Pilot-Scale Enzymatic Conversion of Low Stability, High Free Fatty, Squid Oil to an Oxidatively Stable Astaxanthin-Rich Acylglyceride Oil Suitable for Nutritional Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Free Fatty Acid Content in Crude Squid Visceral Oil During Enzymatic Processing
2.2. Fatty Acid Composition in Crude Squid Visceral Oil During Lipase Processing
2.3. Positional Distribution of Omega-3 Fatty Acids in Lipase-Treated Squid Visceral Oil
2.4. Rancimat Analysis, Lipid Oxidation Kinetics, and Shelf Life Prediction
2.5. Astaxanthin Content
3. Materials and Methods
3.1. Materials
3.2. Lipase Processing of Crude Squid Visceral Oil
3.3. Free Fatty Acid Content (%) and Other Lipid Classes by Capillary Chromatography with a Flame Ionisation Detector (Iatroscan)
3.4. Analysis of Fatty Acid Composition Using Gas Chromatography with a Flame Ionisation Detector (GC-FID)
3.5. Positional Distribution of Omega-3 Fatty Acids in Lipase-Treated Squid Visceral Oil by 13C-Nuclear Magnetic Resonance (NMR)
3.6. Rancimat Test and Lipid Oxidation Kinetics
3.7. Prediction of Shelf Life
3.8. Astaxanthin Quantification
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moovendhan, M.; Seedevi, P.; Vairamani, S.; Shanmugam, A. Exploring the chemical composition and anticancer potential of oil from squid (Loligo duvauceli) liver waste from fish processing industry. Waste Biomass Valorization 2019, 10, 2967–2973. [Google Scholar] [CrossRef]
- Cho, S.-Y.; Joo, D.-S.; Choi, H.-G.; Nara, E.; Miyashita, K. Oxidative stability of lipids from squid tissues. Fish. Sci. 2001, 67, 738–743. [Google Scholar] [CrossRef]
- Kaushik, P.; Dowling, K.; Barrow, C.J.; Adhikari, B. Microencapsulation of omega-3 fatty acids: A review of microencapsulation and characterization methods. J. Funct. Foods 2015, 19, 868–881. [Google Scholar] [CrossRef]
- Jain, P.; Mandal, S.; Minhas, A.K.; Puri, M.; Barrow, C.J. Concentrating omega-3 fatty acids in Nannochloropsis oceanica oil by using enzyme immobilized nano-silica systems. J. Clean. Prod. 2023, 406, 137030. [Google Scholar] [CrossRef]
- Xuan, J.; Xia, Q.; Tu, Y.; Luo, T.; Mao, Q.; Han, Z.; Barrow, C.J.; Liu, S.; Wang, B. Effect of enzymatically produced tuna oil acylglycerol on the characteristics of gelatin O/W emulsion during microencapsulation using complex coacervation. LWT 2023, 190, 115580. [Google Scholar] [CrossRef]
- Wang, J.; Han, L.; Wang, D.; Sun, Y.; Huang, J.; Shahidi, F. Stability and stabilization of omega-3 oils: A review. Trends Food Sci. Technol. 2021, 118, 17–35. [Google Scholar] [CrossRef]
- Jacobsen, C.; García-Moreno, P.J.; Yesiltas, B.; Sørensen, A.-D.M. Lipid oxidation and traditional methods for evaluation. In Omega-3 Delivery Systems; Elsevier: Amsterdam, The Netherlands, 2021; pp. 183–200. [Google Scholar]
- Albert, B.B.; Cameron-Smith, D.; Hofman, P.L.; Cutfield, W.S. Oxidation of marine omega-3 supplements and human health. BioMed Res. Int. 2013, 2013, 464921. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Zhou, L.; Li, M.; Lyu, F.; Liu, J.; Ding, Y. Omega-3 polyunsaturated fatty acid encapsulation system: Physical and oxidative stability, and medical applications. Food Front. 2022, 3, 239–255. [Google Scholar] [CrossRef]
