cyclopeptides from a Sponge-Derived Fungus Aspergillus violaceofuscus. Front. Chem. 2018, 6, 226. [Google Scholar] [CrossRef]
  157. Belofsky, G.N.; Anguera, M.; Jensen, P.R.; Fenical, W.; Köck, M. Oxepinamides A-C and fumiquinazolines H--I: Bioactive metabolites from a marine isolate of a fungus of the genus Acremonium. Chem. Eur. J. 2000, 6, 1355–1360. [Google Scholar] [CrossRef]
  158. Ko, W.; Sohn, J.H.; Jang, J.H.; Ahn, J.S.; Kang, D.G.; Lee, H.S.; Kim, J.S.; Kim, Y.C.; Oh, H. Inhibitory effects of alternaramide on inflammatory mediator expression through TLR4-MyD88-mediated inhibition of NF-small ka, CyrillicB and MAPK pathway signaling in lipopolysaccharide-stimulated RAW264.7 and BV2 cells. Chem. Biol. Interact. 2016, 244, 16–26. [Google Scholar] [CrossRef] [PubMed]
  159. Marra, R.; Nicoletti, R.; Pagano, E.; DellaGreca, M.; Salvatore, M.M.; Borrelli, F.; Lombardi, N.; Vinale, F.; Woo, S.L.; Andolfi, A. Inhibitory effect of trichodermanone C, a sorbicillinoid produced by Trichoderma citrinoviride associated to the green alga Cladophora sp., on nitrite production in LPS-stimulated macrophages. Nat. Prod. Res. 2019, 33, 3389–3397. [Google Scholar] [CrossRef]
  160. Quang, T.H.; Kim, D.C.; Van Kiem, P.; Van Minh, C.; Nhiem, N.X.; Tai, B.H.; Yen, P.H.; Thi Thanh Ngan, N.; Kim, H.J.; Oh, H. Macrolide and phenolic metabolites from the marine-derived fungus Paraconiothyrium sp. VK-13 with anti-inflammatory activity. J. Antibiot. 2018, 71, 826–830. [Google Scholar] [CrossRef]
  161. Lee, H.S.; Kang, J.S.; Choi, B.K.; Lee, H.S.; Lee, Y.J.; Lee, J.; Shin, H.J. Phenazine Derivatives with Anti-Inflammatory Activity from the Deep-Sea Sediment-Derived Yeast-Like Fungus Cystobasidium laryngis IV17-028. Mar. Drugs 2019, 17, 482. [Google Scholar] [CrossRef] [PubMed]
  162. Lee, D.S.; Jang, J.H.; Ko, W.; Kim, K.S.; Sohn, J.H.; Kang, M.S.; Ahn, J.S.; Kim, Y.C.; Oh, H. PTP1B inhibitory and anti-inflammatory effects of secondary metabolites isolated from the marine-derived fungus Penicillium sp. JF-55. Mar. Drugs 2013, 11, 1409–1426. [Google Scholar] [CrossRef] [PubMed]
  163. Hassan, H.M.; Boonlarppradab, C.; Fenical, W. Actinoquinolines A and B, anti-inflammatory quinoline alkaloids from a marine-derived Streptomyces sp., strain CNP975. J. Antibiot. 2016, 69, 511–514. [Google Scholar] [CrossRef]
  164. Alvariño, R.; Alonso, E.; Lacret, R.; Oves-Costales, D.; Genilloud, O.; Reyes, F.; Alfonso, A.; Botana, L.M. Caniferolide A, a Macrolide from Streptomyces caniferus, Attenuates Neuroinflammation, Oxidative Stress, Amyloid-Beta, and Tau Pathology in Vitro. Mol. Pharm. 2019, 16, 1456–1466. [Google Scholar] [CrossRef] [PubMed]
  165. Nam, S.-J.; Gaudêncio, S.P.; Kauffman, C.A.; Jensen, P.R.; Kondratyuk, T.P.; Marler, L.E.; Pezzuto, J.M.; Fenical, W. Fijiolides A and B, Inhibitors of TNF-α-Induced NFκB Activation, from a Marine-Derived Sediment Bacterium of the Genus Nocardiopsis. J. Nat. Prod. 2010, 73, 1080–1086. [Google Scholar] [CrossRef]
  166. Alshawwa, S.Z.; Alshallash, K.S.; Ghareeb, A.; Elazzazy, A.M.; Sharaf, M.; Alharthi, A.; Abdelgawad, F.E.; El-Hossary, D.; Jaremko, M.; Emwas, A.H.; et al. Assessment of Pharmacological Potential of Novel Exopolysaccharide Isolated from Marine Kocuria sp. Strain AG5: Broad-Spectrum Biological Investigations. Life 2022, 12, 1387. [Google Scholar] [CrossRef] [PubMed]
  167. Yan, X.; Zhou, Y.X.; Tang, X.X.; Liu, X.X.; Yi, Z.W.; Fang, M.J.; Wu, Z.; Jiang, F.Q.; Qiu, Y.K. Macrolactins from Marine-Derived Bacillus subtilis B5 Bacteria as Inhibitors of Inducible Nitric Oxide and Cytokines Expression. Mar. Drugs 2016, 14, 195. [Google Scholar] [CrossRef] [PubMed]
  168. Rotter, A.; Barbier, M.; Bertoni, F.; Bones, A.M.; Cancela, M.L.; Carlsson, J.; Carvalho, M.F.; Cegłowska, M.; Chirivella-Martorell, J.; Conk Dalay, M.; et al. The Essentials of Marine Biotechnology. Front. Mar. Sci. 2021, 8, 629629. [Google Scholar] [CrossRef]
  169. Bouchet, P.; Decock, W.; Lonneville, B.; Vanhoorne, B.; Vandepitte, L. Marine biodiversity discovery: The metrics of new species descriptions. Front. Mar. Sci. 2023, 10, 929989. [Google Scholar] [CrossRef]
  170. Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites 2012, 2, 303–336. [Google Scholar] [CrossRef]
