Blood Coagulation Activities and Influence on DNA Condition of Alginate—Calcium Composites Prepared by Freeze-Drying Technique
Abstract
:1. Introduction
2. Results and Discussion
2.1. Methodology for the Synthesis and Fabrication of Composite Materials
2.2. Analysis of Chemical and Structural Properties
2.2.1. Measurement of Calcium Concentration
2.2.2. Optical Microscopy Integrated with Elemental Analysis via Laser-Induced Breakdown Spectroscopy (LIBS)
2.2.3. Scanning Electron Microscopy (SEM) Combined with Energy Dispersive Spectroscopy (EDS) for Elemental Analysis
Chemical Composition Analysis: EDS
2.2.4. Analysis of Surface Area and Total Pore Volume
2.3. Biological and Biochemical Properties
2.3.1. Blood Plasma Coagulation: Activated Partial Thromboplastin Time (aPTT) and Prothrombin Time (PT)
2.3.2. Plasmid Relaxation Assay
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Measurement of Calcium Concentration
3.2.2. Microscopic Examination—Optical and Scanning Electron Microscopy
3.2.3. Analysis of Surface Area and Total Pore Volume
3.2.4. Blood Plasma Coagulation: Activated Partial Thromboplastin Time (aPTT) and Prothrombin Time (PT)
3.2.5. Plasmid Relaxation Assay
3.2.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Chen, J.; Shao, X.; Li, H.; Jiang, Y.; Zhang, Y.; Yang, D. Structural and Physical Properties of Alginate Pretreated by High-Pressure Homogenization. Polymers 2023, 15, 3225. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and Biomedical Applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Khan, M. Chapter 7—Applications of Sodium Alginate in Science. In Sodium Alginate-Based Nanomaterials for Wastewater Treatment; Ahmad, A., Ahmad, I., Kamal, T., Asiri, A.M., Tabassum, S., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2023; pp. 161–182. ISBN 978-0-12-823551-5. [Google Scholar]
- Rosiak, P.; Latanska, I.; Paul, P.; Sujka, W.; Kolesinska, B. Modification of Alginates to Modulate Their Physic-Chemical Properties and Obtain Biomaterials with Different Functional Properties. Molecules 2021, 26, 7264. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Gu, Q.; Zhao, J.; Mei, J.; Shao, M.; Pan, Y.; Zhang, J.; Wu, H.; Zhang, Z.; Liu, F. Calcium Alginate Enhances Wound Healing by Up-Regulating the Ratio of Collagen Types I/III in Diabetic Rats. Int. J. Clin. Exp. Pathol. 2015, 8, 6636–6645. [Google Scholar]
- Roesijadi, G.; Jones, S.B.; Snowden-Swan, L.J.; Zhu, Y. Macroalgae as a Biomass Feedstock: A Preliminary Analysis; PNNL-19944, Pacific Northwest National Lab. (PNNL): Richland, WA, USA, 26 September 2010; p. 1006310. [Google Scholar]
- Godek, E.; Grządka, E. Alginates—Structure, properties, applications. Ann. Univ. Mariae Curie-Skłodowska Sect. AA—Chem. 2019, 74, 109–124. [Google Scholar]
- Augst, A.D.; Kong, H.J.; Mooney, D.J. Alginate Hydrogels as Biomaterials. Macromol. Biosci. 2006, 6, 623–633. [Google Scholar] [CrossRef]
- Krucińska, I.; Boguń, M.; Draczyński, Z.; Szparaga, G.; Mikołajczyk, T.; Król, P. Method for Producing Highly Porous Foam, Intended Particularly for Medical Purposes. Poland Patent PL221277B1, 15 April 2013. [Google Scholar]
- Eagles, D.B.; Bakis, G.; Jeffery, A.B.; Mermingis, C.; Hagoort, T.H. Method of Producing Polysaccharide Foams. Patent EP0612331A1, 19 June 1992. [Google Scholar]
- Scherr, G.H. Alginate Foam Products. U.S. Patent 5718916A, 3 June 1992. [Google Scholar]
- Bakis, G.; Eagles, D.B.; Tweedie, J.F. Method of Producing Polysaccharide Foams. U.S. Patent 5840777A, 18 June 1992. [Google Scholar]
- Gilchrist, T.; Gilchrist, E. Physiologically Acceptable Foamable Formulation and Foam. U.S. Patent 6187290B1, 5 December 1995. [Google Scholar]
- Han, S.; Kim, I.-S.; Han, N.-K. Alginate Sponge and Preparation Method Thereof. Patent WO2004082594A2, 18 March 2003. [Google Scholar]
- Ceccaldi, C.; Bushkalova, R.; Cussac, D.; Duployer, B.; Tenailleau, C.; Bourin, P.; Parini, A.; Sallerin, B.; Girod Fullana, S. Elaboration and Evaluation of Alginate Foam Scaffolds for Soft Tissue Engineering. Int. J. Pharm. 2017, 524, 433–442. [Google Scholar] [CrossRef]
- Lv, C.; Zhou, X.; Wang, P.; Li, J.; Wu, Z.; Jiao, Z.; Guo, M.; Wang, Z.; Wang, Y.; Wang, L.; et al. Biodegradable Alginate-Based Sponge with Antibacterial and Shape Memory Properties for Penetrating Wound Hemostasis. Compos. Part. B Eng. 2022, 247, 110263. [Google Scholar] [CrossRef]
- Choi, Y.S.; Hong, S.R.; Lee, Y.M.; Song, K.W.; Park, M.H.; Nam, Y.S. Study on Gelatin-Containing Artificial Skin: I. Preparation and Characteristics of Novel Gelatin-Alginate Sponge. Biomaterials 1999, 20, 409–417. [Google Scholar] [CrossRef]
- Rezaei, A.; Ehtesabi, H. Fabrication of Alginate/Chitosan Nanocomposite Sponges Using Green Synthesized Carbon Dots as Potential Wound Dressing. Mater. Today Chem. 2022, 24, 100910. [Google Scholar] [CrossRef]
- Wen, Y.; Yu, B.; Zhu, Z.; Yang, Z.; Shao, W. Synthesis of Antibacterial Gelatin/Sodium Alginate Sponges and Their Antibacterial Activity. Polymers 2020, 12, 1926. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wang, M.; Liu, Q.; Liu, G.; Wang, S.; Li, J. Recent Advances in the Medical Applications of Hemostatic Materials. Theranostics 2023, 13, 161–196. [Google Scholar] [CrossRef] [PubMed]
- Sung, Y.K.; Lee, D.R.; Chung, D.J. Advances in the Development of Hemostatic Biomaterials for Medical Application. Biomater. Res. 2021, 25, 37. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Dong, R.; Liang, Y.; Li, M. Haemostatic Materials for Wound Healing Applications. Nat. Rev. Chem. 2021, 5, 773–791. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhang, S.; Zhang, H.; Dong, L.; Cong, Y.; Sun, S.; Sun, X. Polysaccharides Composite Materials for Rapid Hemostasis. J. Drug Deliv. Sci. Technol. 2021, 66, 102890. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, J.; Zhu, Y.; Wu, C. Inorganic-Based Biomaterials for Rapid Hemostasis and Wound Healing. Chem. Sci. 2022, 14, 29–53. [Google Scholar] [CrossRef]
- Gheorghita Puscaselu, R.; Lobiuc, A.; Dimian, M.; Covasa, M. Alginate: From Food Industry to Biomedical Applications and Management of Metabolic Disorders. Polymers 2020, 12, 2417. [Google Scholar] [CrossRef]
- Dodero, A.; Alberti, S.; Gaggero, G.; Ferretti, M.; Botter, R.; Vicini, S.; Castellano, M. An Up-to-Date Review on Alginate Nanoparticles and Nanofibers for Biomedical and Pharmaceutical Applications. Adv. Mater. Interfaces 2021, 8, 2100809. [Google Scholar] [CrossRef]
- Saranya, P.; Ramesh, S.T.; Gandhimathi, R. Coagulation Performance Evaluation of Alginate as a Natural Coagulant for the Treatment of Turbid Water. Water Pract. Technol. 2021, 17, 395–404. [Google Scholar] [CrossRef]
- Zhong, Y.; Hu, H.; Min, N.; Wei, Y.; Li, X.; Li, X. Application and Outlook of Topical Hemostatic Materials: A Narrative Review. Ann. Transl. Med. 2021, 9, 577. [Google Scholar] [CrossRef]
- Hou, Q.; Grijpma, D.W.; Feijen, J. Preparation of Interconnected Highly Porous Polymeric Structures by a Replication and Freeze-Drying Process. J. Biomed. Mater. Res. Part. B Appl. Biomater. 2003, 67B, 732–740. [Google Scholar] [CrossRef] [PubMed]
- Pettignano, A.; Tanchoux, N.; Cacciaguerra, T.; Vincent, T.; Bernardi, L.; Guibal, E.; Quignard, F. Sodium and Acidic Alginate Foams with Hierarchical Porosity: Preparation, Characterization and Efficiency as a Dye Adsorbent. Carbohydr. Polym. 2017, 178, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Guastaferro, M.; Baldino, L.; Reverchon, E.; Cardea, S. Production of Porous Agarose-Based Structures: Freeze-Drying vs. Supercritical CO2 Drying. Gels 2021, 7, 198. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Zhang, H. Controlled Freezing and Freeze Drying: A Versatile Route for Porous and Micro-/Nano-Structured Materials. J. Chem. Technol. Biotechnol. 2011, 86, 172–184. [Google Scholar] [CrossRef]
- Mathews, S.; Hans, M.; Mücklich, F.; Solioz, M. Contact Killing of Bacteria on Copper Is Suppressed If Bacterial-Metal Contact Is Prevented and Is Induced on Iron by Copper Ions. Appl. Environ. Microbiol. 2013, 79, 2605–2611. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Qi, L.; Tang, X.; Wang, Z.; Peng, X. Pore Characterization of Different Types of Coal from Coal and Gas Outburst Disaster Sites Using Low Temperature Nitrogen Adsorption Approach. Int. J. Min. Sci. Technol. 2017, 27, 371–377. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, J.; Ding, J.; Liu, T.; Shi, G.; Li, X.; Dang, W.; Cheng, Y.; Guo, R. Pore Structure and Fractal Characteristics of Different Shale Lithofacies in the Dalong Formation in the Western Area of the Lower Yangtze Platform. Minerals 2020, 10, 72. [Google Scholar] [CrossRef]
- Mrozińska, Z.; Kudzin, M.H.; Ponczek, M.B.; Kaczmarek, A.; Król, P.; Lisiak-Kucińska, A.; Żyłła, R.; Walawska, A. Biochemical Approach to Poly(Lactide)–Copper Composite—Impact on Blood Coagulation Processes. Materials 2024, 17, 608. [Google Scholar] [CrossRef]
- Hattori, H.; Amano, Y.; Nogami, Y.; Takase, B.; Ishihara, M. Hemostasis for Severe Hemorrhage with Photocrosslinkable Chitosan Hydrogel and Calcium Alginate. Ann. Biomed. Eng. 2010, 38, 3724–3732. [Google Scholar] [CrossRef]
- Taşkın, A.K.; Yaşar, M.; Ozaydın, I.; Kaya, B.; Bat, O.; Ankaralı, S.; Yıldırım, U.; Aydın, M. The Hemostatic Effect of Calcium Alginate in Experimental Splenic Injury Model. Ulus. Travma Acil Cerrahi Derg. 2013, 19, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Chan, L.W.; Jin, Y.; Heng, P.W.S. Cross-Linking Mechanisms of Calcium and Zinc in Production of Alginate Microspheres. Int. J. Pharm. 2002, 242, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Pavel, T.I.; Chircov, C.; Rădulescu, M.; Grumezescu, A.M. Regenerative Wound Dressings for Skin Cancer. Cancers 2020, 12, 2954. [Google Scholar] [CrossRef] [PubMed]
- Gardner, R.L. Application of Alginate Gels to the Study of Mammalian Development. In Germ Cell Protocols: Volume 2: Molecular Embryo Analysis, Live Imaging, Transgenesis, and Cloning; Schatten, H., Ed.; Humana Press: Totowa, NJ, USA, 2004; pp. 383–392. ISBN 978-1-59259-741-3. [Google Scholar]
- Varaprasad, K.; Jayaramudu, T.; Kanikireddy, V.; Toro, C.; Sadiku, E.R. Alginate-Based Composite Materials for Wound Dressing Application:A Mini Review. Carbohydr. Polym. 2020, 236, 116025. [Google Scholar] [CrossRef]
- Silver, B.J. Prolongation of Both PT and APTT. In The Coagulation Consult: A Case-Based Guide; Lichtin, A., Bartholomew, J., Eds.; Springer: New York, NY, USA, 2014; pp. 71–85. ISBN 978-1-4614-9560-4. [Google Scholar]
- Yang, R.; Zubair, M.; Moosavi, L. Prothrombin Time. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Turner, D.; Baldwin, E.; Russell, K.; Wells, L.A. DNA-Crosslinked Alginate and Layered Microspheres to Modulate the Release of Encapsulated FITC-Dextran. Eur. J. Pharm. Biopharm. 2021, 158, 313–322. [Google Scholar] [CrossRef]
- Zhou, J.; Deng, W.; Wang, Y.; Cao, X.; Chen, J.; Wang, Q.; Xu, W.; Du, P.; Yu, Q.; Chen, J.; et al. Cationic Carbon Quantum Dots Derived from Alginate for Gene Delivery: One-Step Synthesis and Cellular Uptake. Acta Biomater. 2016, 42, 209–219. [Google Scholar] [CrossRef]
- Pestka, S. Production and Analysis of Proteins by Recombinant DNA Technology. Bioprocess. Technol. 1990, 7, 235–265. [Google Scholar]
- Clark, J.; Hudson, J.; Mak, R.; McPHERSON, C.; Tsin, C. A Look at Transformation Efficiencies in E. coli: An Investigation into the Relative Efficiency of E. Coli to Take up Plasmid DNA Treated with the Complex Molecular Trivalent Cations Spermine or Spermidine within the Context of the Hanahan Protocol for Transformation. J. Exp. Microbiol. Immunol. 2002, 2, 68–80. [Google Scholar]
- Asif, A.; Mohsin, H.; Tanvir, R.; Rehman, Y. Revisiting the Mechanisms Involved in Calcium Chloride Induced Bacterial Transformation. Front. Microbiol. 2017, 8, 2169. [Google Scholar] [CrossRef]
- Juszczak, M.; Das, S.; Kosińska, A.; Rybarczyk-Pirek, A.J.; Wzgarda-Raj, K.; Tokarz, P.; Vasudevan, S.; Chworos, A.; Woźniak, K.; Rudolf, B. Piano-Stool Ruthenium(II) Complexes with Maleimide and Phosphine or Phosphite Ligands: Synthesis and Activity against Normal and Cancer Cells. Dalton Trans. 2023, 52, 4237–4250. [Google Scholar] [CrossRef]
Sample Identifier | Cross-Linking Solution Concentration | Cross-Linking Temperature | Time | Composition |
---|---|---|---|---|
Alg_0 | - | - | - | sodium alginate |
Alg_0.5 | 0.5% CaCl2 | 40 °C | 60 s | calcium alginate |
Alg_1 | 1% CaCl2 | 40 °C | 60 s | |
Alg_2 | 2% CaCl2 | 40 °C | 60 s |
Sample Name | Specific Surface Area | Total Pore Volume | ||||
---|---|---|---|---|---|---|
Mean [m2/g] | Median [m2/g] | Standard Deviation [SD] | Mean [cm3/g] | Median [cm3/g] | Standard Deviation [SD] | |
Alg_0 | 0.3339 | 0.3452 | 0.0306 | 1.31 × 10−3 | 1.21 × 10−3 | 3.16 × 10−4 |
Alg_0.5 | 0.3770 | 0.3710 | 0.0178 | 1.95 × 10−3 | 1.95 × 10−3 | 1.92 × 10−4 |
Alg_1 | 0.4270 | 0.4293 | 0.0206 | 2.23 × 10−3 | 2.19 × 10−3 | 1.50 × 10−4 |
Alg_2 | 1.0231 | 1.0258 | 0.0201 | 2.38 × 10−3 | 2.24 × 10−2 | 3.02 × 10−3 |
Sample Name | aPTT | PT | ||||
---|---|---|---|---|---|---|
Mean [s] | Median [s] | Standard Deviation [SD] | Mean [s] | Median [s] | Standard Deviation [SD] | |
Alg_0 | 78.67 | 78.7 | 0.22 | 14.50 | 14.1 | 0.87 |
Alg_0.5 | 55.60 | 55.6 | 0.25 | 13.80 | 13.8 | 0.30 |
Alg_1 | 43.17 | 43.2 | 0.30 | 15.75 | 15.7 | 0.28 |
Alg_2 | 39.17 | 39.2 | 0.30 | 14.37 | 14.4 | 0.25 |
C | 39.40 | 39.4 | 0.40 | 14.17 | 14.1 | 0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Świerczyńska, M.; Król, P.; Hernández Vázquez, C.I.; Piekarska, K.; Woźniak, K.; Juszczak, M.; Mrozińska, Z.; Kudzin, M.H. Blood Coagulation Activities and Influence on DNA Condition of Alginate—Calcium Composites Prepared by Freeze-Drying Technique. Mar. Drugs 2024, 22, 415. https://doi.org/10.3390/md22090415
Świerczyńska M, Król P, Hernández Vázquez CI, Piekarska K, Woźniak K, Juszczak M, Mrozińska Z, Kudzin MH. Blood Coagulation Activities and Influence on DNA Condition of Alginate—Calcium Composites Prepared by Freeze-Drying Technique. Marine Drugs. 2024; 22(9):415. https://doi.org/10.3390/md22090415
Chicago/Turabian StyleŚwierczyńska, Małgorzata, Paulina Król, César I. Hernández Vázquez, Klaudia Piekarska, Katarzyna Woźniak, Michał Juszczak, Zdzisława Mrozińska, and Marcin H. Kudzin. 2024. "Blood Coagulation Activities and Influence on DNA Condition of Alginate—Calcium Composites Prepared by Freeze-Drying Technique" Marine Drugs 22, no. 9: 415. https://doi.org/10.3390/md22090415
APA StyleŚwierczyńska, M., Król, P., Hernández Vázquez, C. I., Piekarska, K., Woźniak, K., Juszczak, M., Mrozińska, Z., & Kudzin, M. H. (2024). Blood Coagulation Activities and Influence on DNA Condition of Alginate—Calcium Composites Prepared by Freeze-Drying Technique. Marine Drugs, 22(9), 415. https://doi.org/10.3390/md22090415