- Kolanowski, W.; Jaworska, D.; Weißbrodt, J. Importance of instrumental and sensory analysis in the assessment of oxidative deterioration of omega-3 long-chain polyunsaturated fatty acid-rich foods. J. Sci. Food Agric. 2007, 87, 181–191. [Google Scholar] [CrossRef]
- Nogueira, M.S.; Scolaro, B.; Milne, G.L.; Castro, I.A. Oxidation products from omega-3 and omega-6 fatty acids during a simulated shelf life of edible oils. LWT 2019, 101, 113–122. [Google Scholar] [CrossRef]
- Yenipazar, H.; Şahin-Yeşilçubuk, N. Effect of packaging and encapsulation on the oxidative and sensory stability of omega-3 supplements. Food Sci. Nutr. 2023, 11, 1426–1440. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Liu, P.; Wang, W.; Yang, B.; Ou, S.; Wang, Y. An efficient upgrading approach to produce n-3 polyunsaturated fatty acids-rich edible grade oil from high-acid squid visceral oil. Biochem. Eng. J. 2017, 127, 167–174. [Google Scholar] [CrossRef]
- Lin, C.-C.; Hwang, L.S. A comparison of the effects of various purification treatments on the oxidative stability of squid visceral oil. J. Am. Oil Chem. Soc. 2002, 79, 489–494. [Google Scholar] [CrossRef]
- Scurria, A.; Fabiano Tixier, A.-S.; Lino, C.; Pagliaro, M.; D’Agostino, F.; Avellone, G.; Chemat, F.; Ciriminna, R. High yields of shrimp oil rich in omega-3 and natural astaxanthin from shrimp waste. ACS Omega 2020, 5, 17500–17505. [Google Scholar] [CrossRef]
- Phadtare, I.; Vaidya, H.; Hawboldt, K.; Cheema, S.K. Shrimp oil extracted from shrimp processing by-product is a rich source of omega-3 fatty acids and astaxanthin-esters, and reveals potential anti-adipogenic effects in 3T3-L1 adipocytes. Mar. Drugs 2021, 19, 259. [Google Scholar] [CrossRef] [PubMed]
- Calvo, N.S.; Reynoso, C.M.; Resnik, S.; Cortés-Jacinto, E.; Collins, P. Thermal stability of astaxanthin in oils for its use in fish food technology. Anim. Feed Sci. Technol. 2020, 270, 114668. [Google Scholar] [CrossRef]
- Barros, M.P.; Poppe, S.C.; Bondan, E.F. Neuroprotective properties of the marine carotenoid astaxanthin and omega-3 fatty acids, and perspectives for the natural combination of both in krill oil. Nutrients 2014, 6, 1293–1317. [Google Scholar] [CrossRef]
- Aneesh, P.; Ajeeshkumar, K.; Lekshmi, R.K.; Anandan, R.; Ravishankar, C.; Mathew, S. Bioactivities of astaxanthin from natural sources, augmenting its biomedical potential: A review. Trends Food Sci. Technol. 2022, 125, 81–90. [Google Scholar] [CrossRef]
- Aneesh, P.; Anandan, R.; Kumar, L.R.; Ajeeshkumar, K.; Kumar, K.A.; Mathew, S. A step to shell biorefinery—Extraction of astaxanthin-rich oil, protein, chitin, and chitosan from shrimp processing waste. Biomass Convers. Biorefinery 2023, 13, 205–214. [Google Scholar] [CrossRef]
- Rajasekaran, B.; Gulzar, S.; Gopalrajan, S.; Karunanithi, M.; Benjakul, S. Omega-3 Enriched Fish and Shellfish Oils: Extraction, Preservation, and Health Benefits. In Fish Waste to Valuable Products; Springer: Berlin/Heidelberg, Germany, 2024; pp. 195–229. [Google Scholar]
- Tizkar, B.; Seidavi, A.; Ponce-Palafox, J.T.; Pourashoor, P. The effect of astaxanthin on resistance of juvenile prawns Macrobrachium nipponense (Decapoda: Palaemonidae) to physical and chemical stress. Rev. Biol. Ía Trop. 2014, 62, 1331–1341. [Google Scholar] [CrossRef] [PubMed]
- Dhankhar, J.; Kadian, S.S.; Sharma, A. Astaxanthin: A potential carotenoid. Int. J. Pharm. Sci. Res. 2012, 3, 1246. [Google Scholar]
- Miki, W. Biological functions and activities of animal carotenoids. Pure Appl. Chem. 1991, 63, 141–146. [Google Scholar] [CrossRef]
- Yamashita, E. Let astaxanthin be thy medicine. PharmaNutrition 2015, 3, 115–122. [Google Scholar] [CrossRef]
- Nishida, Y.; Berg, P.C.; Shakersain, B.; Hecht, K.; Takikawa, A.; Tao, R.; Kakuta, Y.; Uragami, C.; Hashimoto, H.; Misawa, N. Astaxanthin: Past, present, and future. Mar. Drugs 2023, 21, 514. [Google Scholar] [CrossRef] [PubMed]
- Saw, C.L.L.; Yang, A.Y.; Guo, Y.; Kong, A.-N.T. Astaxanthin and omega-3 fatty acids individually and in combination protect against oxidative stress via the Nrf2–ARE pathway. Food Chem. Toxicol. 2013, 62, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Pan, K.; Yang, Y.; Shu-Chien, A.C.; Wu, X. Dietary DHA oil supplementation promotes ovarian development and astaxanthin deposition during the ovarian maturation of Chinese mitten crab Eriocheir sinensis. Aquac. Nutr. 2022, 2022, 9997317. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, R.; Jiang, X.; Wu, X.; Wang, X. Dietary supplementation with synthetic astaxanthin and DHA interactively regulates physiological metabolism to improve the color and odor quality of ovaries in adult female Eriocheir sinensis. Food Chem. 2024, 430, 137020. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; He, W.; Dansou, D.M.; Zhang, H.; Nugroho, R.D.; Tang, C.; Guo, X.; Yu, Y.; Zhao, Q.; Qin, Y. Astaxanthin improved the storage stability of docosahexaenoic acid-enriched eggs by inhibiting oxidation of non-esterified poly-unsaturated fatty acids. Food Chem. 2022, 381, 132256. [Google Scholar] [CrossRef]
- Spotti, M.L.; Acosta, C.A.; Carrara, C.R.; Fioramonti, S.A. Influence of storage temperature and natural antioxidants addition on chia oil nutraceutical blends shelf life. Eur. J. Lipid Sci. Technol. 2024, 126, 2300179. [Google Scholar] [CrossRef]
- Espinaco, B.Y.; Niizawa, I.; Marino, F.; Zorrilla, S.E.; Sihufe, G.A. Storage stability of chia (Salvia hispanica L.) oil incorporated with astaxanthin. J. Food Process. Preserv. 2021, 45, e15184. [Google Scholar] [CrossRef]
- Colletti, A.; Cravotto, G.; Citi, V.; Martelli, A.; Testai, L.; Cicero, A.F. Advances in technologies for highly active omega-3 fatty acids from krill oil: Clinical applications. Mar. Drugs 2021, 19, 306. [Google Scholar] [CrossRef] [PubMed]
- Symoniuk, E.; Łapińska, A.; Ratusz, K.; Wroniak, M. Influence of the Rancimat Apparatus Operating Parameters on Oxidative Stability Determination of Cold-Pressed Camelina and Hemp Seed Oil. Eur. J. Lipid Sci. Technol. 2023, 125, 2200062. [Google Scholar] [CrossRef]
- Gülmez, Ö.; Şahin, S. Evaluation of oxidative stability in hazelnut oil treated with several antioxidants: Kinetics and thermodynamics studies. LWT 2019, 111, 478–483. [Google Scholar] [CrossRef]
- Ghosh, M.; Upadhyay, R.; Mahato, D.K.; Mishra, H.N. Kinetics of lipid oxidation in omega fatty acids rich blends of sunflower and sesame oils using Rancimat. Food Chem. 2019, 272, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Farhoosh, R.; Niazmand, R.; Rezaei, M.; Sarabi, M. Kinetic parameter determination of vegetable oil oxidation under Rancimat test conditions. Eur. J. Lipid Sci. Technol. 2008, 110, 587–592. [Google Scholar] [CrossRef]
- Farhoosh, R.; Hoseini-Yazdi, S.Z. Evolution of oxidative values during kinetic studies on olive oil oxidation in the Rancimat test. J. Am. Oil Chem. Soc. 2014, 91, 281–293. [Google Scholar] [CrossRef]
- Yang, K.-M.; Chiang, P.-Y. Variation quality and kinetic parameter of commercial n-3 PUFA-rich oil during oxidation via Rancimat. Mar. Drugs 2017, 15, 97. [Google Scholar] [CrossRef]
- Méndez, E.; Sanhueza, J.; Speisky, H.; Valenzuela, A. Validation of the Rancimat test for the assessment of the relative stability of fish oils. J. Am. Oil Chem. Soc. 1996, 73, 1033–1037. [Google Scholar] [CrossRef]
- Pazhouhanmehr, S.; Farhoosh, R.; Sharif, A.; Kenari, R.E. Oxidation kinetics of common Kilka (Clupeonella cultiventris caspia) oil in presence of bene oils’ unsaponifiable matter. Food Chem. 2016, 190, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Yeşilsu, A.F.; Özyurt, G. Oxidative stability of microencapsulated fish oil with rosemary, thyme and laurel extracts: A kinetic assessment. J. Food Eng. 2019, 240, 171–182. [Google Scholar] [CrossRef]
- Shen, Y.; Guo, C.; Lu, T.; Ding, X.-Y.; Zhao, M.-T.; Zhang, M.; Liu, H.-L.; Song, L.; Zhou, D.-Y. Effects of gallic acid alkyl esters and their combinations with other antioxidants on oxidative stability of DHA algae oil. Food Res. Int. 2021, 143, 110280. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.A.; Akanbi, T.O.; Holland, B.J.; Sachar, M.; Barrow, C.J. Sustainable Enzymatic Production of Omega-3 Oil from Squid Viscera. Sustainability 2024, 16, 4243. [Google Scholar] [CrossRef]
- Yang, Z.; Jin, W.; Cheng, X.; Dong, Z.; Chang, M.; Wang, X. Enzymatic enrichment of n-3 polyunsaturated fatty acid glycerides by selective hydrolysis. Food Chem. 2021, 346, 128743. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Liu, M.; Yang, D.; Zhang, Y.; An, F. Efficacy and safety of omega-3 fatty acids in the prevention of cardiovascular disease: A systematic review and meta-analysis. Cardiovasc. Drugs Ther. 2024, 38, 799–817. [Google Scholar] [CrossRef]
- von der Haar, D.; Stäbler, A.; Wichmann, R.; Schweiggert-Weisz, U. Enzymatic esterification of free fatty acids in vegetable oils utilizing different immobilized lipases. Biotechnol. Lett. 2015, 37, 169–174. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, H.; Zhang, Y.; Shen, Y.; Su, H.; Jin, J.; Jin, Q.; Wang, X. Characterization of Positional Distribution of Fatty Acids and Triacylglycerol Molecular Compositions of Marine Fish Oils Rich in Omega-3 Polyunsaturated Fatty Acids. BioMed Res. Int. 2018, 2018, 3529682. [Google Scholar] [CrossRef] [PubMed]
- Yalagala, P.R.; Sugasini, D.; Dasarathi, S.; Pahan, K.; Subbaiah, P.V. Dietary lysophosphatidylcholine-EPA enriches both EPA and DHA in the brain: Potential treatment for depression [S]. J. Lipid Res. 2019, 60, 566–578. [Google Scholar] [CrossRef] [PubMed]
- Tengku-Rozaina, T.M.; Birch, E.J. Positional distribution of fatty acids on hoki and tuna oil triglycerides by pancreatic lipase and 13C NMR analysis. Eur. J. Lipid Sci. Technol. 2014, 116, 272–281. [Google Scholar] [CrossRef]
- Akanbi, T.O.; Barrow, C.J. Lipase-catalysed incorporation of EPA into emu oil: Formation and characterisation of new structured lipids. J. Funct. Foods 2015, 19, 801–809. [Google Scholar] [CrossRef]
- Lee-Chang, K.J.; Taylor, M.C.; Drummond, G.; Mulder, R.J.; Mansour, M.P.; Brock, M.; Nichols, P.D. Docosahexaenoic acid is naturally concentrated at the sn-2 position in triacylglycerols of the Australian thraustochytrid Aurantiochytrium sp. strain TC 20. Mar. Drugs 2021, 19, 382. [Google Scholar] [CrossRef] [PubMed]
- Ando, Y.; Samoto, H.; Murayama, Y. Positional distribution of DHA and EPA in triacyl-sn-glycerols (TAG) of Artemia franciscana nauplii enriched with fish oils ethyl esters and TAG. Aquaculture 2004, 233, 321–335. [Google Scholar] [CrossRef]
- Ikeda, I.; Yoshida, H.; Tomooka, M.; Yosef, A.; Imaizumi, K.; Tsuji, H.; Seto, A. Effects of long-term feeding of marine oils with different positional distribution of eicosapentaenoic and docosahexaenoic acids on lipid metabolism, eicosanoid production, and platelet aggregation in hypercholesterolemic rats. Lipids 1998, 33, 897–904. [Google Scholar] [CrossRef]
- Dovale-Rosabal, G.; Rodríguez, A.; Espinosa, A.; Barriga, A.; Aubourg, S.P. Synthesis of EPA-and DHA-enriched structured acylglycerols at the sn-2 position starting from commercial salmon oil by enzymatic lipase catalysis under supercritical conditions. Molecules 2021, 26, 3094. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, R.; Mishra, H.N. Multivariate optimization of a synergistic blend of oleoresin sage (Salvia officinalis L.) and ascorbyl palmitate to stabilize sunflower oil. J. Food Sci. Technol. 2016, 53, 1919–1928. [Google Scholar] [CrossRef]
- Roy, V.C.; Getachew, A.T.; Cho, Y.-J.; Park, J.-S.; Chun, B.-S. Recovery and bio-potentialities of astaxanthin-rich oil from shrimp (Penaeus monodon) waste and mackerel (Scomberomous niphonius) skin using concurrent supercritical CO2 extraction. J. Supercrit. Fluids 2020, 159, 104773. [Google Scholar] [CrossRef]
- Liu, X.; Luo, Q.; Rakariyatham, K.; Cao, Y.; Goulette, T.; Liu, X.; Xiao, H. Antioxidation and anti-ageing activities of different stereoisomeric astaxanthin in vitro and in vivo. J. Funct. Foods 2016, 25, 50–61. [Google Scholar] [CrossRef]
- Akanbi, T.O.; Adcock, J.L.; Barrow, C.J. Selective concentration of EPA and DHA using Thermomyces lanuginosus lipase is due to fatty acid selectivity and not regioselectivity. Food Chem. 2013, 138, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yang, B.; Yan, B.; Yao, X. Supercritical fluid extraction of astaxanthin from Haematococcus pluvialis and its antioxidant potential in sunflower oil. Innov. Food Sci. Emerg. Technol. 2012, 13, 120–127. [Google Scholar] [CrossRef]
- Hernandez, E.M. Specialty oils: Functional and nutraceutical properties. Funct. Diet. Lipids 2016, 69–101. [Google Scholar] [CrossRef]
- Thyagarajan, T. Fermentation of Omega-3 and Carotenoid Producing Marine Microorganisms. Ph.D. Dissertation, Deakin University, Geelong, Australia, 2015. [Google Scholar]
- Ackman, R.G. The gas chromatograph in practical analyses of common and uncommon fatty acids for the 21st century. Anal. Chim. Acta 2002, 465, 175–192. [Google Scholar] [CrossRef]
- Ahmmed, M.K.; Ahmmed, F.; Stewart, I.; Carne, A.; Tian, H.S.; Bekhit, A.E.-D.A. Omega-3 phospholipids in Pacific blue mackerel (Scomber australasicus) processing by-products. Food Chem. 2021, 353, 129451. [Google Scholar] [CrossRef] [PubMed]
- Takeungwongtrakul, S.; Benjakul, S. Astaxanthin degradation and lipid oxidation of Pacific white shrimp oil: Kinetics study and stability as affected by storage conditions. Int. Aquat. Res. 2016, 8, 15–27. [Google Scholar] [CrossRef]
Fatty Acids (%) (Average of Three Replicates) | Lipase-Processed Crude Squid Oil | |||
---|---|---|---|---|
0 h | 2 h | 10 h | 54 h | |
Saturated fatty acids total | 25.6 ± 0.0 a | 24.4 ± 0.1 b | 23.4 ± 0.1 c | 22.9 ± 0.4 c |
Monounsaturated fatty acids total | 26.9 ± 0.1 a | 27.4 ± 0.1 b | 27.5 ± 0.0 b | 27.8 ± 0.1 c |
Eicosapentaenoic acid (EPA) | 20.2 ± 0.0 a | 20.2 ± 0.0 a | 20.8 ± 0.0 b | 20.7 ± 0.1 b |
Docosahexaenoic acid (DHA) | 20.8 ± 0.0 a | 20.9 ± 0.1 a | 21.4 ± 0.0 b | 21.3 ± 0.1 b |
Omega-3 total | 43.0 ± 0.1 a | 43.1 ± 0.1 a | 44.2 ± 0.0 b | 44.1 ± 0.2 b |
Omega-6 total | 4.5 ± 0.0 a | 4.60 ± 0.0 b | 4.7 ± 0.0 c | 4.7 ± 0.0 c |
Polyunsaturated fatty acids total | 47.3 ± 0.1 a | 47.5 ± 0.2 a | 48.7 ± 0.0 b | 48.5 ± 0.0 c |
Position | Fatty Acid | Molar Percentage (%) a |
---|---|---|
sn-2 | EPA | 17.5 ± 1.0 |
DHA | 12.0 ± 0.1 | |
SDA | 13.7 ± 1.2 | |
DPA | 16.8 ± 0.0 | |
ETA | 2.9 ± 0.5 | |
MUFA | 16.3 ± 1.4 | |
SFA | 20.8 ± 0.7 | |
sn-1,3 | EPA | 6.6 ± 1.1 |
DHA | 0.9 ± 0.1 | |
SDA | 10.8 ± 0.2 | |
DPA | 23.8 ± 0.4 | |
ETA | 10.5 ± 0.0 | |
MUFA | 25.9 ± 2.1 | |
SFA | 21.4 ± 1.0 |
Parameters | ESO †a | CCO †b | CFO †c |
---|---|---|---|
Arrhenius constant (A, h − 1) | (4.57 ± 0.03) × 1012 a | (4.11 ± 0.16) × 1016 b | (4.52 ± 1.5) × 1013 c |
Activation energy for lipid oxidation (Ea, kJ/mol) | 94.15 ± 0.04 a | 116.95 ± 0.04 b | 99.76 ± 0.95 c |
Activation enthalpies (ΔH, kJ/mol) | 91.09 ± 0.04 a | 113.89 ± 0.04 b | 96.7 ± 0.95 c |
Activation entropies (ΔS, J/mol K) | −12.6 ± 0.05 a | 63.08 ± 0.34 b | 5.96 ± 2.88 c |
Temperature coefficient (Tcoeff × 10−2, K−1) | −8.36 ± 0.0 a | −10.38 ± 0.0 b | −8.91 ± 0.0 c |
Temperature acceleration factor (Q10) | 2.31 ± 0.0 a | 2.82 ± 0.0 b | 2.44 ± 0.02 c |
Shelf life (IP25, days) ‡ | 74.42 ± 1.13 a | 58.93 ± 1.7 b | 72.97 ± 1.86 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joshi, A.; Holland, B.; Sachar, M.; Barrow, C.J. Pilot-Scale Enzymatic Conversion of Low Stability, High Free Fatty, Squid Oil to an Oxidatively Stable Astaxanthin-Rich Acylglyceride Oil Suitable for Nutritional Applications. Mar. Drugs 2025, 23, 21. https://doi.org/10.3390/md23010021
Joshi A, Holland B, Sachar M, Barrow CJ. Pilot-Scale Enzymatic Conversion of Low Stability, High Free Fatty, Squid Oil to an Oxidatively Stable Astaxanthin-Rich Acylglyceride Oil Suitable for Nutritional Applications. Marine Drugs. 2025; 23(1):21. https://doi.org/10.3390/md23010021
Chicago/Turabian StyleJoshi, Asavari, Brendan Holland, Moninder Sachar, and Colin J. Barrow. 2025. "Pilot-Scale Enzymatic Conversion of Low Stability, High Free Fatty, Squid Oil to an Oxidatively Stable Astaxanthin-Rich Acylglyceride Oil Suitable for Nutritional Applications" Marine Drugs 23, no. 1: 21. https://doi.org/10.3390/md23010021
APA StyleJoshi, A., Holland, B., Sachar, M., & Barrow, C. J. (2025). Pilot-Scale Enzymatic Conversion of Low Stability, High Free Fatty, Squid Oil to an Oxidatively Stable Astaxanthin-Rich Acylglyceride Oil Suitable for Nutritional Applications. Marine Drugs, 23(1), 21. https://doi.org/10.3390/md23010021