  171. Leal, M.C.; Puga, J.; Serodio, J.; Gomes, N.C.; Calado, R. Trends in the discovery of new marine natural products from invertebrates over the last two decades—Where and what are we bioprospecting? PLoS ONE 2012, 7, e30580. [Google Scholar] [CrossRef] [PubMed]
  172. Qian, P.Y.; Cheng, A.; Wang, R.; Zhang, R. Marine biofilms: Diversity, interactions and biofouling. Nat. Rev. Microbiol. 2022, 20, 671–684. [Google Scholar] [CrossRef] [PubMed]
  173. Dewapriya, P.; Kim, S.-K. Marine microorganisms: An emerging avenue in modern nutraceuticals and functional foods. Food Res. Int. 2014, 56, 115–125. [Google Scholar] [CrossRef]
  174. Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2020, 37, 175–223. [Google Scholar] [CrossRef] [PubMed]
  175. Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2023, 40, 275–325. [Google Scholar] [CrossRef] [PubMed]
  176. Lindequist, U. Marine-Derived Pharmaceuticals-Challenges and Opportunities. Biomol. Ther. 2016, 24, 561–571. [Google Scholar] [CrossRef]
  177. Sudek, S.; Lopanik, N.B.; Waggoner, L.E.; Hildebrand, M.; Anderson, C.; Liu, H.; Patel, A.; Sherman, D.H.; Haygood, M.G. Identification of the putative bryostatin polyketide synthase gene cluster from “Candidatus Endobugula sertula”, the uncultivated microbial symbiont of the marine bryozoan Bugula neritina. J. Nat. Prod. 2007, 70, 67–74. [Google Scholar] [CrossRef]
Figure 1. Chemical classification of MNPs with anti-inflammatory activity as reported between 2000 and 2024. Percentage of known anti-inflammatory compounds produced by marine organisms (a), by marine macro-organisms (b), and microorganisms (c) according to the structure type.
Figure 1. Chemical classification of MNPs with anti-inflammatory activity as reported between 2000 and 2024. Percentage of known anti-inflammatory compounds produced by marine organisms (a), by marine macro-organisms (b), and microorganisms (c) according to the structure type.
Marinedrugs 22 00405 g001
Figure 2. Chemical structure of specific molecules produced by marine microorganisms according to their classification. Regarding polyketides, only a few molecules were presented for each specific target involved in inflammation.
Figure 2. Chemical structure of specific molecules produced by marine microorganisms according to their classification. Regarding polyketides, only a few molecules were presented for each specific target involved in inflammation.
Marinedrugs 22 00405 g002
Figure 3. Metagenomic approach to discover the metabolites produced by the microbiota of marine macro-organisms. Two strategies are illustrated. In the top figure, whole metagenomics sequencing enables the identification of most species present in a microenvironment without driving the determination of a species/activity relationship. In the bottom part, microbiota isolation from the environment or macro-organisms leads to bacterial identification, specific culture, and a possible link between a metabolite and bioactivity.
Figure 3. Metagenomic approach to discover the metabolites produced by the microbiota of marine macro-organisms. Two strategies are illustrated. In the top figure, whole metagenomics sequencing enables the identification of most species present in a microenvironment without driving the determination of a species/activity relationship. In the bottom part, microbiota isolation from the environment or macro-organisms leads to bacterial identification, specific culture, and a possible link between a metabolite and bioactivity.
Marinedrugs 22 00405 g003
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Lasalo, M.; Jauffrais, T.; Georgel, P.; Matsui, M. Marine Microorganism Molecules as Potential Anti-Inflammatory Therapeutics. Mar. Drugs 2024, 22, 405. https://doi.org/10.3390/md22090405

AMA Style

Lasalo M, Jauffrais T, Georgel P, Matsui M. Marine Microorganism Molecules as Potential Anti-Inflammatory Therapeutics. Marine Drugs. 2024; 22(9):405. https://doi.org/10.3390/md22090405

Chicago/Turabian Style

Lasalo, Malia, Thierry Jauffrais, Philippe Georgel, and Mariko Matsui. 2024. "Marine Microorganism Molecules as Potential Anti-Inflammatory Therapeutics" Marine Drugs 22, no. 9: 405. https://doi.org/10.3390/md22090405

APA Style

Lasalo, M., Jauffrais, T., Georgel, P., & Matsui, M. (2024). Marine Microorganism Molecules as Potential Anti-Inflammatory Therapeutics. Marine Drugs, 22(9), 405. https://doi.org/10.3390/md22090405

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop